Dafine Ravelosona

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4345498/publications.pdf

Version: 2024-02-01

168 papers 7,062 citations

76326 40 h-index 80 g-index

171 all docs

171 docs citations

171 times ranked

5076 citing authors

#	Article	IF	Citations
1	Domain wall memory: Physics, materials, and devices. Physics Reports, 2022, 958, 1-35.	25.6	56
2	Magnetoâ€ionics in Annealed W/CoFeB/HfO ₂ Thin Films. Advanced Materials Interfaces, 2022, 9, .	3.7	10
3	Helium Ions Put Magnetic Skyrmions on the Track. Nano Letters, 2021, 21, 2989-2996. Multiple Magnetoionic Regimes in mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"	9.1	79
4	display="inline" overflow="scroll"> <mml:msub><mml:mi>Ta/Co</mml:mi><mml:mn>20</mml:mn></mml:msub> <mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub> <td>nml:mi>Fe mml:mrow</td> <td>e<m v><mml:mi>H1</mml:mi></m </td>	nml:mi>Fe mml:mrow	e <m v><mml:mi>H1</mml:mi></m
5	Physical Review Applied, 2021, 15, . Ion irradiation and implantation modifications of magneto-ionically induced exchange bias in Gd/NiCoO. Journal of Magnetism and Magnetic Materials, 2021, 540, 168479.	2.3	6
6	Tailoring interfacial effect in multilayers with Dzyaloshinskii–Moriya interaction by helium ion irradiation. Scientific Reports, 2021, 11, 23626.	3.3	11
7	Spin–orbit torque driven multi-level switching in He+ irradiated W–CoFeB–MgO Hall bars with perpendicular anisotropy. Applied Physics Letters, 2020, 116, .	3.3	19
8	Magnetic domain wall curvature induced by wire edge pinning. Applied Physics Letters, 2020, 117, .	3.3	7
9	Reduced spin torque nano-oscillator linewidth using He + irradiation. Applied Physics Letters, 2020, 116, 072403.	3.3	19
10	Controlling magnetism by interface engineering. , 2020, , 361-379.		2
11	$\langle i angle$ In situ $\langle i angle$ monitoring of electric field effect on domain wall motion in Co ultrathin films in direct contact with an electrolyte. Applied Physics Letters, 2019, 115, .	3.3	7
12	Enhancing domain wall velocity through interface intermixing in W-CoFeB-MgO films with perpendicular anisotropy. Applied Physics Letters, 2019, 115, .	3.3	34
13	Low Spin Polarization in Heavy-Metal–Ferromagnet Structures Detected Through Domain-Wall Motion by Synchronized Magnetic Field and Current. Physical Review Applied, 2019, 11, .	3.8	7
14	Compact Modeling of Perpendicular-Magnetic-Anisotropy Double-Barrier Magnetic Tunnel Junction With Enhanced Thermal Stability Recording Structure. IEEE Transactions on Electron Devices, 2019, 66, 2431-2436.	3.0	51
15	Energy-Efficient Domain-Wall Motion Governed by the Interplay of Helicity-Dependent Optical Effect and Spin-Orbit Torque. Physical Review Applied, 2019, 11, .	3.8	13
16	Domain-wall motion induced by spin transfer torque delivered by helicity-dependent femtosecond laser. Physical Review B, 2019, 99, .	3.2	7
17	Enhancement of the Dzyaloshinskii-Moriya interaction and domain wall velocity through interface intermixing in Ta/CoFeB/MgO. Physical Review B, 2019, 99, .	3.2	56
18	Direct Observation of Domain-Wall Surface Tension by Deflating or Inflating a Magnetic Bubble. Physical Review Applied, 2018, 9, .	3.8	27

#	Article	IF	CITATIONS
19	Suppression of all-optical switching in He+ -irradiated Co/Pt multilayers: influence of the domain-wall energy. Journal Physics D: Applied Physics, 2018, 51, 215004.	2.8	6
20	Extrinsic pinning of magnetic domain walls in CoFeB-MgO nanowires with perpendicular anisotropy. AIP Advances, $2018, 8, \ldots$	1.3	11
21	Heterogeneous Memristive Devices Enabled by Magnetic Tunnel Junction Nanopillars Surrounded by Resistive Silicon Switches. Advanced Electronic Materials, 2018, 4, 1700461.	5.1	13
22	Demonstration of Multi-State Memory Device Combining Resistive and Magnetic Switching Behaviors. IEEE Electron Device Letters, 2018, 39, 684-687.	3.9	14
23	ECRIS/EBIS Based Low-Energy Ion Implantation Technologies. , 2018, , . Engineering Domain-Wall Motion in < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"		0
24	display="inline" overflow="scroll"> <mml:mi>Co</mml:mi> <mml:mtext>â^²</mml:mtext> <mml:mi>Fe</mml:mi> <mml:mtext>â^²</mml:mtext> (mml:mi>Fe (mml:mi>Kmml:mtext) (mml:mi>FeKmml:mi>Kmml:mi Kmml:mi>Kmml:mi>Kmml:mi Kmml:mi Kmml:	/mml:mtex nml:mi	kt _} <mml:mro< td=""></mml:mro<>
25	Patterned Substrates with Subnanometer Step Modulation. Physical Review Applied, 2018, 10, . Magnetoresistive sensors based on the elasticity of domain walls. Nanotechnology, 2018, 29, 365502.	2.6	9
26	Statistical study of domain-wall depinning induced by magnetic field and current in an epitaxial Co/Ni-based spin-valve wire. Physical Review B, 2018, 98, .	3.2	7
27	Tuning the magnetodynamic properties of all-perpendicular spin valves using He+ irradiation. AIP Advances, 2018, 8, 065309.	1.3	3
28	Wire edge dependent magnetic domain wall creep. Physical Review B, 2018, 98, .	3.2	11
29	Domain-Wall Motion Driven by Laplace Pressure in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi><mml:mi>Co</mml:mi><mml:mi><mml:mtext>â^'</mml:mtext><mml:mi>Fe</mml:mi><mml:math ariant="normal">B</mml:math></mml:mi><mml:mi>/</mml:mi>>MgO</mml:mi></mml:math> B <mml:mi><mml:mo>/<mml:mi>>MgO</mml:mi></mml:mo></mml:mi> B <mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml< td=""><td>:mtæxt>â^</td><td></22ml:mtext</td></mml<></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi>	:m tæ xt>â^	< /22 ml:mtext
30	Electric field controlled domain wall dynamics and magnetic easy axis switching in liquid gated CoFeB/MgO films. Journal of Applied Physics, 2017, 122, .	2.5	18
31	Effect of spin transfer torque on domain wall motion regimes in [Co/Ni] superlattice wires. Physical Review B, 2017, 95, .	3.2	6
32	Effective field analysis using the full angular spin-orbit torque magnetometry dependence. Physical Review B, 2017, 95, .	3.2	27
33	Failure Analysis in Magnetic Tunnel Junction Nanopillar with Interfacial Perpendicular Magnetic Anisotropy. Materials, 2016, 9, 41.	2.9	72
34	lonic-liquid gating of perpendicularly magnetised CoFeB/MgO thin films. Journal of Applied Physics, 2016, 120, .	2.5	11
35	Perspectives of Racetrack Memory for Large-Capacity On-Chip Memory: From Device to System. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63, 629-638.	5.4	18
36	Ring-shaped Racetrack memory based on spin orbit torque driven chiral domain wall motions. Scientific Reports, 2016, 6, 35062.	3.3	17

3

#	Article	IF	Citations
37	Universal domain wall dynamics under electric field in Ta/CoFeB/MgO devices with perpendicular anisotropy. Nature Communications, 2016, 7, 13532.	12.8	37
38	Nonâ€volatile memories: Materials, nanostructures and integration approaches. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 235-236.	1.8	0
39	Measuring the Magnetic Moment Density in Patterned Ultrathin Ferromagnets with Submicrometer Resolution. Physical Review Applied, 2015, 4, .	3.8	29
40	Spin-orbit torques for current parallel and perpendicular to a domain wall. Applied Physics Letters, 2015, 107, .	3.3	12
41	From Device to System: Cross-layer Design Exploration of Racetrack Memory. , 2015, , .		10
42	Recent developments in the manipulation of magnetic domain walls in CoFeB–MgO wires for applications to high-density nonvolatile memories. , 2015, , 333-378.		5
43	Domain wall dynamics under electric field in Ta/Co <inf>40</inf> Fe <inf>40</inf> B <inf>20</inf> /MgO devices with perpendicular anisotropy. , 2015, , .		0
44	Dynamic Reference Sensing Scheme for Deeply Scaled STT-MRAM., 2015,,.		7
45	Yield and Reliability Improvement Techniques for Emerging Nonvolatile STT-MRAM. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2015, 5, 28-39.	3.6	57
46	Thermally activated domain wall motion in $[Co/Ni](111)$ superlattices with perpendicular magnetic anisotropy. Applied Physics Letters, 2015, 106, .	3.3	12
47	Peristaltic perpendicular-magnetic-anisotropy racetrack memory based on chiral domain wall motions. Journal Physics D: Applied Physics, 2015, 48, 105001.	2.8	10
48	A Multilevel Cell for STT-MRAM Realized by Capping Layer Adjustment. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	14
49	Complementary Spintronic Logic With Spin Hall Effect-Driven Magnetic Tunnel Junction. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	12
50	Reconfigurable Codesign of STT-MRAM Under Process Variations in Deeply Scaled Technology. IEEE Transactions on Electron Devices, 2015, 62, 1769-1777.	3.0	135
51	The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry. Nature Communications, 2015, 6, 6733.	12.8	183
52	Perspectives of racetrack memory based on current-induced domain wall motion: From device to system. , $2015, , .$		6
53	Complementary spintronic logic with spin hall effect driven magnetic tunnel junction. , 2015, , .		0
54	Spintronics. ACM Journal on Emerging Technologies in Computing Systems, 2015, 12, 1-42.	2.3	83

#	Article	IF	Citations
55	Controlling magnetic domain wall motion in the creep regime in He+-irradiated CoFeB/MgO films with perpendicular anisotropy. Applied Physics Letters, 2015, 107, .	3.3	41
56	A dynamic reference scheme to improve the sensing reliability of magnetic random access memory. , 2014, , .		2
57	Spintronics for low-power computing. , 2014, , .		16
58	A novel SEU-tolerant MRAM latch circuit based on C-element. , 2014, , .		5
59	Design and analysis of racetrack memory based on magnetic domain wall motion in nanowires. , 2014, ,		6
60	Measurement of magnetization using domain compressibility in CoFeB films with perpendicular anisotropy. Applied Physics Letters, 2014, 104, .	3.3	22
61	Variation-Tolerant High-Reliability Sensing Scheme for Deep Submicrometer STT-MRAM. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	10
62	Nonvolatile Boolean Logic Block Based on Ferroelectric Tunnel Memristor. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	20
63	Readability challenges in deeply scaled STT-MRAM. , 2014, , .		7
64	Synchronous Non-Volatile Logic Gate Design Based on Resistive Switching Memories. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61, 443-454.	5.4	90
65	Compact modelling of ferroelectric tunnel memristor and its use for neuromorphic simulation. Applied Physics Letters, 2014, 104, 053505.	3.3	32
66	A physics-based compact model of ferroelectric tunnel junction for memory and logic design. Journal Physics D: Applied Physics, 2014, 47, 045001.	2.8	24
67	Current induced perpendicular-magnetic-anisotropy racetrack memory with magnetic field assistance. Applied Physics Letters, 2014, 104, .	3.3	15
68	Variation-Tolerant and Disturbance-Free Sensing Circuit for Deep Nanometer STT-MRAM. IEEE Nanotechnology Magazine, 2014, 13, 1088-1092.	2.0	52
69	Design and analysis of Racetrack memory based on magnetic domain wall motion in nanowires. , 2014, ,		8
70	DFSTT-MRAM: Dual Functional STT-MRAM Cell Structure for Reliability Enhancement and 3-D MLC Functionality. IEEE Transactions on Magnetics, 2014, 50, 1-7.	2.1	14
71	Separated Precharge Sensing Amplifier for Deep Submicrometer MTJ/CMOS Hybrid Logic Circuits. IEEE Transactions on Magnetics, 2014, 50, 1-5.	2.1	22
72	A radiation hardened hybrid spintronic/CMOS nonvolatile unit using magnetic tunnel junctions. Journal Physics D: Applied Physics, 2014, 47, 405003.	2.8	60

#	Article	IF	CITATIONS
73	Design and analysis of crossbar architecture based on complementary resistive switching non-volatile memory cells. Journal of Parallel and Distributed Computing, 2014, 74, 2484-2496.	4.1	14
74	An overview of spin-based integrated circuits. , 2014, , .		17
75	Reversible Charge-Transfer Doping in Graphene due to Reaction with Polymer Residues. Journal of Physical Chemistry C, 2014, 118, 13890-13897.	3.1	19
76	Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope. Science, 2014, 344, 1366-1369.	12.6	158
77	Spintronics for low-power computing. , 2014, , .		5
78	Implementation of magnetic field assistance to current-induced perpendicular-magnetic-anisotropy racetrack memory. Journal of Applied Physics, 2014, 115, 17D509.	2.5	5
79	Write operation study of Co/BTO/LSMO ferroelectric tunnel junction. Journal of Applied Physics, 2013, 114, 044108.	2.5	11
80	Electrical Modeling of Stochastic Spin Transfer Torque Writing in Magnetic Tunnel Junctions for Memory and Logic Applications. IEEE Transactions on Magnetics, 2013, 49, 4375-4378.	2.1	74
81	A low-cost built-in error correction circuit design for STT-MRAM reliability improvement. Microelectronics Reliability, 2013, 53, 1224-1229.	1.7	43
82	Domain wall creep in a 2D magnetic wire in the presence of antiferromagnetic coupling. Journal Physics D: Applied Physics, 2013, 46, 235001.	2.8	1
83	Perpendicular magnetic anisotropy in Ta/CoFeB/MgO systems synthesized on treated SiN/SiO2 substrates for magnetic memories. Thin Solid Films, 2013, 533, 75-78.	1.8	13
84	Multi-level cell Spin Transfer Torque MRAM based on stochastic switching. , 2013, , .		16
85	Emerging hybrid logic circuits based on non-volatile magnetic memories. , 2013, , .		1
86	Analytical study of complementary memristive synchronous logic gates. , 2013, , .		3
87	Spin-electronics based logic fabrics. , 2013, , .		6
88	Perpendicular magnetic anisotropy in piezoelectric- and dielectric–ferromagnetic heterostructures based on Co/Pt multilayers. Thin Solid Films, 2013, 533, 70-74.	1.8	7
89	Interface width evaluation in thin layered CoFeB/MgO multilayers including Ru or Ta buffer layer by X-ray reflectivity. Thin Solid Films, 2013, 533, 79-82.	1.8	15
90	Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures. Nature Communications, 2013, 4, 1378.	12.8	237

#	Article	IF	Citations
91	Synchronous full-adder based on complementary resistive switching memory cells., 2013,,.		3
92	Irradiation-induced tailoring of the magnetism of CoFeB/MgO ultrathin films. Journal of Applied Physics, 2013, 113 , .	2.5	39
93	Low depinning fields in Ta-CoFeB-MgO ultrathin films with perpendicular magnetic anisotropy. Applied Physics Letters, 2013, 103, 182401.	3.3	90
94	High reliability sensing circuit for deep submicron spin transfer torque magnetic random access memory. Electronics Letters, 2013, 49, 1283-1285.	1.0	49
95	Compact modelling for Co/BTO/LSMO Ferroelectric Tunnel Junction. , 2013, , .		0
96	Damping of CoxFe80 \hat{a} °xB20 ultrathin films with perpendicular magnetic anisotropy. Applied Physics Letters, 2013, 102, .	3.3	126
97	SPINTRONIC MEMORY-BASED RECONFIGURABLE COMPUTING. Spin, 2013, 03, 1340010.	1.3	5
98	Voltage control of magnetism in ferromagnetic structures. Proceedings of SPIE, 2012, , .	0.8	0
99	Crossbar architecture based on 2R complementary resistive switching memory cell., 2012,,.		4
100	Domain wall motion in nanopillar spin-valves with perpendicular anisotropy driven by spin-transfer torques. Physical Review B, 2012, 86, .	3.2	9
101	State diagram of nanopillar spin valves with perpendicular magnetic anisotropy. Physical Review B, 2012, 86, .	3.2	25
102	High Density Spin-Transfer Torque (STT)-MRAM Based on Cross-Point Architecture. , 2012, , .		9
103	Self-Enabled "Error-Free―Switching Circuit for Spin Transfer Torque MRAM and Logic. IEEE Transactions on Magnetics, 2012, 48, 2403-2406.	2.1	71
104	Failure and reliability analysis of STT-MRAM. Microelectronics Reliability, 2012, 52, 1848-1852.	1.7	192
105	Magnetic domain-wall racetrack memory for high density and fast data storage. , 2012, , .		15
106	Perpendicular-magnetic-anisotropy CoFeB racetrack memory. Journal of Applied Physics, 2012, 111, .	2.5	111
107	Compact Modeling of Perpendicular-Anisotropy CoFeB/MgO Magnetic Tunnel Junctions. IEEE Transactions on Electron Devices, 2012, 59, 819-826.	3.0	330
108	High Performance SoC Design Using Magnetic Logic and Memory. International Federation for Information Processing, 2012, , 10-33.	0.4	12

#	Article	IF	CITATIONS
109	Influence of ion irradiation on switching field and switching field distribution in arrays of Co/Pd-based bit pattern media. Applied Physics Letters, 2011, 98, 172506.	3.3	22
110	Asymmetric domain wall depinning under current in spin valves with perpendicular anisotropy. Applied Physics Letters, 2011, 98, 232512.	3.3	4
111	Design of MRAM based logic circuits and its applications. , 2011, , .		24
112	Domain Wall Shift Register-Based Reconfigurable Logic. IEEE Transactions on Magnetics, 2011, 47, 2966-2969.	2.1	54
113	A compact model of domain wall propagation for logic and memory design. Journal of Applied Physics, 2011, 109, .	2.5	29
114	Coercivity enhancement in FePt nanowires due to the suppression of available paths for domain wall propagation. Physical Review B, 2011, 84, .	3.2	13
115	Ferromagnetic resonance study of Co/Pd/Co/Ni multilayers with perpendicular anisotropy irradiated with helium ions. Journal of Applied Physics, $2011, 109, \ldots$	2.5	19
116	Magnetization reversal assisted by the inverse piezoelectric effect in Co-Fe-B <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>/</mml:mo></mml:mrow></mml:math> ferroelectric multilayers. Physical Review B, 2011, 84, .	3.2	67
117	Stochastic domain-wall depinning under current in FePt spin valves and single layers. Physical Review B, 2011, 84, .	3.2	9
118	Study of domain wall propagation in nanostructured CoPt multilayers by using antisymmetric magnetoresistance. Journal of Physics: Conference Series, 2010, 200, 042021.	0.4	4
119	Non-adiabatic spin-torques in narrow magnetic domain walls. Nature Physics, 2010, 6, 17-21.	16.7	194
120	Interplay between collective pinning and artificial defects on domain wall propagation in Co/Pt multilayers. Journal Physics D: Applied Physics, 2010, 43, 305002.	2.8	7
121	Telegraph noise due to domain wall motion driven by spin current in perpendicular magnetized nanopillars. Applied Physics Letters, 2009, 94, .	3.3	28
122	Magnetic logic using nanowires with perpendicular anisotropy. Nanotechnology, 2009, 20, 215401.	2.6	40
123	Reducing the critical current for spin-transfer switching of perpendicularly magnetized nanomagnets. Applied Physics Letters, 2009, 94, .	3.3	171
124	Ferromagnetic resonance linewidth in ultrathin films with perpendicular magnetic anisotropy. Physical Review B, 2009, 80, .	3.2	124
125	Dynamics of Domain Wall Motion in Wires with Perpendicular Anisotropy. , 2009, , 185-217.		3
126	Role of pinning in current driven domain wall motion in wires with perpendicular anisotropy. Applied Physics Letters, 2008, 93, 172513.	3.3	39

#	Article	IF	Citations
127	Tailoring magnetism in CoNi films with perpendicular anisotropy by ion irradiation. Journal of Applied Physics, 2008, 103, 07B529.	2.5	24
128	Current induced domain wall states in CPP nanopillars with perpendicular anisotropy. Journal Physics D: Applied Physics, 2007, 40, 1253-1256.	2.8	11
129	Threshold currents to move domain walls in films with perpendicular anisotropy. Applied Physics Letters, 2007, 90, 072508.	3.3	101
130	Current-induced magnetization reversal in nanopillars with perpendicular anisotropy., 2006,,.		5
131	Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nature Materials, 2006, 5, 210-215.	27.5	1,148
132	Thermally Activated Depinning of a Narrow Domain Wall from a Single Defect. Physical Review Letters, 2006, 96, 147204.	7.8	60
133	Domain Wall Creation in Nanostructures Driven by a Spin-Polarized Current. Physical Review Letters, 2006, 96, 186604.	7.8	67
134	Current-driven narrow domain wall depinning in perpendicular spin valves. IEEE Transactions on Magnetics, 2005, 41, 2618-2620.	2.1	2
135	Enhancing domain wall motion in magnetic wires by ion irradiation. Applied Physics Letters, 2005, 86, 022503.	3.3	23
136	Nanometer Scale Observation of High Efficiency Thermally Assisted Current-Driven Domain Wall Depinning. Physical Review Letters, 2005, 95, 117203.	7.8	149
137	Effects of patterning on perpendicular exchange bias probed by extraordinary Hall effect. Journal of Applied Physics, 2004, 95, 6726-6728.	2.5	6
138	Domain Wall Creep in Magnetic Wires. Physical Review Letters, 2004, 92, 107202.	7.8	121
139	Tailoring magnetism by light-ion irradiation. Journal Physics D: Applied Physics, 2004, 37, R179-R196.	2.8	261
140	Ordering Intermetallic Alloys by Ion Irradiation: A Way to Tailor Magnetic Media. Physical Review Letters, 2003, 91, 077203.	7.8	131
141	Growth mode and matrix effects on the magneto-optical activity of ultrathin films. Applied Physics Letters, 2002, 81, 1603-1605.	3.3	6
142	Chemical ordering at low temperatures in FePd films. Journal of Applied Physics, 2002, 91, 8082.	2.5	25
143	Detection of domain wall propagation in a mesoscopic wire. Journal of Magnetism and Magnetic Materials, 2002, 240, 30-33.	2.3	13
144	Control of the magnetic domain wall propagation in Pt/Co/Pt ultra thin films using direct mechanical AFM lithography. Journal of Magnetism and Magnetic Materials, 2002, 240, 53-56.	2.3	10

#	Article	IF	Citations
145	Dynamics of magnetization reversal in a mesoscopic wire. Journal of Magnetism and Magnetic Materials, 2002, 249, 170-174.	2.3	17
146	Irradiation-induced magnetic patterning in magnetic multilayers. Materials Science and Engineering C, 2001, 15, 53-58.	7.3	7
147	Beam-induced magnetic property modifications: Basics, nanostructure fabrication and potential applications. Nuclear Instruments & Methods in Physics Research B, 2001, 175-177, 375-381.	1.4	34
148	Influence of geometry on domain wall propagation in a mesoscopic wire. IEEE Transactions on Magnetics, 2001, 37, 2104-2107.	2.1	53
149	Magnetic properties of irradiated highly anisotropic materials. IEEE Transactions on Magnetics, 2001, 37, 1643-1645.	2.1	13
150	Propagation of a magnetic domain wall in the presence of AFM fabricated defects. IEEE Transactions on Magnetics, 2001, 37, 2331-2333.	2.1	10
151	Vortex-lattice activation energy deduced from irreversibility lines for(PrBa2Cu3â^'xGaxO7)M/(YBa2Cu3O7)Nsuperlattices. Physical Review B, 2000, 61, 7044-7048.	3.2	8
152	Chemical order induced by He+ ion irradiation in FePt (001) films. Journal of Applied Physics, 2000, 87, 5771-5773.	2.5	54
153	Chemical order induced by ion irradiation in FePt (001) films. Applied Physics Letters, 2000, 76, 236-238.	3.3	151
154	Domain-wall scattering in epitaxial FePd ordered alloy films with perpendicular magnetic anisotropy. Physical Review B, 1999, 59, 4322-4326.	3.2	72
155	MFM imaging of FePd stripe domains. Evolution with Pt buffer layer thickness. Journal of Magnetism and Magnetic Materials, 1999, 196-197, 23-25.	2.3	30
156	Buffer layer morphology effects on the ordering of epitaxial FePd(001) thin films. Acta Materialia, 1998, 46, 2299-2303.	7.9	4
157	Buffer layer morphology effects on the ordering of epitaxial FePd(001) thin films. Acta Materialia, 1998, 46, 2299-2303.	7.9	4
158	The influence of the Pt buffer layer on the perpendicular magnetic anisotropy in epitaxial FePd(001) ordered alloys grown by sputtering. Journal of Applied Physics, 1997, 81, 5050-5052.	2.5	31
159	Growth defects and interface roughness in YBa2Cu3O7/SrTiO3 superlattices grown by pulsed laser ablation. Journal of Alloys and Compounds, 1997, 251, 185-192.	5.5	4
160	Structural and electrical properties of PrBa2Cu3 \hat{a} °xGaxO7 (x = 0.2) thin films and Alloys and Compounds, 1997, 251, 209-212.	5.5	2
161	Critical thickness and stress relaxation in YBaCuO (123) strained epitaxial layers and YBaCuO based strained superlattices. Zeitschrift Für Physik B-Condensed Matter, 1996, 100, 185-190.	1.1	8
162	Critical thickness of YBaCuO (123) strained thin films and superlattices grown by pulsed laser deposition. Applied Surface Science, 1996, 96-98, 703-707.	6.1	4

#	Article	lF	CITATIONS
163	Critical thickness of YBaCuO (123) strained thin films and superlattices grown by pulsed laser deposition. , 1996, , 703-707.		O
164	Magnetisation measurements and irreversibility lines in (PrBa2Cu3â^'xGaxO7)M/(YBa2Cu3O7)N superlattices. Physica C: Superconductivity and Its Applications, 1994, 235-240, 2721-2722.	1.2	3
165	Study of (YBa2Cu3O7â^Î)M/(PrBa2Cu3â^'xGaxO7â^Î)N superlattices grown by pulsed-laser deposition: a comparison between a - and c-axis oriented structures. Applied Surface Science, 1994, 75, 252-258.	6.1	5
166	Homoepitaxial growth of low roughness SrTiO3 by pulsed laser deposition: application to YBa2Cu3O7-x -based thin films and superlattices. Journal of Crystal Growth, 1994, 141, 141-149.	1.5	18
167	Croissance de PrBa2CU3-xGaxO7 en ablation laser pulsée : application aux superréseaux (YBa2Cu3O7)M/(PrBa2CU3-xGaxO7)N. Journal De Physique III, 1994, 4, 2173-2182.	0.3	O
168	Growth of [YBa2Cu3O7-Î]M/[PrBa2Cu3-xGaxO7-Î]NSuperlattices by Pulsed Laser Deposition. Japanese Journal of Applied Physics, 1993, 32, L1134-L1136.	1.5	30