
Christophe Jouvet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4345275/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pre-Dewar structure modulates protonated azaindole photodynamics. Physical Chemistry Chemical Physics, 2022, 24, 12346-12353.	2.8	4
2	Photofragmentation and electron detachment of aromatic phosphonate, sulfonate and phosphate oxyanions. European Physical Journal D, 2021, 75, 1.	1.3	6
3	Roadmap on dynamics of molecules and clusters in the gas phase. European Physical Journal D, 2021, 75, 1.	1.3	32
4	Non-destructive detection of large molecules without mass limitation. Journal of Chemical Physics, 2021, 154, 184203.	3.0	4
5	Loss of CO2 from Monodeprotonated Phthalic Acid upon Photodissociation and Dissociative Electron Detachment. Journal of Physical Chemistry A, 2021, 125, 7406-7413.	2.5	2
6	Revealing the role of excited state proton transfer (ESPT) in excited state hydrogen transfer (ESHT): systematic study in phenol–(NH ₃) _n clusters. Chemical Science, 2021, 12, 3836-3856.	7.4	18
7	UV Photoinduced Dynamics of Conformer-Resolved Aromatic Peptides. Chemical Reviews, 2020, 120, 3296-3327.	47.7	44
8	Influence of the N atom position on the excited state photodynamics of protonated azaindole. Physical Chemistry Chemical Physics, 2020, 22, 27280-27289.	2.8	7
9	Photoinduced water oxidation in pyrimidine–water clusters: a combined experimental and theoretical study. Physical Chemistry Chemical Physics, 2020, 22, 12502-12514.	2.8	16
10	Excited state hydrogen transfer dynamics in phenol–(NH ₃) ₂ studied by picosecond UV-near IR-UV time-resolved spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 5740-5748.	2.8	4
11	Influence of the N atom and its position on electron photodetachment of deprotonated indole and azaindole. Physical Chemistry Chemical Physics, 2020, 22, 27290-27299.	2.8	5
12	Excited States Processes in Protonated Molecules Studied by Frequency-Domain Spectroscopy. , 2019, , 337-365.		0
13	Dissociative photodetachment <i>vs.</i> photodissociation of aromatic carboxylates: the benzoate and naphthoate anions. Physical Chemistry Chemical Physics, 2019, 21, 1797-1804.	2.8	12
14	Photodetachment of deprotonated aromatic amino acids: stability of the dehydrogenated radical depends on the deprotonation site. Physical Chemistry Chemical Physics, 2019, 21, 23346-23354.	2.8	9
15	Tautomerism and electronic spectroscopy of protonated 1- and 2-aminonaphthalene. Physical Chemistry Chemical Physics, 2018, 20, 6134-6145.	2.8	11
16	Electronâ€Proton Transfer Mechanism of Excitedâ€ S tate Hydrogen Transfer in Phenolâ€(NH ₃) _{<i>n</i>} (<i>n=</i> 3 and 5). Chemistry - A European Journal, 2018, 24, 881-890.	3.3	8
17	Pseudorotaxanes in the gas phase: structure and energetics of protonated dibenzylamine–crown ether complexes. Physical Chemistry Chemical Physics, 2018, 20, 18678-18687.	2.8	3
18	A conformational study of protonated noradrenaline by UV–UV and IR dip double resonance laser spectroscopy combined with an electrospray and a cold ion trap method. Physical Chemistry Chemical Physics, 2017, 19, 10777-10785.	2.8	27

CHRISTOPHE JOUVET

#	Article	IF	CITATIONS
19	Electronic Spectroscopy of Protonated 1â€Aminopyrene in a Cold Ion Trap. Chemistry - an Asian Journal, 2017, 12, 1523-1531.	3.3	9
20	Photodissociation Electronic Spectra of Cold Protonated Quinoline and Isoquinoline in the Gas Phase. Journal of Physical Chemistry A, 2017, 121, 2580-2587.	2.5	14
21	Twisted Intramolecular Charge Transfer in Protonated Amino Pyridine. Journal of Physical Chemistry A, 2016, 120, 3797-3809.	2.5	21
22	Non-radiative processes in protonated diazines, pyrimidine bases and an aromatic azine. Physical Chemistry Chemical Physics, 2016, 18, 20126-20134.	2.8	17
23	Photoinduced water splitting in pyridine water clusters. Physical Chemistry Chemical Physics, 2016, 18, 25637-25644.	2.8	26
24	Excited state of protonated benzene and toluene. Journal of Chemical Physics, 2015, 143, 074303.	3.0	13
25	UV photodissociation spectroscopy of cryogenically cooled gas phase host–guest complex ions of crown ethers. Physical Chemistry Chemical Physics, 2015, 17, 25925-25934.	2.8	11
26	UV spectroscopy of cold ions as a probe of the protonation site. Physical Chemistry Chemical Physics, 2015, 17, 25755-25760.	2.8	20
27	Electron–Proton Decoupling in Excited‣tate Hydrogen Atom Transfer in the Gas Phase. Angewandte Chemie - International Edition, 2015, 54, 15089-15093.	13.8	20
28	Excited State Dynamics of Protonated Phenylalanine and Tyrosine: Photo-Induced Reactions Following Electronic Excitation. Journal of Physical Chemistry A, 2015, 119, 5914-5924.	2.5	36
29	Communication: Identification of daughter ions through their electronic spectroscopy at low temperature. Journal of Chemical Physics, 2014, 141, 131101.	3.0	5
30	Excited states of protonated DNA/RNA bases. Physical Chemistry Chemical Physics, 2014, 16, 10643-10650.	2.8	60
31	Non-radiative relaxation of UV photoexcited phenylalanine residues: probing the role of conical intersections by chemical substitution. Physical Chemistry Chemical Physics, 2014, 16, 2285.	2.8	28
32	Development of Ultraviolet–Ultraviolet Hole-Burning Spectroscopy for Cold Gas-Phase Ions. Journal of Physical Chemistry Letters, 2014, 5, 1236-1240.	4.6	43
33	Photofragmentation spectroscopy of cold protonated aromatic amines in the gas phase. Physical Chemistry Chemical Physics, 2014, 16, 5250.	2.8	47
34	New Method for Double-Resonance Spectroscopy in a Cold Quadrupole Ion Trap and Its Application to UV–UV Hole-Burning Spectroscopy of Protonated Adenine Dimer. Journal of Physical Chemistry Letters, 2014, 5, 2760-2764.	4.6	62
35	Electronic Spectra of the Protonated Indole Chromophore in the Gas Phase. Journal of Physical Chemistry A, 2013, 117, 4420-4427.	2.5	70
36	Ground State Proton Transfer in Phenol–(NH ₃) _{<i>n</i>} (<i>n</i> ≤1) Clusters Studied by Mid-IR Spectroscopy in 3–10 μm Range. Journal of Physical Chemistry A, 2013, 117, 1522-1530.	2.5	30

CHRISTOPHE JOUVET

#	Article	IF	CITATIONS
37	Protonated salicylaldehyde: Electronic properties. Chemical Physics, 2012, 399, 224-231.	1.9	19
38	Photon induced isomerization in the first excited state of the 7-azaindole–(H2O)3 cluster. Physical Chemistry Chemical Physics, 2011, 13, 6325.	2.8	30
39	Holeâ€Burning Spectra of <i>m</i> â€Fluorophenol/Ammonia (1:3) Clusters and Their Excited State Hydrogen Transfer Dynamics. ChemPhysChem, 2011, 12, 1928-1934.	2.1	10
40	Excited state hydrogen transfer dynamics in substituted phenols and their complexes with ammonia: ππâ^—-πσâ^— energy gap propensity and ortho-substitution effect. Journal of Chemical Physics, 2010, 133, 124	1313.	123
41	Excited-State Dynamics of the 2-Hydroxypyridineâ^'Ammonia Complex. Journal of Physical Chemistry A, 2010, 114, 3060-3066.	2.5	9
42	Role of the Charge-Transfer State in the Electronic Absorption of Protonated Hydrocarbon Molecules. Journal of the American Chemical Society, 2010, 132, 17483-17489.	13.7	70
43	Excited-State Triple-Proton Transfer in 7-Azaindole(H ₂ 0) ₂ and Reaction Path Studied by Electronic Spectroscopy in the Gas Phase and Quantum Chemical Calculations. Journal of Physical Chemistry A, 2010, 114, 11161-11166.	2.5	58
44	Effect of protonation on the electronic structure of aromatic molecules: naphthaleneH+. Physical Chemistry Chemical Physics, 2010, 12, 14456.	2.8	66
45	UV photoinduced dynamics in protonated aromatic amino acid. European Physical Journal D, 2009, 51, 109-116.	1.3	45
46	Biradicalic excited states of zwitterionic phenol-ammonia clusters. Journal of Chemical Physics, 2009, 130, 024302.	3.0	31
47	Mechanisms of photoinduced Cαî—,Cβ bond breakage in protonated aromatic amino acids. Journal of Chemical Physics, 2008, 128, 164302.	3.0	55
48	Electronic spectra of 7-azaindole/ammonia clusters and their photochemical reactivity. Journal of Chemical Physics, 2008, 129, 104311.	3.0	33
49	Comprehensive characterization of the photodissociation pathways of protonated tryptophan. Journal of Chemical Physics, 2007, 127, 134313.	3.0	59
50	Characterization of neutral fragments issued from the photodissociation of protonated tryptophane. Physical Chemistry Chemical Physics, 2007, 9, 5330.	2.8	31
51	AbinitioStudy of the Excited-State Deactivation Pathways of Protonated Tryptophan and Tyrosine. Journal of the American Chemical Society, 2007, 129, 6223-6231.	13.7	99
52	Excited state hydrogen transfer in fluorophenol·ammonia clusters studied by two-color REMPI spectroscopy. Physical Chemistry Chemical Physics, 2006, 8, 114-121.	2.8	36
53	Role of the Intermolecular Vibrations in the Hydrogen Transfer Rate:Â The 3-Methylindoleâ~'NH3Complex. Journal of Physical Chemistry A, 2006, 110, 9383-9387.	2.5	15
54	On the role of dissociative πσ* states in the photochemistry of protonated tryptamine and tryptophan: An ab initio study. Chemical Physics, 2006, 324, 398-404.	1.9	66

CHRISTOPHE JOUVET

#	Article	IF	CITATIONS
55	Ultrafast deactivation mechanisms of protonated aromatic amino acids following UV excitation. Physical Chemistry Chemical Physics, 2005, 7, 394-398.	2.8	135
56	Control of Bond-Cleaving Reactions of Free Protonated Tryptophan Ion by Femtosecond Laser Pulses. Journal of Physical Chemistry A, 2005, 109, 2417-2420.	2.5	59
57	Photo-induced dissociation of protonated tryptophan TrpH+: A direct dissociation channel in the excited states controls the hydrogen atom loss. Physical Chemistry Chemical Physics, 2004, 6, 2628-2632.	2.8	89
58	Hydrogen transfer in excited pyrrole–ammonia clusters. Journal of Chemical Physics, 2004, 120, 10101-10110.	3.0	43
59	Is there an Excited State Proton Transfer in phenol (or 1 -naphthol)-ammonia clusters? Hydrogen Detachment and Transfer to Solvent: A key for non-radiative processes in clusters. International Reviews in Physical Chemistry, 2002, 21, 499-523.	2.3	73
60	Excited-state hydrogen detachment and hydrogen transfer driven by repulsive 1πσ* states: A new paradigm for nonradiative decay in aromatic biomolecules. Physical Chemistry Chemical Physics, 2002, 4, 1093-1100.	2.8	881
61	Evaporation after ionization in molecular clusters: application to 1-naphthol–(NH3)n. Physical Chemistry Chemical Physics, 2001, 3, 4316-4324.	2.8	30
62	Dissociative hydrogen transfer in indole–(NH3)nclusters. PhysChemComm, 2001, 4, 21-23.	0.8	28
63	Has the Excited State Proton Transfer Ever Been Observed in Phenolâ^'(NH3)n Molecular Clusters?. Journal of Physical Chemistry A, 2001, 105, 5971-5976.	2.5	53
64	A forgotten channel in the excited state dynamics of phenol–(ammonia)n clusters: hydrogen transfer. Physical Chemistry Chemical Physics, 2000, 2, 893-900.	2.8	104
65	Picosecond Hydrogen Transfer in the Phenol-(NH3)n=1-3Excited State. Journal of Physical Chemistry A, 2000, 104, 9087-9090.	2.5	65
66	Real time monitoring of the evaporative cooling: Application to the dynamics of NaI-(NH3)n clusters. Journal of Chemical Physics, 1999, 110, 1521-1525.	3.0	25
67	Intracluster hydrogen transfer followed by dissociation in the phenol–(NH3)3 excited state: PhOH(S1)–(NH3)3→PhO•+(NH4)(NH3)2. Journal of Chemical Physics, 1999, 111, 10747-10749.	3.0	81
68	Proton-transfer reaction in the ground state of phenol–ammonia clusters: an experimental study. Chemical Physics Letters, 1999, 310, 173-179.	2.6	34
69	Experimental Femtosecond Photoionization of Nal. Journal of Physical Chemistry A, 1997, 101, 2555-2560.	2.5	74
70	Fluorescence excitation spectrum of the Si–Ar van der Waals complex. Journal of Chemical Physics, 1990, 92, 2828-2836.	3.0	30
71	Reactivity of molecular clusters in the gas phase: proton-transfer reaction in neutral phenol-(ammonia)n and phenol-(ethanamine)n. The Journal of Physical Chemistry, 1990, 94, 5041-5048.	2.9	122
72	Resonance-enhanced multiphoton ionization spectra and ionization thresholds of phenol-(ammonia)n clusters. The Journal of Physical Chemistry, 1988, 92, 3313-3315.	2.9	78

#	Article	IF	CITATIONS
73	Orbitally selective chemical reaction in Hg–H2 van der Waals complexes. Journal of Chemical Physics, 1986, 84, 1443-1450.	3.0	143
74	Photochemistry in van der Waals complexes: Observation of the intermediate state of the Hg*,Cl2 reaction. Chemical Physics Letters, 1983, 96, 426-428.	2.6	81