Viktor I Korolchuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4345251/publications.pdf

Version: 2024-02-01

73 papers

18,795 citations

57758
44
h-index

91884 69 g-index

80 all docs 80 docs citations

80 times ranked 32222 citing authors

#	Article	IF	CITATIONS
1	The role of lysosomes in autophagy. , 2022, , 57-70.		o
2	Activation of autophagy reverses progressive and deleterious protein aggregation in PRPF31 patientâ€induced pluripotent stem cellâ€derived retinal pigment epithelium cells. Clinical and Translational Medicine, 2022, 12, e759.	4.0	12
3	Short senolytic or senostatic interventions rescue progression of radiation-induced frailty and premature ageing in mice. ELife, 2022, 11 , .	6.0	27
4	Increased telomerase improves motor function and alpha-synuclein pathology in a transgenic mouse model of Parkinson's disease associated with enhanced autophagy. Progress in Neurobiology, 2021, 199, 101953.	5.7	33
5	mTORC1 activity is supported by spatial association with focal adhesions. Journal of Cell Biology, 2021, 220, .	5.2	41
6	G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling. Cell, 2021, 184, 655-674.e27.	28.9	65
7	Identification of novel Atg3-Atg8 inhibitors using virtual screening for autophagy modulation. Bioorganic Chemistry, 2021, 114, 105092.	4.1	5
8	A Mammalian Target of Rapamycinâ€Perilipin 3 (mTORC1â€Plin3) Pathway is essential to Activate Lipophagy and Protects Against Hepatosteatosis. Hepatology, 2021, 74, 3441-3459.	7.3	20
9	Transcriptional block of AMPK-induced autophagy promotes glutamate excitotoxicity in nutrient-deprived SH-SY5Y neuroblastoma cells. Cellular and Molecular Life Sciences, 2020, 77, 3383-3399.	5.4	20
10	Complement modulation reverses pathology in Y402H-retinal pigment epithelium cell model of age-related macular degeneration by restoring lysosomal function. Stem Cells Translational Medicine, 2020, 9, 1585-1603.	3.3	36
11	Redox signalling in physiology, ageing and disease. Biogerontology, 2020, 21, 411-414.	3.9	О
12	Autophagy in Neurodegenerative Diseases. Journal of Molecular Biology, 2020, 432, 2445-2448.	4.2	2
13	The crosstalk of NAD, ROS and autophagy in cellular health and ageing. Biogerontology, 2020, 21, 381-397.	3.9	27
14	The pROS of Autophagy in Neuronal Health. Journal of Molecular Biology, 2020, 432, 2546-2559.	4.2	19
15	The mTORC1-autophagy pathway is a target for senescent cell elimination. Biogerontology, 2019, 20, 331-335.	3.9	24
16	Mitochondrial quality control as a key determinant of cell survival. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 575-587.	4.1	97
17	Rapamycin improves healthspan but not inflammaging in <i>nfleb1</i> ^{â~'/â~'} mice. Aging Cell, 2019, 18, e12882.	6.7	59
18	Nutrient sensing, growth and senescence. FEBS Journal, 2018, 285, 1948-1958.	4.7	34

#	Article	IF	CITATIONS
19	Oxidation of SQSTM1/p62 mediates the link between redox state and protein homeostasis. Nature Communications, 2018, 9, 256.	12.8	132
20	Autophagy: â€~Self-Eating' Your Way to Longevity. Sub-Cellular Biochemistry, 2018, 90, 25-47.	2.4	8
21	Severe white matter astrocytopathy in <scp>CADASIL</scp> . Brain Pathology, 2018, 28, 832-843.	4.1	34
22	mTORC1 and Nutrient Homeostasis: The Central Role of the Lysosome. International Journal of Molecular Sciences, 2018, 19, 818.	4.1	124
23	Oxidation of p62 as an evolutionary adaptation to promote autophagy in stress conditions. Cell Stress, 2018, 2, 91-93.	3.2	9
24	Persistent mTORC1 signaling in cell senescence results from defects in amino acid and growth factor sensing. Journal of Cell Biology, 2017, 216, 1949-1957.	5.2	106
25	Selenomethionine Alleviates AFB1-Induced Damage in Primary Chicken Hepatocytes by Inhibiting CYP450 1A5 Expression via Upregulated SelW Expression. Journal of Agricultural and Food Chemistry, 2017, 65, 2495-2502.	5.2	27
26	Mitochondria in Cell Senescence: Is Mitophagy the Weakest Link?. EBioMedicine, 2017, 21, 7-13.	6.1	260
27	Repair, Reuse, Recycle: The Expanding Role of Autophagy in Genome Maintenance. Trends in Cell Biology, 2017, 27, 340-351.	7.9	116
28	An Induced Pluripotent Stem Cell Patient Specific Model of Complement Factor H (Y402H) Polymorphism Displays Characteristic Features of Age-Related Macular Degeneration and Indicates a Beneficial Role for UV Light Exposure. Stem Cells, 2017, 35, 2305-2320.	3.2	58
29	mTORC1 as the main gateway to autophagy. Essays in Biochemistry, 2017, 61, 565-584.	4.7	371
30	Signalling mechanisms in autophagy: an introduction to the issue. Essays in Biochemistry, 2017, 61, 561-563.	4.7	3
31	Dysregulation of mTORC1/autophagy axis in senescence. Aging, 2017, 9, 1851-1852.	3.1	7
32	SQSTM1/p62 mediates crosstalk between autophagy and the UPS in DNA repair. Autophagy, 2016, 12, 1917-1930.	9.1	120
33	Mitochondria are required for proâ€ageing features of the senescent phenotype. EMBO Journal, 2016, 35, 724-742.	7.8	527
34	PEG-lipid micelles enable cholesterol efflux in Niemann-Pick Type C1 disease-based lysosomal storage disorder. Scientific Reports, 2016, 6, 31750.	3.3	33
35	Mitochondrial Degradation, Autophagy and Neurodegenerative Disease. , 2016, , 255-278.		1
36	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701

#	Article	IF	CITATIONS
37	Autophagy, lipophagy and lysosomal lipid storage disorders. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 269-284.	2.4	189
38	Oxidative Stress by Monoamine Oxidase-A Impairs Transcription Factor EB Activation and Autophagosome Clearance, Leading to Cardiomyocyte Necrosis and Heart Failure. Antioxidants and Redox Signaling, 2016, 25, 10-27.	5.4	76
39	Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity. ELife, 2016, 5, .	6.0	147
40	Mechanisms of Cross-Talk between Intracellular Protein Degradation Pathways., 2015,, 103-119.		0
41	PI(5)P Regulates Autophagosome Biogenesis. Molecular Cell, 2015, 57, 219-234.	9.7	230
42	Amino acids and autophagy: cross-talk and co-operation to control cellular homeostasis. Amino Acids, 2015, 47, 2065-2088.	2.7	80
43	Dynamic Modelling of Pathways to Cellular Senescence Reveals Strategies for Targeted Interventions. PLoS Computational Biology, 2014, 10, e1003728.	3.2	121
44	Dual Proteolytic Pathways Govern Glycolysis and Immune Competence. Cell, 2014, 159, 1578-1590.	28.9	54
45	Restarting stalled autophagy a potential therapeutic approach for the lipid storage disorder, Niemann-Pick type C1 disease. Autophagy, 2014, 10, 1137-1140.	9.1	18
46	Impaired Autophagy in the Lipid-Storage Disorder Niemann-Pick Type C1 Disease. Cell Reports, 2013, 5, 1302-1315.	6.4	232
47	Lysosome-mediated processing of chromatin in senescence. Journal of Cell Biology, 2013, 202, 129-143.	5.2	413
48	Autophagy and ageing: implications for age-related neurodegenerative diseases. Essays in Biochemistry, 2013, 55, 119-131.	4.7	45
49	Postmitotic neurons develop a p21â€dependent senescenceâ€like phenotype driven by a DNA damage response. Aging Cell, 2012, 11, 996-1004.	6.7	434
50	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
51	Complex Inhibitory Effects of Nitric Oxide on Autophagy. Molecular Cell, 2011, 43, 19-32.	9.7	340
52	Lysosomal positioning coordinates cellular nutrient responses. Nature Cell Biology, 2011, 13, 453-460.	10.3	726
53	Regulation of autophagy by lysosomal positioning. Autophagy, 2011, 7, 927-928.	9.1	105
54	A Phagocytic Route for Uptake of Double-Stranded RNA in RNAi. PLoS ONE, 2011, 6, e19087.	2.5	20

#	Article	IF	Citations
55	Mechanisms of crossâ€talk between the ubiquitinâ€proteasome and autophagyâ€lysosome systems. FEBS Letters, 2010, 584, 1393-1398.	2.8	471
56	Antioxidants can inhibit basal autophagy and enhance neurodegeneration in models of polyglutamine disease. Human Molecular Genetics, 2010, 19, 3413-3429.	2.9	135
57	Impaired autophagy in Lafora disease. Autophagy, 2010, 6, 991-993.	9.1	30
58	Laforin, the most common protein mutated in Lafora disease, regulates autophagy. Human Molecular Genetics, 2010, 19, 2867-2876.	2.9	170
59	Regulation of Mammalian Autophagy in Physiology and Pathophysiology. Physiological Reviews, 2010, 90, 1383-1435.	28.8	1,557
60	In search of an "autophagomometer― Autophagy, 2009, 5, 585-589.	9.1	503
61	A novel link between autophagy and the ubiquitin-proteasome system. Autophagy, 2009, 5, 862-863.	9.1	118
62	Mammalian macroautophagy at a glance. Journal of Cell Science, 2009, 122, 1707-1711.	2.0	163
63	Autophagy Inhibition Compromises Degradation of Ubiquitin-Proteasome Pathway Substrates. Molecular Cell, 2009, 33, 517-527.	9.7	580
64	A CD317/tetherin–RICH2 complex plays a critical role in the organization of the subapical actin cytoskeleton in polarized epithelial cells. Journal of Cell Biology, 2009, 184, 721-736.	5.2	129
65	Methodological considerations for assessing autophagy modulators: A study with calcium phosphate precipitates. Autophagy, 2009, 5, 307-313.	9.1	67
66	Huntington's disease: from pathology and genetics to potential therapies. Biochemical Journal, 2008, 412, 191-209.	3.7	373
67	Clathrin-mediated endocytosis of a lipid-raft-associated protein is mediated through a dual tyrosine motif. Journal of Cell Science, 2007, 120, 3850-3858.	2.0	186
68	Eps15 and Dap160 control synaptic vesicle membrane retrieval and synapse development. Journal of Cell Biology, 2007, 178, 309-322.	5.2	117
69	<i>Drosophila</i> Vps35 function is necessary for normal endocytic trafficking and actin cytoskeleton organisation. Journal of Cell Science, 2007, 120, 4367-4376.	2.0	86
70	Regulation of CK2 Activity by Phosphatidylinositol Phosphates. Journal of Biological Chemistry, 2005, 280, 40796-40801.	3.4	11
71	Hippocalcin Functions as a Calcium Sensor in Hippocampal LTD. Neuron, 2005, 47, 487-494.	8.1	120
72	Bst-2/HM1.24 Is a Raft-Associated Apical Membrane Protein with an Unusual Topology. Traffic, 2003, 4, 694-709.	2.7	378

VIKTOR I KOROLCHUK

#	Article	lF	CITATIONS
73	CK2 and GAK/auxilin2 Are Major Protein Kinases in Clathrin-Coated Vesicles. Traffic, 2002, 3, 428-439.	2.7	86