Silvia M Vidal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4344148/publications.pdf

Version: 2024-02-01

218677 123424 4,586 62 26 61 h-index citations g-index papers 63 63 63 5382 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The c-Rel transcription factor limits early interferon and neuroinflammatory responses to prevent herpes simplex encephalitis onset in mice. Scientific Reports, 2021, 11, 21171.	3.3	1
2	A point mutation in the linker domain of mouse STAT5A is associated with impaired NK-cell regulation. Genes and Immunity, 2020, 21, 136-141.	4.1	2
3	Bisphosphoglycerate Mutase Deficiency Protects against Cerebral Malaria and Severe Malaria-Induced Anemia. Cell Reports, 2020, 32, 108170.	6.4	7
4	ZBTB7B (ThPOK) Is Required for Pathogenesis of Cerebral Malaria and Protection against Pulmonary Tuberculosis. Infection and Immunity, 2020, 88, .	2.2	6
5	Mechanisms of Natural Killer Cell Evasion Through Viral Adaptation. Annual Review of Immunology, 2020, 38, 511-539.	21.8	22
6	CYRI/FAM49B negatively regulates RAC1-driven cytoskeletal remodelling and protects against bacterial infection. Nature Microbiology, 2019, 4, 1516-1531.	13.3	37
7	Rel-Dependent Immune and Central Nervous System Mechanisms Control Viral Replication and Inflammation during Mouse Herpes Simplex Encephalitis. Journal of Immunology, 2019, 202, 1479-1493.	0.8	10
8	The complex of MCMV proteins and MHC class I evades NK cell control and drives the evolution of virus-specific activating Ly49 receptors. Journal of Experimental Medicine, 2019, 216, 1809-1827.	8.5	19
9	Neutrophil Chemotaxis in Moving Gradients. Advanced Biology, 2018, 2, 1700243.	3.0	18
10	Insights into the pathogenesis of herpes simplex encephalitis from mouse models. Mammalian Genome, 2018, 29, 425-445.	2.2	44
11	The mitochondrial protease HtrA2 restricts the NLRP3 and AIM2 inflammasomes. Scientific Reports, 2018, 8, 8446.	3.3	19
12	Discovery of Variants Underlying Host Susceptibility to Virus Infection Using Whole-Exome Sequencing. Methods in Molecular Biology, 2017, 1656, 209-227.	0.9	0
13	USP15 regulates type I interferon response and is required for pathogenesis of neuroinflammation. Nature Immunology, 2017, 18, 54-63.	14.5	90
14	Mouse Chromosome 4 Is Associated with the Baseline and Allergic IgE Phenotypes. G3: Genes, Genomes, Genetics, 2017, 7, 2559-2564.	1.8	1
15	A Point Mutation in p190A RhoGAP Affects Ciliogenesis and Leads to Glomerulocystic Kidney Defects. PLoS Genetics, 2016, 12, e1005785.	3.5	21
16	Expansion and Protection by a Virus-Specific NK Cell Subset Lacking Expression of the Inhibitory NKR-P1B Receptor during Murine Cytomegalovirus Infection. Journal of Immunology, 2016, 197, 2325-2337.	0.8	19
17	Type I interferon restricts type 2 immunopathology through the regulation of group 2 innate lymphoid cells. Nature Immunology, 2016, 17, 65-75.	14.5	305
18	Whole exome sequencing identifies the TNNI3K gene as a cause of familial conduction system disease and congenital junctional ectopic tachycardia. International Journal of Cardiology, 2015, 185, 114-116.	1.7	29

#	Article	IF	CITATIONS
19	THEMIS Is Required for Pathogenesis of Cerebral Malaria and Protection against Pulmonary Tuberculosis. Infection and Immunity, 2015, 83, 759-768.	2.2	26
20	Cyclosporine A Treatment Inhibits Abcc6-Dependent Cardiac Necrosis and Calcification following Coxsackievirus B3 Infection in Mice. PLoS ONE, 2015, 10, e0138222.	2.5	10
21	Mapping of a Chromosome 12 Region Associated with Airway Hyperresponsiveness in a Recombinant Congenic Mouse Strain and Selection of Potential Candidate Genes by Expression and Sequence Variation Analyses. PLoS ONE, 2014, 9, e104234.	2.5	4
22	Mouse ENU Mutagenesis to Understand Immunity to Infection: Methods, Selected Examples, and Perspectives. Genes, 2014, 5, 887-925.	2.4	19
23	Specific Dysregulation of IFN \hat{I}^3 Production by Natural Killer Cells Confers Susceptibility to Viral Infection. PLoS Pathogens, 2014, 10, e1004511.	4.7	13
24	Altered IFN-γ–Mediated Immunity and Transcriptional Expression Patterns in <i>N</i> -Ethyl- <i>N</i> -Nitrosourea–Induced STAT4 Mutants Confer Susceptibility to Acute Typhoid-like Disease. Journal of Immunology, 2014, 192, 259-270.	0.8	17
25	Cellular Inhibitor of Apoptosis Protein cIAP2 Protects against Pulmonary Tissue Necrosis during Influenza Virus Infection to Promote Host Survival. Cell Host and Microbe, 2014, 15, 23-35.	11.0	141
26	CCDC88B is a novel regulator of maturation and effector functions of T cells during pathological inflammation. Journal of Experimental Medicine, 2014, 211, 2519-2535.	8.5	44
27	Viral MHC Class I–like Molecule Allows Evasion of NK Cell Effector Responses In Vivo. Journal of Immunology, 2014, 193, 6061-6069.	0.8	18
28	Type I IFN Triggers RIG-I/TLR3/NLRP3-dependent Inflammasome Activation in Influenza A Virus Infected Cells. PLoS Pathogens, 2013, 9, e1003256.	4.7	199
29	Genome-Wide Mouse Mutagenesis Reveals CD45-Mediated T Cell Function as Critical in Protective Immunity to HSV-1. PLoS Pathogens, 2013, 9, e1003637.	4.7	20
30	Genetic dissection of NK cell responses. Frontiers in Immunology, 2013, 3, 425.	4.8	5
31	Suppression of Hepcidin Expression and Iron Overload Mediate Salmonella Susceptibility in Ankyrin 1 ENU-Induced Mutant. PLoS ONE, 2013, 8, e55331.	2.5	16
32	The NK Cell Response to Mouse Cytomegalovirus Infection Affects the Level and Kinetics of the Early CD8 ⁺ T-Cell Response. Journal of Virology, 2012, 86, 2165-2175.	3.4	78
33	Mapping of Clinical and Expression Quantitative Trait Loci in a Sex-Dependent Effect of Host Susceptibility to Mouse-Adapted Influenza H3N2/HK/1/68. Journal of Immunology, 2012, 188, 3949-3960.	0.8	48
34	An N-Ethyl-N-Nitrosourea (ENU)-Induced Dominant Negative Mutation in the JAK3 Kinase Protects against Cerebral Malaria. PLoS ONE, 2012, 7, e31012.	2.5	23
35	Natural killer cell responses during viral infections: flexibility and conditioning of innate immunity by experience. Current Opinion in Virology, 2011, 1, 497-512.	5.4	124
36	Self or nonself? That is the question: sensing of cytomegalovirus infection by innate immune receptors. Mammalian Genome, 2011, 22, 6-18.	2.2	8

#	Article	IF	Citations
37	Distinct MHC class l–dependent NK cell–activating receptors control cytomegalovirus infection in different mouse strains. Journal of Experimental Medicine, 2011, 208, 1105-1117.	8.5	57
38	Quantitative Trait Locus Analysis, Pathway Analysis, and Consomic Mapping Show Genetic Variants of <i>Tnni3k</i> , <i>Fpgt</i> , or <i>H28</i> Control Susceptibility to Viral Myocarditis. Journal of Immunology, 2011, 186, 6398-6405.	0.8	56
39	The Impact of Ly49-NK Cell-Dependent Recognition of MCMV Infection on Innate and Adaptive Immune Responses. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-9.	3.0	17
40	NK Cell Receptor/H2-Dk–Dependent Host Resistance to Viral Infection Is Quantitatively Modulated by H2q Inhibitory Signals. PLoS Genetics, 2011, 7, e1001368.	3.5	9
41	Bulk Segregation Mapping of Mutations in Closely Related Strains of Mice. Genetics, 2010, 186, 1139-1146.	2.9	30
42	Cytomegalovirus immunoevasin reveals the physiological role of "missing self―recognition in natural killer cell dependent virus control in vivo. Journal of Experimental Medicine, 2010, 207, 2663-2673.	8.5	72
43	<i>N</i> -Ethyl- <i>N</i> -Nitrosourea–Induced Mutation in Ubiquitin-Specific Peptidase 18 Causes Hyperactivation of IFN-αβ Signaling and Suppresses STAT4-Induced IFN-γ Production, Resulting in Increased Susceptibility to <i>Salmonella</i> Typhimurium. Journal of Immunology, 2010, 185, 3593-3601.	0.8	36
44	Use of Inbred Mouse Strains to Map Recognition Receptors of MCMV Infected Cells in the NK Cell Gene Locus. Methods in Molecular Biology, 2010, 612, 393-409.	0.9	3
45	Activating receptors promote NK cell expansion for maintenance, IL-10 production, and CD8 T cell regulation during viral infection. Journal of Experimental Medicine, 2009, 206, 2235-2251.	8.5	186
46	Ly49P recognition of cytomegalovirus-infected cells expressing H2-Dk and CMV-encoded m04 correlates with the NK cell antiviral response. Journal of Experimental Medicine, 2009, 206, 515-523.	8.5	121
47	NK cells stroll down the memory lane. Immunology and Cell Biology, 2009, 87, 261-263.	2.3	6
48	NK cell receptors and their MHC class I ligands in host response to cytomegalovirus: Insights from the mouse genome. Seminars in Immunology, 2008, 20, 331-342.	5.6	14
49	<i>Ly49h</i> -Deficient C57BL/6 Mice: A New Mouse Cytomegalovirus-Susceptible Model Remains Resistant to Unrelated Pathogens Controlled by the NK Gene Complex. Journal of Immunology, 2008, 181, 6394-6405.	0.8	95
50	Critical Residues at the Ly49 Natural Killer Receptor's Homodimer Interface Determine Functional Recognition of m157, a Mouse Cytomegalovirus MHC Class I-Like Protein. Journal of Immunology, 2007, 178, 369-377.	0.8	25
51	Enemy at the gates: forward genetics of the mouse antiviral response. Current Opinion in Immunology, 2006, 18, 617-626.	5.5	5
52	<i>Cmv4</i> , a New Locus Linked to the NK Cell Gene Complex, Controls Innate Resistance to Cytomegalovirus in Wild-Derived Mice. Journal of Immunology, 2006, 176, 5478-5485.	0.8	43
53	Epistasis between mouse Klra and major histocompatibility complex class I loci is associated with a new mechanism of natural killer cell–mediated innate resistance to cytomegalovirus infection. Nature Genetics, 2005, 37, 593-599.	21.4	137
54	Maneuvering for advantage: the genetics of mouse susceptibility to virus infection. Trends in Genetics, 2003, 19, 447-457.	6.7	11

SILVIA M VIDAL

#	Article	IF	CITATION
55	Transgenic Expression of the Activating Natural Killer Receptor Ly49H Confers Resistance to Cytomegalovirus in Genetically Susceptible Mice. Journal of Experimental Medicine, 2003, 197, 515-526.	8.5	114
56	Cloning, expression and chromosomal location of NKX6B to 10q26, a region frequently deleted in brain tumors. Mammalian Genome, 2001, 12, 157-162.	2.2	25
57	Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nature Genetics, 2001, 28, 42-45.	21.4	354
58	Title is missing!. Nature Genetics, 2001, 28, 42-45.	21.4	167
59	Assessment of Cmv1 candidates by genetic mapping and in vivo antibody depletion of NK cell subsets. International Immunology, 1999, 11, 1541-1551.	4.0	24
60	Natural resistance to infection with intracellular parasites: molecular genetics identifies <i>Nramp1</i> as the <i>Bcg/lty/Lsh</i> locus. Journal of Leukocyte Biology, 1995, 58, 382-390.	3.3	144
61	Haplotype Mapping and Sequence Analysis of the Mouse Nramp Gene Predict Susceptibility to Infection with Intracellular Parasites. Genomics, 1994, 23, 51-61.	2.9	252
62	Natural resistance to infection with intracellular parasites: Isolation of a candidate for Bcg. Cell, 1993, 73, 469-485.	28.9	1,119