Paul B Mccray Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4343293/publications.pdf

Version: 2024-02-01

7745 5896 24,875 222 81 citations h-index papers

g-index 230 230 230 29978 docs citations times ranked citing authors all docs

150

#	Article	IF	CITATIONS
1	Lethal Infection of K18- hACE2 Mice Infected with Severe Acute Respiratory Syndrome Coronavirus. Journal of Virology, 2007, 81, 813-821.	3.4	904
2	ACE2 Receptor Expression and Severe Acute Respiratory Syndrome Coronavirus Infection Depend on Differentiation of Human Airway Epithelia. Journal of Virology, 2005, 79, 14614-14621.	3.4	782
3	Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature, 2012, 487, 109-113.	27.8	691
4	Disruption of the <i>CFTR</i> Gene Produces a Model of Cystic Fibrosis in Newborn Pigs. Science, 2008, 321, 1837-1841.	12.6	686
5	Current prospects for RNA interference-based therapies. Nature Reviews Genetics, 2011, 12, 329-340.	16.3	674
6	Rapid "Open-Source―Engineering of Customized Zinc-Finger Nucleases for Highly Efficient Gene Modification. Molecular Cell, 2008, 31, 294-301.	9.7	660
7	Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature, 2011, 480, 530-533.	27.8	504
8	A SARS-CoV-2 Infection Model in Mice Demonstrates Protection by Neutralizing Antibodies. Cell, 2020, 182, 744-753.e4.	28.9	486
9	Discovery of five conserved \hat{l}^2 -defensin gene clusters using a computational search strategy. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2129-2133.	7.1	464
10	IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. Journal of Clinical Investigation, 2019, 129, 3625-3639.	8.2	460
11	Cystic Fibrosis Pigs Develop Lung Disease and Exhibit Defective Bacterial Eradication at Birth. Science Translational Medicine, 2010, 2, 29ra31.	12.4	416
12	Rapid generation of a mouse model for Middle East respiratory syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4970-4975.	7.1	399
13	Generation of a Broadly Useful Model for COVID-19 Pathogenesis, Vaccination, and Treatment. Cell, 2020, 182, 734-743.e5.	28.9	398
14	COVID-19 treatments and pathogenesis including anosmia in K18-hACE2 mice. Nature, 2021, 589, 603-607.	27.8	394
15	Antimicrobial peptides in animals and their role in host defences. International Journal of Antimicrobial Agents, 2003, 22, 465-478.	2.5	389
16	Middle East Respiratory Syndrome Coronavirus Causes Multiple Organ Damage and Lethal Disease in Mice Transgenic for Human Dipeptidyl Peptidase 4. Journal of Infectious Diseases, 2016, 213, 712-722.	4.0	375
17	Lipopolysaccharide Induces Rac1-dependent Reactive Oxygen Species Formation and Coordinates Tumor Necrosis Factor-α Secretion through IKK Regulation of NF-I⁰B. Journal of Biological Chemistry, 2001, 276, 30188-30198.	3.4	366
18	Bactericidal Activity of Mammalian Cathelicidin-Derived Peptides. Infection and Immunity, 2000, 68, 2748-2755.	2.2	350

#	Article	IF	CITATIONS
19	Production of \hat{l}^2 -Defensin Antimicrobial Peptides by the Oral Mucosa and Salivary Glands. Infection and Immunity, 1999, 67, 2740-2745.	2.2	348
20	T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for <i>Zaire Ebolavirus</i> and <i>Lake Victoria Marburgvirus</i> Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8426-8431.	7.1	330
21	The Solution Structures of the Human Î ² -Defensins Lead to a Better Understanding of the Potent Bactericidal Activity of HBD3 against Staphylococcus aureus. Journal of Biological Chemistry, 2002, 277, 8279-8289.	3.4	320
22	Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg ⁹ bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L17-L31.	2.9	304
23	The innate immune function of airway epithelial cells in inflammatory lung disease. European Respiratory Journal, 2015, 45, 1150-1162.	6.7	303
24	Cytokine-mediated regulation of antimicrobial proteins. Nature Reviews Immunology, 2008, 8, 829-835.	22.7	301
25	Practical reconstruction method for bioluminescence tomography. Optics Express, 2005, 13, 6756.	3.4	299
26	The air-liquid interface and use of primary cell cultures are important to recapitulate the transcriptional profile of in vivo airway epithelia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L25-L31.	2.9	297
27	Synergistic and additive killing by antimicrobial factors found in human airway surface liquid. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L799-L805.	2.9	285
28	Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L84-L96.	2.9	281
29	Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12262-12267.	7.1	272
30	Broad-Spectrum <i>In Vitro</i> Activity and <i>In Vivo</i> Efficacy of the Antiviral Protein Griffithsin against Emerging Viruses of the Family <i>Coronaviridae</i> Journal of Virology, 2010, 84, 2511-2521.	3.4	266
31	Human \hat{l}^2 -Defensins 2 and 3 Demonstrate Strain-Selective Activity against Oral Microorganisms. Journal of Clinical Microbiology, 2004, 42, 1024-1029.	3.9	264
32	A Novel Host Defense System of Airways Is Defective in Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 174-183.	5.6	260
33	Airway acidification initiates host defense abnormalities in cystic fibrosis mice. Science, 2016, 351, 503-507.	12.6	254
34	Structure and mapping of the human \hat{l}^2 -defensin HBD-2 gene and its expression at sites of inflammation. Gene, 1998, 222, 237-244.	2.2	246
35	β-Defensins in Lung Host Defense. Annual Review of Physiology, 2002, 64, 709-748.	13.1	243
36	Discovery of new human \hat{l}^2 -defensins using a genomics-based approach. Gene, 2001, 263, 211-218.	2.2	241

#	Article	IF	Citations
37	The porcine lung as a potential model for cystic fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L240-L263.	2.9	206
38	Measles virus blind to its epithelial cell receptor remains virulent in rhesus monkeys but cannot cross the airway epithelium and is not shed. Journal of Clinical Investigation, 2008, 118, 2448-58.	8.2	200
39	Inactivation of Human \hat{I}^2 -Defensins 2 and 3 by Elastolytic Cathepsins. Journal of Immunology, 2003, 171, 931-937.	0.8	195
40	Haemophilus influenzaeForms Biofilms on Airway Epithelia. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 213-220.	5.6	193
41	Expression of the Complement Anaphylatoxin C3a and C5a Receptors on Bronchial Epithelial and Smooth Muscle Cells in Models of Sepsis and Asthma. Journal of Immunology, 2001, 166, 2025-2032.	0.8	189
42	<i>piggyBac</i> transposase tools for genome engineering. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2279-87.	7.1	186
43	Loss of Cystic Fibrosis Transmembrane Conductance Regulator Function Produces Abnormalities in Tracheal Development in Neonatal Pigs and Young Children. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 1251-1261.	5.6	185
44	Criterion for Amino Acid Composition of Defensins and Antimicrobial Peptides Based on Geometry of Membrane Destabilization. Journal of the American Chemical Society, 2011, 133, 6720-6727.	13.7	181
45	The Δ <i>F508</i> Mutation Causes CFTR Misprocessing and Cystic Fibrosis–Like Disease in Pigs. Science Translational Medicine, 2011, 3, 74ra24.	12.4	178
46	Polarity Influences the Efficiency of Recombinant Adenoassociated Virus Infection in Differentiated Airway Epithelia. Human Gene Therapy, 1998, 9, 2761-2776.	2.7	171
47	Heterogeneous expression of the SARS-Coronavirus-2 receptor ACE2 in the human respiratory tract. EBioMedicine, 2020, 60, 102976.	6.1	153
48	Feline immunodeficiency virus vectors persistently transduce nondividing airway epithelia and correct the cystic fibrosis defect. Journal of Clinical Investigation, 1999, 104, R55-R62.	8.2	150
49	Dipeptidyl Peptidase 4 Distribution in the Human Respiratory Tract. American Journal of Pathology, 2016, 186, 78-86.	3.8	148
50	Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3119-E3128.	7.1	147
51	Delayed neutrophil apoptosis enhances NET formation in cystic fibrosis. Thorax, 2018, 73, 134-144.	5.6	144
52	Increasing Epithelial Junction Permeability Enhances Gene Transfer to Airway Epithelia <i>In Vivo</i> American Journal of Respiratory Cell and Molecular Biology, 2000, 22, 129-138.	2.9	138
53	Endotoxin responsiveness of human airway epithelia is limited by low expression of MD-2. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 287, L428-L437.	2.9	138
54	The NMR Structure of Human Î ² -Defensin-2 Reveals a Novel α-Helical Segment,. Biochemistry, 2001, 40, 3810-3816.	2.5	134

#	Article	IF	Citations
55	In Vivo Gene Transfer Using a Nonprimate Lentiviral Vector Pseudotyped with Ross River Virus Glycoproteins. Journal of Virology, 2002, 76, 9378-9388.	3.4	133
56	Cathelicidin Peptides Inhibit Multiply Antibiotic-Resistant Pathogens from Patients with Cystic Fibrosis. Antimicrobial Agents and Chemotherapy, 2001, 45, 2838-2844.	3.2	126
57	A Classification Scheme for Paradoxical Vocal Cord Motion. Laryngoscope, 1997, 107, 1429-1435.	2.0	124
58	Lentivirus Vectors Pseudotyped with Filoviral Envelope Glycoproteins Transduce Airway Epithelia from the Apical Surface Independently of Folate Receptor Alpha. Journal of Virology, 2003, 77, 5902-5910.	3.4	121
59	The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases. PLoS Pathogens, 2017, 13, e1006546.	4.7	121
60	Correlation between \hat{l}^2 -defensin expression and induction profiles in gingival keratinocytes. Molecular lmmunology, 2005, 42, 1073-1084.	2.2	120
61	A severe phenotype in mice with a duplication of exon 3 in the cystic fibrosis locus. Human Molecular Genetics, 1993, 2, 1561-1569.	2.9	118
62	Intranasal Treatment with Poly(I·C) Protects Aged Mice from Lethal Respiratory Virus Infections. Journal of Virology, 2012, 86, 11416-11424.	3.4	113
63	CCL20 Is an Inducible Product of Human Airway Epithelia with Innate Immune Properties. American Journal of Respiratory Cell and Molecular Biology, 2003, 29, 627-633.	2.9	113
64	A microRNA network regulates expression and biosynthesis of wild-type and î"F508 mutant cystic fibrosis transmembrane conductance regulator. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13362-13367.	7.1	111
65	Intestinal CFTR expression alleviates meconium ileus in cystic fibrosis pigs. Journal of Clinical Investigation, 2013, 123, 2685-2693.	8.2	109
66	Rhesus Theta-Defensin Prevents Death in a Mouse Model of Severe Acute Respiratory Syndrome Coronavirus Pulmonary Disease. Journal of Virology, 2009, 83, 11385-11390.	3.4	107
67	Expression and Activity of \hat{I}^2 -Defensins and LL-37 in the Developing Human Lung. Journal of Immunology, 2005, 174, 1608-1615.	0.8	105
68	Tyrosine kinase receptor Axl enhances entry of Zaire ebolavirus without direct interactions with the viral glycoprotein. Virology, 2011, 415, 83-94.	2.4	105
69	PLUNC Is a Novel Airway Surfactant Protein with Anti-Biofilm Activity. PLoS ONE, 2010, 5, e9098.	2.5	103
70	Pigs and humans with cystic fibrosis have reduced insulin-like growth factor 1 (IGF1) levels at birth. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20571-20575.	7.1	101
71	Receptor Variation and Susceptibility to Middle East Respiratory Syndrome Coronavirus Infection. Journal of Virology, 2014, 88, 4953-4961.	3.4	101
72	Persistent Gene Expression in Mouse Nasal Epithelia following Feline Immunodeficiency Virus-Based Vector Gene Transfer. Journal of Virology, 2005, 79, 12818-12827.	3.4	98

#	Article	IF	CITATIONS
73	Normal Sweat Chloride Values Do Not Exclude the Diagnosis of Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 1995, 151, 899-903.	5.6	97
74	In Vivo Treatment of Hemophilia A and Mucopolysaccharidosis Type VII Using Nonprimate Lentiviral Vectors. Molecular Therapy, 2001, 3, 850-856.	8.2	94
75	Influence of Cell Polarity on Retrovirus-Mediated Gene Transfer to Differentiated Human Airway Epithelia. Journal of Virology, 1998, 72, 9818-9826.	3.4	94
76	Post-Transcriptional Regulation of Cystic Fibrosis Transmembrane Conductance Regulator Expression and Function by MicroRNAs. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 544-551.	2.9	93
77	Abundant human \hat{l}^2 -defensin-1 expression in milk and mammary gland epithelium. Journal of Pediatrics, 2001, 138, 109-112.	1.8	91
78	Spontaneous Contractility of Human Fetal Airway Smooth Muscle. American Journal of Respiratory Cell and Molecular Biology, 1993, 8, 573-580.	2.9	89
79	Expression of βâ€defensins in gingival health and in periodontal disease. Journal of Oral Pathology and Medicine, 2004, 33, 278-285.	2.7	89
80	Development of the Innervation and Airway Smooth Muscle in Human Fetal Lung. American Journal of Respiratory Cell and Molecular Biology, 1999, 20, 550-560.	2.9	88
81	Cystic Fibrosis Gene Therapy: Looking Back, Looking Forward. Genes, 2018, 9, 538.	2.4	87
82	The TMPRSS2 Inhibitor Nafamostat Reduces SARS-CoV-2 Pulmonary Infection in Mouse Models of COVID-19. MBio, 2021, 12, e0097021.	4.1	87
83	Lentivirus Vector Can Be Readministered to Nasal Epithelia without Blocking Immune Responses. Journal of Virology, 2008, 82, 10684-10692.	3.4	86
84	Engineered transfer RNAs for suppression of premature termination codons. Nature Communications, 2019, 10, 822.	12.8	86
85	The NIH Somatic Cell Genome Editing program. Nature, 2021, 592, 195-204.	27.8	84
86	Engineered amphiphilic peptides enable delivery of proteins and CRISPR-associated nucleases to airway epithelia. Nature Communications, 2019, 10, 4906.	12.8	83
87	Impact of single-residue mutations on the structure and function of ovispirin/novispirin antimicrobial peptides. Protein Engineering, Design and Selection, 2002, 15, 225-232.	2.1	82
88	Eicosanoid signalling blockade protects middle-aged mice from severe COVID-19. Nature, 2022, 605, 146-151.	27.8	82
89	Ebola Virus Glycoprotein 1: Identification of Residues Important for Binding and Postbinding Events. Journal of Virology, 2007, 81, 7702-7709.	3.4	81
90	Rho GTPases Modulate Entry of Ebola Virus and Vesicular Stomatitis Virus Pseudotyped Vectors. Journal of Virology, 2009, 83, 10176-10186.	3.4	79

#	Article	IF	Citations
91	Measles Virus Preferentially Transduces the Basolateral Surface of Well-Differentiated Human Airway Epithelia. Journal of Virology, 2002, 76, 2403-2409.	3.4	75
92	SPLUNC1/BPIFA1 Contributes to Pulmonary Host Defense against Klebsiella pneumoniae Respiratory Infection. American Journal of Pathology, 2013, 182, 1519-1531.	3.8	74
93	Lentiviral-mediated phenotypic correction of cystic fibrosis pigs. JCI Insight, 2016, 1, .	5.0	7 3
94	Persistent expression of factor VIII in vivo following nonprimate lentiviral gene transfer. Blood, 2005, 106, 1552-1558.	1.4	72
95	A MicroRNA-regulated and GP64-pseudotyped Lentiviral Vector Mediates Stable Expression of FVIII in a Murine Model of Hemophilia A. Molecular Therapy, 2011, 19, 723-730.	8.2	72
96	Advances in gene therapy for cystic fibrosis lung disease. Human Molecular Genetics, 2019, 28, R88-R94.	2.9	72
97	A Novel Murine Î ² -Defensin Expressed in Tongue, Esophagus, and Trachea. Journal of Biological Chemistry, 2000, 275, 33314-33320.	3.4	71
98	Enhancement of Respiratory Mucosal Antiviral Defenses by the Oxidation of Iodide. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 874-881.	2.9	71
99	miR-31 Dysregulation in Cystic Fibrosis Airways Contributes to Increased Pulmonary Cathepsin S Production. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 165-174.	5.6	71
100	Susceptibility of Nontypeable Haemophilus influenzae to Human \hat{I}^2 -Defensins Is Influenced by Lipooligosaccharide Acylation. Infection and Immunity, 2002, 70, 5287-5289.	2.2	69
101	Future Directions in Early Cystic Fibrosis Lung Disease Research. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 887-892.	5.6	68
102	Human Coronavirus 229E Infects Polarized Airway Epithelia from the Apical Surface. Journal of Virology, 2000, 74, 9234-9239.	3.4	67
103	Viral Vector–mediated and Cell-based Therapies for Treatment of Cystic Fibrosis. Molecular Therapy, 2007, 15, 229-241.	8.2	67
104	Concentration of the antibacterial precursor thiocyanate in cystic fibrosis airway secretions. Free Radical Biology and Medicine, 2011, 50, 1144-1150.	2.9	64
105	Susceptibilities of Oral Bacteria and Yeast to Mammalian Cathelicidins. Antimicrobial Agents and Chemotherapy, 2001, 45, 3216-3219.	3.2	61
106	Sinus hypoplasia precedes sinus infection in a porcine model of cystic fibrosis. Laryngoscope, 2012, 122, 1898-1905.	2.0	61
107	Protection of K18-hACE2 mice and ferrets against SARS-CoV-2 challenge by a single-dose mucosal immunization with a parainfluenza virus 5–based COVID-19 vaccine. Science Advances, 2021, 7, .	10.3	60
108	Ferret and Pig Models of Cystic Fibrosis: Prospects and Promise for Gene Therapy. Human Gene Therapy Clinical Development, 2015, 26, 38-49.	3.1	57

#	Article	IF	Citations
109	Pancreatic Damage in Fetal and Newborn Cystic Fibrosis Pigs Involves the Activation of Inflammatory and Remodeling Pathways. American Journal of Pathology, 2012, 181, 499-507.	3.8	56
110	Molecular Cloning and Characterization of Rat Genes Encoding Homologues of Human \hat{l}^2 -Defensins. Infection and Immunity, 1999, 67, 4827-4833.	2.2	56
111	Early-Onset Inflammatory Responses <i>In Vivo</i> to Adenoviral Vectors in the Presence or Absence of Lipopolysaccharide-Induced Inflammation. American Journal of Respiratory Cell and Molecular Biology, 1999, 20, 1155-1164.	2.9	53
112	Integration Site Choice of a Feline Immunodeficiency Virus Vector. Journal of Virology, 2006, 80, 8820-8823.	3.4	49
113	Pathogenesis of Early Lung Disease in Cystic Fibrosis: A Window of Opportunity To Eradicate Bacteria. Annals of Internal Medicine, 2005, 143, 816.	3.9	48
114	Lentiviral Vectors for the Treatment and Prevention of Cystic Fibrosis Lung Disease. Genes, 2019, 10, 218.	2.4	48
115	Viscoelastic Gel Formulations Enhance Airway Epithelial Gene Transfer with Viral Vectors. American Journal of Respiratory Cell and Molecular Biology, 2005, 32, 404-410.	2.9	47
116	Lentiviral Vector Gene Transfer to Porcine Airways. Molecular Therapy - Nucleic Acids, 2012, 1, e56.	5.1	44
117	Tracheomalacia is associated with lower FEV ₁ and <i>Pseudomonas</i> acquisition in children with CF. Pediatric Pulmonology, 2014, 49, 960-970.	2.0	43
118	Single-Dose, Intranasal Immunization with Recombinant Parainfluenza Virus 5 Expressing Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Spike Protein Protects Mice from Fatal MERS-CoV Infection. MBio, 2020, 11, .	4.1	43
119	MD-2–Dependent Pulmonary Immune Responses to Inhaled Lipooligosaccharides. American Journal of Respiratory Cell and Molecular Biology, 2008, 38, 647-654.	2.9	42
120	Effects of airway surface liquid pH on host defense in cystic fibrosis. International Journal of Biochemistry and Cell Biology, 2014, 52, 124-129.	2.8	42
121	NETs and CF Lung Disease: Current Status and Future Prospects. Antibiotics, 2015, 4, 62-75.	3.7	42
122	Efficient delivery of RNA interference oligonucleotides to polarized airway epithelia in vitro. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 305, L23-L32.	2.9	41
123	A Hyperactive Transposase Promotes Persistent Gene Transfer of a piggyBac DNA Transposon. Molecular Therapy - Nucleic Acids, 2012, 1, e50.	5.1	39
124	Increased Concentration of Iodide in Airway Secretions Is Associated with Reduced Respiratory Syncytial Virus Disease Severity. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 389-397.	2.9	39
125	PLUNC: a multifunctional surfactant of the airways. Biochemical Society Transactions, 2011, 39, 1012-1016.	3.4	38
126	Widespread airway distribution and short-term phenotypic correction of cystic fibrosis pigs following aerosol delivery of piggyBac/adenovirus. Nucleic Acids Research, 2018, 46, 9591-9600.	14.5	38

#	Article	IF	CITATIONS
127	Expression of CFTR and a cAMP-stimulated Chloride Secretory Current in Cultured Human Fetal Alveolar Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 1993, 9, 578-585.	2.9	37
128	CFTR ΔF508 mutation has minimal effect on the gene expression profile of differentiated human airway epithelia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L545-L553.	2.9	37
129	Basolateral Entry and Release of New and Old World Arenaviruses from Human Airway Epithelia. Journal of Virology, 2008, 82, 6034-6038.	3.4	37
130	Alveolar Macrophages Inhibit Retrovirus-Mediated Gene Transfer to Airway Epithelia. Human Gene Therapy, 1997, 8, 1087-1093.	2.7	36
131	Ultrasound-Guided Gene Transfer to Hepatocytes in utero. Fetal Diagnosis and Therapy, 1998, 13, 197-205.	1.4	36
132	Gene Transfer to Respiratory Epithelia with Lentivirus Pseudotyped with Jaagsiekte Sheep Retrovirus Envelope Glycoprotein. Human Gene Therapy, 2005, 16, 479-488.	2.7	36
133	PLUNC is a secreted product of neutrophil granules. Journal of Leukocyte Biology, 2008, 83, 1201-1206.	3.3	36
134	Advances in Cell and Gene-based Therapies for Cystic Fibrosis Lung Disease. Molecular Therapy, 2012, 20, 1108-1115.	8.2	36
135	Infection of Human Airway Epithelia with H1N1, H2N2, and H3N2 Influenza A Virus Strains. Molecular Therapy, 2001, 3, 395-402.	8.2	35
136	Genomics-based approaches to gene discovery in innate immunity. Immunological Reviews, 2002, 190, 137-145.	6.0	35
137	Monocyte derived macrophages from CF pigs exhibit increased inflammatory responses at birth. Journal of Cystic Fibrosis, 2017, 16, 471-474.	0.7	35
138	Efficient killing of inhaled bacteria in î"F508 mice: role of airway surface liquid composition. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 277, L183-L190.	2.9	34
139	Immunohistochemical Detection of Markers for Translational Studies of Lung Disease in Pigs and Humans. Toxicologic Pathology, 2016, 44, 434-441.	1.8	34
140	Protein composition of bronchoalveolar lavage fluid and airway surface liquid from newborn pigs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 305, L256-L266.	2.9	33
141	Effects of Keratinocyte and Hepatocyte Growth Factor <i>In Vivo:</i> Implications for Retrovirus-Mediated Gene Transfer to Liver. Human Gene Therapy, 1998, 9, 1747-1754.	2.7	32
142	Newborn Cystic Fibrosis Pigs Have a Blunted Early Response to an Inflammatory Stimulus. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 845-854.	5.6	32
143	Lack of cystic fibrosis transmembrane conductance regulator disrupts fetal airway development in pigs. Laboratory Investigation, 2018, 98, 825-838.	3.7	32
144	Production of \hat{l}^2 -Defensin Antimicrobial Peptides by Maxillary Sinus Mucosa. American Journal of Rhinology & Allergy, 2001, 15, 175-180.	2.2	31

#	Article	IF	CITATIONS
145	Developmental expression and distribution of sheep \hat{l}^2 -defensin-2. Developmental and Comparative Immunology, 2004, 28, 171-178.	2.3	31
146	CFTR is required for maximal transepithelial liquid transport in pig alveolar epithelia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L152-L160.	2.9	31
147	A Novel AAV-mediated Gene Delivery System Corrects CFTR Function in Pigs. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 747-754.	2.9	31
148	Differential effects of cytokines and corticosteroids on Toll-like receptor 2 expression and activity in human airway epithelia. Respiratory Research, 2009, 10, 96.	3.6	30
149	JunD Protects the Liver from Ischemia/Reperfusion Injury by Dampening AP-1 Transcriptional Activation. Journal of Biological Chemistry, 2008, 283, 6687-6695.	3.4	29
150	Differential Gene Expression in Human Conducting Airway Surface Epithelia and Submucosal Glands. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 189-199.	2.9	29
151	Enhanced Gene Expression Conferred by Stepwise Modification of a Nonprimate Lentiviral Vector. Human Gene Therapy, 2007, 18, 1244-1252.	2.7	27
152	The use of carboxymethylcellulose gel to increase non-viral gene transfer in mouse airways. Biomaterials, 2010, 31, 2665-2672.	11.4	27
153	SYVN1, NEDD8, and FBXO2 Proteins Regulate Î"F508 Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Ubiquitin-mediated Proteasomal Degradation. Journal of Biological Chemistry, 2016, 291, 25489-25504.	3.4	27
154	Infection of Human Airway Epithelia by Sars Coronavirus is Associated with ACE2 Expression and Localization. Advances in Experimental Medicine and Biology, 2006, 581, 479-484.	1.6	27
155	Genetic therapies for cystic fibrosis lung disease. Human Molecular Genetics, 2011, 20, R79-R86.	2.9	25
156	Person-to-Person Spread of the MERS Coronavirus â€" An Evolving Picture. New England Journal of Medicine, 2013, 369, 466-467.	27.0	25
157	Functional correction of <i>CFTR </i> mutations in human airway epithelial cells using adenine base editors. Nucleic Acids Research, 2021, 49, 10558-10572.	14.5	25
158	KGF and FGF-10 Stimulate Liquid Secretion in Human Fetal Lung. Pediatric Research, 1999, 46, 523-523.	2.3	25
159	Manipulation of Cell Physiology Enables Gene Silencing in Well-differentiated Airway Epithelia. Molecular Therapy - Nucleic Acids, 2012, 1, e41.	5.1	24
160	Structure-based phylogeny identifies avoralstat as a TMPRSS2 inhibitor that prevents SARS-CoV-2 infection in mice. Journal of Clinical Investigation, 2021, 131, .	8.2	24
161	Large-scale gene discovery in human airway epithelia reveals novel transcripts. Physiological Genomics, 2004, 17, 69-77.	2.3	23
162	Keratinocyte growth factor induced epithelial proliferation facilitates retroviral–mediated gene transfer to distal lung epithelia in vivo. Journal of Gene Medicine, 1999, 1, 22-30.	2.8	23

#	Article	IF	CITATIONS
163	Developmental regulation of epithelial sodium channel subunit mRNA expression in rat colon and lung. American Journal of Physiology - Renal Physiology, 1998, 275, G1227-G1235.	3.4	22
164	Developmental expression of the epithelial Na ⁺ channel in kidney and uroepithelia. American Journal of Physiology - Renal Physiology, 1999, 276, F304-F314.	2.7	22
165	An Activated Immune and Inflammatory Response Targets the Pancreas of Newborn Pigs with Cystic Fibrosis. Pancreatology, 2011, 11, 506-515.	1.1	21
166	Secretion of Lung Fluid by the Developing Fetal Rat Alveolar Epithelium in Organ Culture. American Journal of Respiratory Cell and Molecular Biology, 1992, 6, 609-616.	2.9	20
167	Genotype-specific alterations in vascular smooth muscle cell function in cystic fibrosis piglets. Journal of Cystic Fibrosis, 2014, 13, 251-259.	0.7	20
168	Highly differentiated human airway epithelial cells: a model to study host cell–parasite interactions in pertussis. Infectious Diseases, 2016, 48, 177-188.	2.8	20
169	Sensitization of Non-permissive Laboratory Mice to SARS-CoV-2 with a Replication-Deficient Adenovirus Expressing Human ACE2. STAR Protocols, 2020, 1, 100169.	1.2	20
170	Ursodeoxycholic Acid Improves Cholestasis in Infants with Cystic Fibrosis. Annals of Pharmacotherapy, 1997, 31, 1003-1005.	1.9	17
171	Altering $\hat{l}\pm$ -dystroglycan receptor affinity of LCMV pseudotyped lentivirus yields unique cell and tissue tropism. Genetic Vaccines and Therapy, 2011, 9, 8.	1.5	17
172	Novispirin G10-Induced Lung Toxicity in a Klebsiella pneumoniae Infection Model. Antimicrobial Agents and Chemotherapy, 2003, 47, 3901-3906.	3.2	16
173	Characterization of Monoclonal Antibodies to Human Soluble MD-2 Protein. Hybridoma, 2006, 25, 349-357.	0.4	16
174	Increased susceptibility to otitis media in a <i>Splunc1</i> deficient mouse model. DMM Disease Models and Mechanisms, 2015, 8, 501-508.	2.4	16
175	Airway Surface Liquid Has Innate Antiviral Activity That Is Reduced in Cystic Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 104-111.	2.9	16
176	Development of a Mouse-Adapted MERS Coronavirus. Methods in Molecular Biology, 2020, 2099, 161-171.	0.9	16
177	Fetal Airway Smooth-Muscle Contractility and Lung Development. American Journal of Respiratory Cell and Molecular Biology, 2000, 23, 3-6.	2.9	15
178	Reduction in the bactericidal activity of selected cathelicidin peptides by bovine calf serum or exogenous endotoxin. International Journal of Antimicrobial Agents, 2004, 23, 606-612.	2.5	15
179	Transcriptomic and Proteostasis Networks of CFTR and the Development of Small Molecule Modulators for the Treatment of Cystic Fibrosis Lung Disease. Genes, 2020, 11, 546.	2.4	15
180	In vivo imaging of gene transfer to the respiratory tract. Biomaterials, 2008, 29, 1533-1540.	11.4	13

#	Article	IF	CITATIONS
181	A Genomic Signature Approach to Rescue l'"F508-Cystic Fibrosis Transmembrane Conductance Regulator Biosynthesis and Function. American Journal of Respiratory Cell and Molecular Biology, 2014, 51, 354-362.	2.9	13
182	Gene Therapy Potential for Genetic Disorders of Surfactant Dysfunction. Frontiers in Genome Editing, 2021, 3, 785829.	5.2	13
183	Inclusion of jaagsiekte sheep retrovirus proviral elements markedly increases lentivirus vector pseudotyping efficiency. Molecular Therapy, 2005, 11, 460-469.	8.2	12
184	Quantitation of SPLUNC1 in saliva with an xMAP particle-based antibody capture and detection immunoassay. Archives of Oral Biology, 2012, 57, 197-204.	1.8	11
185	Human, Pig, and Mouse Interferon-Induced Transmembrane Proteins Partially Restrict Pseudotyped Lentiviral Vectors. Human Gene Therapy, 2016, 27, 354-362.	2.7	11
186	Microarray mRNA Expression Profiling to Study Cystic Fibrosis. Methods in Molecular Biology, 2011, 742, 193-212.	0.9	11
187	piggyBac-mediated phenotypic correction of factor VIII deficiency. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14042.	4.1	10
188	New Directions in Pulmonary Gene Therapy. Human Gene Therapy, 2020, 31, 921-939.	2.7	10
189	Middle East Respiratory Syndrome Coronavirus Gene 5 Modulates Pathogenesis in Mice. Journal of Virology, 2021, 95, .	3.4	10
190	Intrapulmonary Versus Nasal Transduction of Murine Airways With GP64-pseudotyped Viral Vectors. Molecular Therapy - Nucleic Acids, 2013, 2, e69.	5.1	9
191	Novel Innate Immune Genes Regulating the Macrophage Response to Gram Positive Bacteria. Genetics, 2016, 204, 327-336.	2.9	9
192	Increased CFTR expression and function from an optimized lentiviral vector for cystic fibrosis gene therapy. Molecular Therapy - Methods and Clinical Development, 2021, 21, 94-106.	4.1	8
193	Keratinocyte growth factor induced epithelial proliferation facilitates retroviral–mediated gene transfer to distal lung epithelia <i>in vivo</i> . Journal of Gene Medicine, 1999, 1, 22-30.	2.8	7
194	Integrative genomic meta-analysis reveals novel molecular insights into cystic fibrosis and î"F508-CFTR rescue. Scientific Reports, 2020, 10, 20553.	3.3	7
195	Transcriptional Targeting in the Airway Using Novel Gene Regulatory Elements. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 227-233.	2.9	6
196	Difficulties of gene therapy. Lancet, The, 2001, 358, S19.	13.7	5
197	Sepsis and Innate Immunity. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 144-145.	5.6	5
198	Broad-Spectrum <i>In Vitro</i> Activity and <i>In Vivo</i> Efficacy of the Antiviral Protein Griffithsin against Emerging Viruses of the Family <i>Coronaviridae</i> Journal of Virology, 2010, 84, 5456-5456.	3.4	5

#	Article	IF	CITATIONS
199	Developing a platform system for gene delivery: amplifying virus-like particles (AVLP) as an influenza vaccine. Npj Vaccines, 2017, 2, 32.	6.0	5
200	Bronchoscopic Diagnosis of Cytomegalovirus Pneumonia Following Pediatric Bone Marrow Transplantation. Journal of Pediatric Hematology/Oncology, 1986, 8, 338-341.	0.6	5
201	Hypoxia and Hypercapnia in Infants With Mild Laryngomalacia. JAMA Pediatrics, 1988, 142, 896.	3.0	4
202	Illuminating COVID-19 lung disease through autopsy studies. EBioMedicine, 2020, 57, 102865.	6.1	4
203	Lentiviral vectors transduce lung stem cells without disrupting plasticity. Molecular Therapy - Nucleic Acids, 2021, 25, 293-301.	5.1	4
204	Translating <i>in vitro</i> CFTR rescue into small molecule correctors for cystic fibrosis using the Library of Integrated Networkâ€based Cellular Signatures drug discovery platform. CPT: Pharmacometrics and Systems Pharmacology, 2022, 11, 240-251.	2.5	4
205	[28] Gene transfer to airway epithelia using feline immunodeficiency virus-based lentivirus vectors. Methods in Enzymology, 2002, 346, 500-514.	1.0	3
206	Integrative chemogenomic analysis identifies small molecules that partially rescue ΔF508 FTR for cystic fibrosis. CPT: Pharmacometrics and Systems Pharmacology, 2021, 10, 500-510.	2.5	3
207	Molecular epidemiology of large coronavirus disease 2019 (COVID-19) clusters before and after the implementation of routine serial testing at an academic medical center in lowa, 2020. Infection Control and Hospital Epidemiology, 2021, 42, 1514-1516.	1.8	3
208	Intersubject Variation in ACE2 Protein Expression in Human Airway Epithelia and Its Relationship to Severe Acute Respiratory Syndrome Coronavirus 2. Journal of Infectious Diseases, 2021, 224, 1357-1361.	4.0	3
209	Fetal gene therapy. Molecular Human Reproduction, 1996, 2, 469-471.	2.8	2
210	Platelet Activating Factor Receptor Activation Improves siRNA Uptake and RNAi Responses in Well-differentiated Airway Epithelia. Molecular Therapy - Nucleic Acids, 2014, 3, e175.	5.1	2
211	Integrating Viral and Nonviral Vectors for Cystic Fibrosis Gene Therapy in the Airways. , 2015, , .		2
212	The first few days of a SARS-CoV-2 infection viewed at single-cell resolution. PLoS Biology, 2021, 19, e3001217.	5.6	2
213	Cystic Fibrosis and Defective Airway Innate Immunity. , 2013, , 275-306.		2
214	Analysis of multiple gene co-expression networks to discover interactions favoring CFTR biogenesis and 1°F508-CFTR rescue. BMC Medical Genomics, 2021, 14, 258.	1.5	2
215	Cystoplasty for treatment of a congenital lung cyst. Pediatric Pulmonology, 1995, 19, 185-187.	2.0	1
216	PLUNC: a multifunctional surfactant of the airways. Biochemical Society Transactions, 2011, 39, 1549-1549.	3.4	1

#	Article	IF	CITATIONS
217	Inter-individual Variation in Receptor Expression Influences MERS-CoV Infection and Immune Responses in Airway Epithelia. Frontiers in Public Health, 2021, 9, 756049.	2.7	1
218	Application of Correlative Microscopy to Genetic Therapy Research of Cystic Fibrosis and Other Human Diseases. Microscopy and Microanalysis, 2001, 7, 38-39.	0.4	0
219	Cells of Respiratory Epithelium. , 2003, 229, 287-298.		O
220	Reduction in the bactericidal activity of selected cathelicidin peptides by bovine calf serum or exogenous endotoxin. International Journal of Antimicrobial Agents, 2004, 23, 606-606.	2.5	0
221	Suspected COVID-19 Reinfections at a Tertiary Care Center, Iowa, 2020. Open Forum Infectious Diseases, 2021, 8, ofab188.	0.9	0
222	Ontogeny of mRNA expression of pulmonary innate immune factors. FASEB Journal, 2009, 23, 572.2.	0.5	0