John L Maron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4342719/publications.pdf

Version: 2024-02-01

94 papers 11,751 citations

41323 49 h-index 92 g-index

94 all docs 94 docs citations 94 times ranked 10781 citing authors

#	Article	IF	CITATIONS
1	Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecology Letters, 2011, 14, 702-708.	3.0	2,215
2	A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. Journal of Ecology, 2005, 93, 5-15.	1.9	699
3	When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos, 2001, 95, 361-373.	1.2	659
4	Biotic interactions and plant invasions. Ecology Letters, 2006, 9, 726-740.	3.0	649
5	RAPID EVOLUTION OF AN INVASIVE PLANT. Ecological Monographs, 2004, 74, 261-280.	2.4	573
6	When is a trophic cascade a trophic cascade?. Trends in Ecology and Evolution, 2000, 15, 473-475.	4.2	450
7	Herbivory: effects on plant abundance, distribution and population growth. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 2575-2584.	1.2	430
8	Insect Herbivores Drive Real-Time Ecological and Evolutionary Change in Plant Populations. Science, 2012, 338, 113-116.	6.0	389
9	Soil fungal pathogens and the relationship between plant diversity and productivity. Ecology Letters, 2011, 14, 36-41.	3.0	345
10	A native nitrogen-fixing shrub facilitates weed invasion. Oecologia, 1996, 105, 302-312.	0.9	273
11	What have exotic plant invasions taught us over the past 20 years?. Trends in Ecology and Evolution, 2006, 21, 369-374.	4.2	214
12	Common garden comparisons of native and introduced plant populations: latitudinal clines can obscure evolutionary inferences. Evolutionary Applications, 2009, 2, 187-199.	1.5	214
13	Relative importance of competition and plant–soil feedback, their synergy, context dependency and implications for coexistence. Ecology Letters, 2018, 21, 1268-1281.	3.0	197
14	AN INTRODUCED PREDATOR ALTERS ALEUTIAN ISLAND PLANT COMMUNITIES BY THWARTING NUTRIENT SUBSIDIES. Ecological Monographs, 2006, 76, 3-24.	2.4	179
15	RESTORING ENRICHED GRASSLANDS: EFFECTS OF MOWING ON SPECIES RICHNESS, PRODUCTIVITY, AND NITROGEN RETENTION. , 2001, 11, 1088-1100.		169
16	The Mechanisms and Consequences of Interspecific Competition Among Plants. Annual Review of Ecology, Evolution, and Systematics, 2016, 47, 263-281.	3.8	166
17	A Framework for Predicting Intraspecific Variation in Plant Defense. Trends in Ecology and Evolution, 2016, 31, 646-656.	4.2	165
18	INSECT HERBIVORY ABOVE- AND BELOWGROUND: INDIVIDUAL AND JOINT EFFECTS ON PLANT FITNESS. Ecology, 1998, 79, 1281-1293.	1.5	152

#	Article	IF	CITATIONS
19	Evidence for the evolution of reduced mycorrhizal dependence during plant invasion. Ecology, 2009, 90, 1055-1062.	1.5	152
20	NATIVE PLANT DIVERSITY RESISTS INVASION AT BOTH LOW AND HIGH RESOURCE LEVELS. Ecology, 2007, 88, 2651-2661.	1.5	131
21	Effect of seed predation on seed bank size and seedling recruitment of bush lupine (Lupinus arboreus) Tj ETQq1	1 8.78431	.4 rgBT /Ove 118
22	THE FITNESS CONSEQUENCES OF INTERSPECIFIC EAVESDROPPING BETWEEN PLANTS. Ecology, 2002, 83, 1209-1213.	1.5	110
23	CONTRASTING PLANT PHYSIOLOGICAL ADAPTATION TO CLIMATE IN THE NATIVE AND INTRODUCED RANGE OFHYPERICUM PERFORATUM. Evolution; International Journal of Organic Evolution, 2007, 61, 1912-1924.	1.1	108
24	Fieldâ€based competitive impacts between invaders and natives at varying resource supply. Journal of Ecology, 2008, 96, 1187-1197.	1.9	107
25	Invasive plants escape from suppressive soil biota at regional scales. Journal of Ecology, 2014, 102, 19-27.	1.9	106
26	Seed size and provenance mediate the joint effects of disturbance and seed predation on community assembly. Journal of Ecology, 2012, 100, 1492-1500.	1.9	104
27	Evidence for the enemy release hypothesis in Hypericum perforatum. Oecologia, 2005, 142, 474-479.	0.9	103
28	Disentangling the drivers of contextâ€dependent plant–animal interactions. Journal of Ecology, 2014, 102, 1485-1496.	1.9	100
29	Are alien plants more competitive than their native conspecifics? A test using Hypericum perforatum L Oecologia, 2003, 137, 211-215.	0.9	94
30	BUSH LUPINE MORTALITY, ALTERED RESOURCE AVAILABILITY, AND ALTERNATIVE VEGETATION STATES. Ecology, 1999, 80, 443-454.	1.5	93
31	Climate impacts on bird and plant communities from altered animal–plant interactions. Nature Climate Change, 2012, 2, 195-200.	8.1	89
32	Smallâ€mammal seed predation limits the recruitment and abundance of two perennial grassland forbs. Ecology, 2010, 91, 85-92.	1.5	88
33	Biotic resistance via granivory: establishment by invasive, naturalized, and native asters reflects generalist preference. Ecology, 2011, 92, 1748-1757.	1.5	87
34	Different gardens, different results: native and introduced populations exhibit contrasting phenotypes across common gardens. Oecologia, 2008, 157, 239-248.	0.9	83
35	LOSS OF ENEMY RESISTANCE AMONG INTRODUCED POPULATIONS OF ST. JOHN'S WORT (HYPERICUM) Tj ETQo	1 1 0.784 1.5	314 rgBT /○
36	A Field Experiment Demonstrating Plant Life-History Evolution and Its Eco-Evolutionary Feedback to Seed Predator Populations. American Naturalist, 2013, 181, S35-S45.	1.0	76

#	Article	IF	Citations
37	Outcrossing rate and inbreeding depression in the perennial yellow bush lupine, Lupinus arboreus (Fabaceae). American Journal of Botany, 2000, 87, 652-660.	0.8	75
38	HABITAT-SPECIFIC IMPACTS OF MULTIPLE CONSUMERS ON PLANT POPULATION DYNAMICS. Ecology, 2006, 87, 113-124.	1.5	74
39	Effects of Native Species Diversity and Resource Additions on Invader Impact. American Naturalist, 2008, 172, S18-S33.	1.0	72
40	Population Variation, Environmental Gradients, and the Evolutionary Ecology of Plant Defense against Herbivory. American Naturalist, 2019, 193, 20-34.	1.0	67
41	Negative plantâ€soil feedbacks increase with plant abundance, and are unchanged by competition. Ecology, 2016, 97, 2055-2063.	1.5	66
42	Exotic invasive plants increase productivity, abundance of ammoniaâ€oxidizing bacteria and nitrogen availability in intermountain grasslands. Journal of Ecology, 2016, 104, 994-1002.	1.9	66
43	Escape from competition: Neighbors reduce <i>Centaurea stoebe</i> performance at home but not away. Ecology, 2011, 92, 2208-2213.	1.5	65
44	Incorporating the effects of generalist seed predators into plant community theory. Functional Ecology, 2017, 31, 1856-1867.	1.7	62
45	Plant–herbivore coevolution and plant speciation. Ecology, 2019, 100, e02704.	1.5	62
46	Native congeners provide biotic resistance to invasive <i>Potentilla</i> through soil biota. Ecology, 2013, 94, 1223-1229.	1.5	60
47	Testing hypotheses for exotic plant success: parallel experiments in the native and introduced ranges. Ecology, 2010, 91, 1355-1366.	1.5	59
48	Regional Turnover and Fluctuation in Populations of Five Plants Confined to Serpentine Seeps. Conservation Biology, 2000, 14, 769-779.	2.4	58
49	Origin of an insect outbreak: escape in space or time from natural enemies?. Oecologia, 2001, 126, 595-602.	0.9	55
50	Rodent-limited establishment of bush lupine: field experiments on the cumulative effect of granivory. Journal of Ecology, 2001, 89, 578-588.	1.9	55
51	Consumers Limit the Abundance and Dynamics of a Perennial Shrub with a Seed Bank. American Naturalist, 2006, 168, 454-470.	1.0	55
52	Staged invasions across disparate grasslands: effects of seed provenance, consumers and disturbance on productivity and species richness. Ecology Letters, 2014, 17, 499-507.	3.0	47
53	CONVERGENT DEMOGRAPHIC EFFECTS OF INSECT ATTACK ON RELATED THISTLES IN COASTAL VS. CONTINENTAL DUNES. Ecology, 2002, 83, 3382-3392.	1.5	46
54	Biotic resistance: exclusion of native rodent consumers releases populations of a weak invader. Journal of Ecology, 2012, 100, 1383-1390.	1.9	45

#	Article	IF	CITATIONS
55	Effects of soil fungi, disturbance and propagule pressure on exotic plant recruitment and establishment at home and abroad. Journal of Ecology, 2013, 101, 924-932.	1.9	40
56	Impact of Acroptilon repens on co-occurring native plants is greater in the invader's non-native range. Biological Invasions, 2012, 14, 1143-1155.	1.2	36
57	Populationâ€evel compensation impedes biological control of an invasive forb and indirect release of a native grass. Ecology, 2012, 93, 783-792.	1.5	35
58	Counterintuitive effects of largeâ€scale predator removal on a midlatitude rodent community. Ecology, 2010, 91, 3719-3728.	1.5	33
59	Biogeographic variation in genetic variability, apomixis expression and ploidy of St. John's wort (Hypericum perforatum) across its native and introduced range. Annals of Botany, 2014, 113, 417-427.	1.4	33
60	Using experiments, demography and population models to estimate interaction strength based on transient and asymptotic dynamics. Journal of Ecology, 2010, 98, 290-301.	1.9	32
61	Intraspecific competition and subterranean herbivory: individual and interactive effects on bush lupine. Oikos, 2001, 92, 178-186.	1.2	30
62	Vertebrate predators have minimal cascading effects on plant production or seed predation in an intact grassland ecosystem. Ecology Letters, 2011, 14, 661-669.	3.0	29
63	Reduced mycorrhizal responsiveness leads to increased competitive tolerance in an invasive exotic plant. Journal of Ecology, 2016, 104, 1599-1607.	1.9	29
64	Seed dispersal is more limiting to native grassland diversity than competition or seed predation. Journal of Ecology, 2014, 102, 1258-1265.	1.9	28
65	The tortoise and the hare: reducing resource availability shifts competitive balance between plant species. Journal of Ecology, 2017, 105, 999-1009.	1.9	27
66	Preâ€dispersal seed predation and pollen limitation constrain population growth across the geographic distribution of <i>Astragalus utahensis</i>). Journal of Ecology, 2018, 106, 1646-1659.	1.9	27
67	Postdispersal seed predation limits the abundance of a longâ€lived perennial forb (<i>Lithospermum) Tj ETQq1 1</i>	0.784314 1.5	rgBT /Overl
68	Inhibitory effects of soil biota are ameliorated by high plant diversity. Oecologia, 2015, 179, 519-525.	0.9	25
69	The relative importance of latitude matching and propagule pressure in the colonization success of an invasive forb. Ecography, 2006, 29, 819-826.	2.1	21
70	The relative importance of latitude matching and propagule pressure in the colonization success of an invasive forb. Ecography, 2006, 29, 819-826.	2.1	20
71	Origin Matters: Diversity Affects the Performance of Alien Invasive Species but Not of Native Species. American Naturalist, 2015, 185, 725-736.	1.0	18
72	Declining demographic performance and dispersal limitation influence the geographic distribution of the perennial forb Astragalus utahensis (Fabaceae). Journal of Ecology, 2019, 107, 1250-1262.	1.9	18

#	Article	IF	CITATIONS
73	The importance of host plant limitation for caterpillars of an arctiid moth (Platyprepia virginalis) varies spatially. Ecology, 2012, 93, 2216-2226.	1.5	17
74	Intraspecific correlations between growth and defence vary with resource availability and differ within and among populations. Functional Ecology, 2021, 35, 2387-2396.	1.7	16
75	Rodent seed predators and a dominant grass competitor affect coexistence of coâ€occurring forb species that vary in seed size. Journal of Ecology, 2018, 106, 1795-1805.	1.9	15
76	What happens in Europe stays in Europe: apparent evolution by an invader does not help at home. Ecology, 2020, 101, e03072.	1.5	15
77	Effects of herbivore identity on plant fecundity. Plant Ecology, 2006, 187, 39-48.	0.7	12
78	Do exotic plants lose resistance to pathogenic soil biota from their native range? A test with Solidago gigantea. Oecologia, 2015, 179, 447-454.	0.9	12
79	Seedling recruitment correlates with seed input across seed sizes: implications for coexistence. Ecology, 2019, 100, e02848.	1.5	12
80	Indirect competition for pollinators is weak compared to direct resource competition: pollination and performance in the face of an invader. Oecologia, 2013, 172, 1061-1069.	0.9	10
81	Biogeographic effects on early establishment of an invasive alien plant. American Journal of Botany, 2015, 102, 621-625.	0.8	10
82	Fitness consequences of occasional outcrossing in a functionally asexual plant (<i>Oenothera) Tj ETQq0 0 0 rgB</i>	T /Qverloo	:k 10 Tf 50 38
83	Ecological niche models display nonlinear relationships with abundance and demographic performance across the latitudinal distribution of <i>Astragalus utahensis</i> (Fabaceae). Ecology and Evolution, 2020, 10, 8251-8264.	0.8	10
84	Tradeâ€offs between seed size and biotic interactions contribute to coexistence of coâ€occurring species that vary in fecundity. Journal of Ecology, 2021, 109, 626-638.	1.9	9
85	Long-term ungulate exclusion reduces fungal symbiont prevalence in native grasslands. Oecologia, 2016, 181, 1151-1161.	0.9	7
86	Evolution and seed dormancy shape plant genotypic structure through a successional cycle. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	6
87	AN INVADER DIFFERENTIALLY AFFECTS LEAF PHYSIOLOGY OF TWO NATIVES ACROSS A GRADIENT IN DIVERSITY. Ecology, 2008, 89, 1344-1351.	1.5	5
88	Small mammals cause non-trophic effects on habitat and associated snails in a native system. Oecologia, 2011, 167, 1085-1091.	0.9	5
89	Funding needed for assessments of weed biological control. Frontiers in Ecology and the Environment, 2010, 8, 122-123.	1.9	4
90	Productivity and related soil properties mediate the populationâ€level consequences of rodent seed predation on Blanketflower, Gaillardia aristata. Journal of Ecology, 2019, 107, 34-44.	1.9	3

#	Article	IF	CITATION
91	Voles mediate functional trait diversity along a resource gradient. Functional Ecology, 2021, 35, 205-215.	1.7	3
92	Climate mediates longâ€term impacts of rodent exclusion on desert plant communities. Ecological Monographs, 2022, 92, .	2.4	3
93	Species provenance and traits mediate establishment and performance in an invaded grassland. Functional Ecology, 2022, 36, 1528-1541.	1.7	2
94	Seed size of coâ€occurring forb species predicts rates of predispersal seed loss from insects. Ecosphere, 2022, 13, .	1.0	2