Xiaoman Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4342425/publications.pdf

Version: 2024-02-01

759233 610901 26 672 12 24 citations h-index g-index papers 27 27 27 1094 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	A systematic study of motif pairs that may facilitate enhancer–promoter interactions. Journal of Integrative Bioinformatics, 2022, 19, .	1.5	2
2	Computational analyses of bacterial strains from shotgun reads. Briefings in Bioinformatics, 2022, 23, .	6.5	5
3	A systematic evaluation of the computational tools for ligand-receptor-based cell–cell interaction inference. Briefings in Functional Genomics, 2022, 21, 339-356.	2.7	7
4	mixtureS: a novel tool for bacterial strain genome reconstruction from reads. Bioinformatics, 2021, 37, 575-577.	4.1	10
5	Interpretation of deep learning in genomics and epigenomics. Briefings in Bioinformatics, 2021, 22, .	6.5	67
6	An intriguing characteristic of enhancer-promoter interactions. BMC Genomics, 2021, 22, 163.	2.8	3
7	A two-stream convolutional neural network for microRNA transcription start site feature integration and identification. Scientific Reports, 2021, 11, 5625.	3.3	7
8	Shared distal regulatory regions may contribute to the coordinated expression of human ribosomal protein genes. Genomics, 2020, 112, 2886-2893.	2.9	5
9	EPIP: a novel approach for condition-specific enhancer–promoter interaction prediction. Bioinformatics, 2019, 35, 3877-3883.	4.1	33
10	Improving miRNA Target Prediction Using CLASH Data. Methods in Molecular Biology, 2019, 1970, 75-83.	0.9	4
11	BHap: a novel approach for bacterial haplotype reconstruction. Bioinformatics, 2019, 35, 4624-4631.	4.1	18
12	Application of Deep Learning Models to MicroRNA Transcription Start Site Identification. , 2019, , .		4
13	Differential open chromatin profile and transcriptomic signature define depot-specific human subcutaneous preadipocytes: primary outcomes. Clinical Epigenetics, 2018, 10, 148.	4.1	20
14	When old metagenomic data meet newly sequenced genomes, a case study. PLoS ONE, 2018, 13, e0198773.	2.5	7
15	Prognostic cancer gene signatures share common regulatory motifs. Scientific Reports, 2017, 7, 4750.	3.3	27
16	rRNAFilter: A Fast Approach for Ribosomal RNA Read Removal Without a Reference Database. Journal of Computational Biology, 2017, 24, 368-375.	1.6	11
17	SETDB2 Links Glucocorticoid to Lipid Metabolism through Insig2a Regulation. Cell Metabolism, 2016, 24, 474-484.	16.2	46
18	MBMC: An Effective Markov Chain Approach for Binning Metagenomic Reads from Environmental Shotgun Sequencing Projects. OMICS A Journal of Integrative Biology, 2016, 20, 470-479.	2.0	12

#	Article	IF	CITATION
19	TarPmiR: a new approach for microRNA target site prediction. Bioinformatics, 2016, 32, 2768-2775.	4.1	144
20	PreDREM: a database of predicted DNA regulatory motifs from 349 human cell and tissue samples. Database: the Journal of Biological Databases and Curation, 2015, 2015, .	3.0	3
21	Systematic discovery of cofactor motifs from ChIP-seq data by SIOMICS. Methods, 2015, 79-80, 47-51.	3.8	23
22	MBBC: an efficient approach for metagenomic binning based on clustering. BMC Bioinformatics, 2015, 16, 36.	2.6	23
23	Transcription Factors STAT6 and KLF4 Implement Macrophage Polarization via the Dual Catalytic Powers of MCPIP. Journal of Immunology, 2015, 194, 6011-6023.	0.8	143
24	Comprehensive discovery of DNA motifs in 349 human cells and tissues reveals new features of motifs. Nucleic Acids Research, 2015, 43, 74-83.	14.5	13
25	MicroRNA modules prefer to bind weak and unconventional target sites. Bioinformatics, 2015, 31, 1366-1374.	4.1	21
26	A mixture model-based discriminate analysis for identifying ordered transcription factor binding site pairs in gene promoters directly regulated by estrogen receptor-Â. Bioinformatics, 2006, 22, 2210-2216.	4.1	14