
Matthew A Lambon Ralph

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/434225/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The neural and computational bases of semantic cognition. Nature Reviews Neuroscience, 2017, 18, 42-55.	10.2	1,131
2	Structure and Deterioration of Semantic Memory: A Neuropsychological and Computational Investigation Psychological Review, 2004, 111, 205-235.	3.8	848
3	Non-verbal semantic impairment in semantic dementia. Neuropsychologia, 2000, 38, 1207-1215.	1.6	748
4	Semantic impairment in stroke aphasia versus semantic dementia: a case-series comparison. Brain, 2006, 129, 2132-2147.	7.6	666
5	Semantic Processing in the Anterior Temporal Lobes: A Meta-analysis of the Functional Neuroimaging Literature. Journal of Cognitive Neuroscience, 2010, 22, 1083-1094.	2.3	583
6	Which neuropsychiatric and behavioural features distinguish frontal and temporal variants of frontotemporal dementia from Alzheimer's disease?. Journal of Neurology, Neurosurgery and Psychiatry, 2000, 69, 178-186.	1.9	540
7	Lateralization of ventral and dorsal auditory-language pathways in the human brain. NeuroImage, 2005, 24, 656-666.	4.2	458
8	Coherent concepts are computed in the anterior temporal lobes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2717-2722.	7.1	447
9	Going beyond Inferior Prefrontal Involvement in Semantic Control: Evidence for the Additional Contribution of Dorsal Angular Gyrus and Posterior Middle Temporal Cortex. Journal of Cognitive Neuroscience, 2013, 25, 1824-1850.	2.3	407
10	The Neural Organization of Semantic Control: TMS Evidence for a Distributed Network in Left Inferior Frontal and Posterior Middle Temporal Gyrus. Cerebral Cortex, 2011, 21, 1066-1075.	2.9	390
11	The Ventral and Inferolateral Aspects of the Anterior Temporal Lobe Are Crucial in Semantic Memory: Evidence from a Novel Direct Comparison of Distortion-Corrected fMRI, rTMS, and Semantic Dementia. Cerebral Cortex, 2010, 20, 2728-2738.	2.9	378
12	Anterior temporal lobes mediate semantic representation: Mimicking semantic dementia by using rTMS in normal participants. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20137-20141.	7.1	366
13	No Right to Speak? The Relationship between Object Naming and Semantic Impairment:Neuropsychological Evidence and a Computational Model. Journal of Cognitive Neuroscience, 2001, 13, 341-356.	2.3	344
14	Naming in semantic dementia—what matters?. Neuropsychologia, 1998, 36, 775-784.	1.6	313
15	Both the Middle Temporal Gyrus and the Ventral Anterior Temporal Area Are Crucial for Multimodal Semantic Processing: Distortion-corrected fMRI Evidence for a Double Gradient of Information Convergence in the Temporal Lobes. Journal of Cognitive Neuroscience, 2012, 24, 1766-1778.	2.3	294
16	Conceptual Knowledge Is Underpinned by the Temporal Pole Bilaterally: Convergent Evidence from rTMS. Cerebral Cortex, 2009, 19, 832-838.	2.9	282
17	Neurocognitive insights on conceptual knowledge and its breakdown. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20120392.	4.0	271
18	Prototypicality, distinctiveness, and intercorrelation: Analyses of the semantic attributes of living and nonliving concepts. Cognitive Neuropsychology, 2001, 18, 125-174.	1.1	260

#	Article	IF	CITATIONS
19	Age of acquisition effects in adult lexical processing reflect loss of plasticity in maturing systems: Insights from connectionist networks Journal of Experimental Psychology: Learning Memory and Cognition, 2000, 26, 1103-1123.	0.9	257
20	Lichtheim 2: Synthesizing Aphasia and the Neural Basis of Language in a Neurocomputational Model of the Dual Dorsal-Ventral Language Pathways. Neuron, 2011, 72, 385-396.	8.1	245
21	Category-Specific versus Category-General Semantic Impairment Induced by Transcranial Magnetic Stimulation. Current Biology, 2010, 20, 964-968.	3.9	244
22	SD-squared: On the association between semantic dementia and surface dyslexia Psychological Review, 2007, 114, 316-339.	3.8	243
23	The Roles of Left Versus Right Anterior Temporal Lobes in Conceptual Knowledge: An ALE Meta-analysis of 97 Functional Neuroimaging Studies. Cerebral Cortex, 2015, 25, 4374-4391.	2.9	241
24	Temporal lobe regions engaged during normal speech comprehension. Brain, 2003, 126, 1193-1201.	7.6	240
25	Semantic diversity: A measure of semantic ambiguity based on variability in the contextual usage of words. Behavior Research Methods, 2013, 45, 718-730.	4.0	235
26	Neural basis of category-specific semantic deficits for living things: evidence from semantic dementia, HSVE and a neural network model. Brain, 2006, 130, 1127-1137.	7.6	230
27	The Rise and Fall of Frequency and Imageability: Noun and Verb Production in Semantic Dementia. Brain and Language, 2000, 73, 17-49.	1.6	225
28	Distinct patterns of olfactory impairment in Alzheimer's disease, semantic dementia, frontotemporal dementia, and corticobasal degeneration. Neuropsychologia, 2007, 45, 1823-1831.	1.6	220
29	Fusion and Fission of Cognitive Functions in the Human Parietal Cortex. Cerebral Cortex, 2015, 25, 3547-3560.	2.9	217
30	<i>Generalization and Differentiation in Semantic Memory</i> . Annals of the New York Academy of Sciences, 2008, 1124, 61-76.	3.8	214
31	The Semantic Network at Work and Rest: Differential Connectivity of Anterior Temporal Lobe Subregions. Journal of Neuroscience, 2016, 36, 1490-1501.	3.6	212
32	Are living and non-living category-specific deficits causally linked to impaired perceptual or associative knowledge? evidence from a category-specific double dissociation. Neurocase, 1998, 4, 311-338.	0.6	211
33	Amodal semantic representations depend on both anterior temporal lobes: Evidence from repetitive transcranial magnetic stimulation. Neuropsychologia, 2010, 48, 1336-1342.	1.6	210
34	Differential Contributions of Bilateral Ventral Anterior Temporal Lobe and Left Anterior Superior Temporal Gyrus to Semantic Processes. Journal of Cognitive Neuroscience, 2011, 23, 3121-3131.	2.3	205
35	Dissociating Reading Processes on the Basis of Neuronal Interactions. Journal of Cognitive Neuroscience, 2005, 17, 1753-1765.	2.3	198
36	Homogeneity and heterogeneity in mild cognitive impairment and Alzheimer's disease: a crossâ€sectional and longitudinal study of 55 cases. Brain, 2003, 126, 2350-2362.	7.6	197

#	Article	IF	CITATIONS
37	Comprehension of concrete and abstract words in semantic dementia Neuropsychology, 2009, 23, 492-499.	1.3	196
38	Executive Semantic Processing Is Underpinned by a Large-scale Neural Network: Revealing the Contribution of Left Prefrontal, Posterior Temporal, and Parietal Cortex to Controlled Retrieval and Selection Using TMS. Journal of Cognitive Neuroscience, 2012, 24, 133-147.	2.3	195
39	Convergent Connectivity and Graded Specialization in the Rostral Human Temporal Lobe as Revealed by Diffusion-Weighted Imaging Probabilistic Tractography. Journal of Cognitive Neuroscience, 2012, 24, 1998-2014.	2.3	194
40	Elucidating the Nature of Deregulated Semantic Cognition in Semantic Aphasia: Evidence for the Roles of Prefrontal and Temporo-parietal Cortices. Journal of Cognitive Neuroscience, 2010, 22, 1597-1613.	2.3	193
41	The variation of function across the human insula mirrors its patterns of structural connectivity: Evidence from in vivo probabilistic tractography. NeuroImage, 2012, 59, 3514-3521.	4.2	183
42	Selective disorders of reading?. Current Opinion in Neurobiology, 1999, 9, 235-239.	4.2	178
43	Deficits of knowledge versus executive control in semantic cognition: Insights from cued naming. Neuropsychologia, 2008, 46, 649-658.	1.6	174
44	"Presemantic―Cognition in Semantic Dementia: Six Deficits in Search of an Explanation. Journal of Cognitive Neuroscience, 2006, 18, 169-183.	2.3	173
45	Capturing multidimensionality in stroke aphasia: mapping principal behavioural components to neural structures. Brain, 2014, 137, 3248-3266.	7.6	173
46	Anterior temporal lobe connectivity correlates with functional outcome after aphasic stroke. Brain, 2009, 132, 3428-3442.	7.6	172
47	Predicting the outcome of anomia therapy for people with aphasia post CVA: Both language and cognitive status are key predictors. Neuropsychological Rehabilitation, 2010, 20, 289-305.	1.6	170
48	Establishing task- and modality-dependent dissociations between the semantic and default mode networks. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7857-7862.	7.1	170
49	The treatment of anomia using errorless learning. Neuropsychological Rehabilitation, 2006, 16, 129-154.	1.6	169
50	Differing contributions of inferior prefrontal and anterior temporal cortex to concrete and abstract conceptual knowledge. Cortex, 2015, 63, 250-266.	2.4	166
51	Is a Picture Worth a Thousand Words? Evidence from Concept Definitions by Patients with Semantic Dementia. Brain and Language, 1999, 70, 309-335.	1.6	164
52	Taking both sides: do unilateral anterior temporal lobe lesions disrupt semantic memory?. Brain, 2010, 133, 3243-3255.	7.6	160
53	The inferior, anterior temporal lobes and semantic memory clarified: Novel evidence from distortion-corrected fMRI. Neuropsychologia, 2010, 48, 1689-1696.	1.6	159
54	Different impairments of semantic cognition in semantic dementia and semantic aphasia: evidence from the non-verbal domain. Brain, 2009, 132, 2593-2608.	7.6	153

#	Article	IF	CITATIONS
55	The application of errorless learning to aphasic disorders: A review of theory and practice. Neuropsychological Rehabilitation, 2003, 13, 337-363.	1.6	151
56	The Role of Sleep Spindles and Slow-Wave Activity in Integrating New Information in Semantic Memory. Journal of Neuroscience, 2013, 33, 15376-15381.	3.6	150
57	Using principal component analysis to capture individual differences within a unified neuropsychological model of chronic post-stroke aphasia: Revealing the unique neural correlates of speech fluency, phonology and semantics. Cortex, 2017, 86, 275-289.	2.4	145
58	Semantic memory is impaired in patients with unilateral anterior temporal lobe resection for temporal lobe epilepsy. Brain, 2012, 135, 242-258.	7.6	144
59	When objects lose their meaning: What happens to their use?. Cognitive, Affective and Behavioral Neuroscience, 2002, 2, 236-251.	2.0	141
60	Semantic memory is impaired in both dementia with Lewy bodies and dementia of Alzheimer's type: a comparative neuropsychological study and literature review. Journal of Neurology, Neurosurgery and Psychiatry, 2001, 70, 149-156.	1.9	139
61	Distortion correction for diffusionâ€weighted MRI tractography and fMRI in the temporal lobes. Human Brain Mapping, 2010, 31, 1570-1587.	3.6	139
62	Graded specialization within and between the anterior temporal lobes. Annals of the New York Academy of Sciences, 2015, 1359, 84-97.	3.8	135
63	Deficits in irregular past-tense verb morphology associated with degraded semantic knowledge. Neuropsychologia, 2001, 39, 709-724.	1.6	134
64	Ventrolateral Prefrontal Cortex Plays an Executive Regulation Role in Comprehension of Abstract Words: Convergent Neuropsychological and Repetitive TMS Evidence. Journal of Neuroscience, 2010, 30, 15450-15456.	3.6	132
65	Refractory effects in stroke aphasia: A consequence of poor semantic control. Neuropsychologia, 2007, 45, 1065-1079.	1.6	127
66	Semantic memory is an amodal, dynamic system: Evidence from the interaction of naming and object use in semantic dementia. Cognitive Neuropsychology, 2004, 21, 513-527.	1.1	126
67	Concepts, control, and context: A connectionist account of normal and disordered semantic cognition Psychological Review, 2018, 125, 293-328.	3.8	126
68	A Unifying Account of Angular Gyrus Contributions to Episodic and Semantic Cognition. Trends in Neurosciences, 2021, 44, 452-463.	8.6	123
69	NATURAL SELECTION: THE IMPACT OF SEMANTIC IMPAIRMENT ON LEXICAL AND OBJECT DECISION. Cognitive Neuropsychology, 2004, 21, 331-352.	1.1	122
70	A duck with four legs: Investigating the structure of conceptual knowledge using picture drawing in semantic dementia. Cognitive Neuropsychology, 2003, 20, 27-47.	1.1	120
71	Deficits in phonology and past-tense morphology: What's the connection?. Journal of Memory and Language, 2003, 48, 502-526.	2.1	119
72	Semantic feature knowledge and picture naming in dementia of Alzheimer?s type: A new approach. Brain and Language, 2005, 93, 79-94.	1.6	119

#	Article	IF	CITATIONS
73	A unified model of human semantic knowledge and its disorders. Nature Human Behaviour, 2017, 1, .	12.0	117
74	GOGI APHASIA OR SEMANTIC DEMENTIA? SIMULATING AND ASSESSING POOR VERBAL COMPREHENSION IN A CASE OF PROGRESSIVE FLUENT APHASIA. Cognitive Neuropsychology, 2000, 17, 437-465.	1.1	115
75	Age of acquisition effects depend on the mapping between representations and the frequency of occurrence: Empirical and computational evidence. Visual Cognition, 2006, 13, 928-948.	1.6	115
76	Disorders of representation and control in semantic cognition: Effects of familiarity, typicality, and specificity. Neuropsychologia, 2015, 76, 220-239.	1.6	115
77	Direct Exploration of the Role of the Ventral Anterior Temporal Lobe in Semantic Memory: Cortical Stimulation and Local Field Potential Evidence From Subdural Grid Electrodes. Cerebral Cortex, 2015, 25, 3802-3817.	2.9	109
78	Classical anomia: a neuropsychological perspective on speech production. Neuropsychologia, 2000, 38, 186-202.	1.6	106
79	Automatic and controlled processing in sentence recall: The role of long-term and working memory. Journal of Memory and Language, 2004, 51, 623-643.	2.1	106
80	The role of the anterior temporal lobes in the comprehension of concrete and abstract words: rTMS evidence. Cortex, 2009, 45, 1104-1110.	2.4	106
81	The Influence of Personal Familiarity and Context on Object Use in Semantic Dementia. Neurocase, 2002, 8, 127-134.	0.6	105
82	The relationship between naming and semantic knowledge for different categories in dementia of Alzheimer's type. Neuropsychologia, 1997, 35, 1251-1260.	1.6	102
83	Treatment of anomia using errorless versus errorful learning: are frontal executive skills and feedback important?. International Journal of Language and Communication Disorders, 2005, 40, 505-523.	1.5	100
84	The neural and neurocomputational bases of recovery from post-stroke aphasia. Nature Reviews Neurology, 2020, 16, 43-55.	10.1	100
85	Controlled semantic cognition relies upon dynamic and flexible interactions between the executive †semantic control' and hub-and-spoke †semantic representation' systems. Cortex, 2018, 103, 100-1	16 ^{2.4}	99
86	Longitudinal Profiles of Semantic Impairment for Living and Nonliving Concepts in Dementia of Alzheimer's Type. Journal of Cognitive Neuroscience, 2001, 13, 892-909.	2.3	98
87	The structural connectivity of higher order association cortices reflects human functional brain networks. Cortex, 2017, 97, 221-239.	2.4	98
88	Sleep Spindle Density Predicts the Effect of Prior Knowledge on Memory Consolidation. Journal of Neuroscience, 2016, 36, 3799-3810.	3.6	96
89	Mapping the Multiple Graded Contributions of the Anterior Temporal Lobe Representational Hub to Abstract and Social Concepts: Evidence from Distortion-corrected fMRI. Cerebral Cortex, 2016, 26, 4227-4241.	2.9	94
90	Redefining the multidimensional clinical phenotypes of frontotemporal lobar degeneration syndromes. Brain, 2020, 143, 1555-1571.	7.6	94

#	Article	IF	CITATIONS
91	Semantic Diversity Accounts for the "Missing―Word Frequency Effect in Stroke Aphasia: Insights Using a Novel Method to Quantify Contextual Variability in Meaning. Journal of Cognitive Neuroscience, 2011, 23, 2432-2446.	2.3	93
92	Unlocking the Nature of the Phonological–Deep Dyslexia Continuum: The Keys to Reading Aloud Are in Phonology and Semantics. Journal of Cognitive Neuroscience, 2006, 18, 348-362.	2.3	91
93	Mapping the Dynamic Network Interactions Underpinning Cognition: A cTBS-fMRI Study of the Flexible Adaptive Neural System for Semantics. Cerebral Cortex, 2016, 26, 3580-3590.	2.9	90
94	Different roles of lateral anterior temporal lobe and inferior parietal lobule in coding function and manipulation tool knowledge: Evidence from an rTMS study. Neuropsychologia, 2011, 49, 1128-1135.	1.6	89
95	Further explorations and an overview of errorless and errorful therapy for aphasic word-finding difficulties: The number of naming attempts during therapy affects outcome. Aphasiology, 2005, 19, 597-614.	2.2	88
96	Effectiveness of enhanced communication therapy in the first four months after stroke for aphasia and dysarthria: a randomised controlled trial. BMJ, The, 2012, 345, e4407-e4407.	6.0	88
97	"Presemantic" Cognition in Semantic Dementia: Six Deficits in Search of an Explanation. Journal of Cognitive Neuroscience, 2006, 18, 169-183.	2.3	86
98	Anomia is simply a reflection of semantic and phonological impairments: Evidence from a case-series study. Aphasiology, 2002, 16, 56-82.	2.2	85
99	SEMANTIC DEMENTIA WITH CATEGORY SPECIFICITY:ACOMPARATIVE CASE-SERIES STUDY. Cognitive Neuropsychology, 2003, 20, 307-326.	1.1	85
100	Dissociating stimulus-driven semantic and phonological effect during reading and naming. Human Brain Mapping, 2007, 28, 205-217.	3.6	85
101	Assessing and mapping language, attention and executive multidimensional deficits in stroke aphasia. Brain, 2019, 142, 3202-3216.	7.6	85
102	Why Bilateral Damage Is Worse than Unilateral Damage to the Brain. Journal of Cognitive Neuroscience, 2013, 25, 2107-2123.	2.3	84
103	Mapping Domain-Selective and Counterpointed Domain-General Higher Cognitive Functions in the Lateral Parietal Cortex: Evidence from fMRI Comparisons of Difficulty-Varying Semantic Versus Visuo-Spatial Tasks, and Functional Connectivity Analyses. Cerebral Cortex, 2017, 27, 4199-4212.	2.9	84
104	The Nature and Neural Correlates of Semantic Association versus Conceptual Similarity. Cerebral Cortex, 2015, 25, 4319-4333.	2.9	82
105	Relearning and retention of verbal labels in a case of semantic dementia. Aphasiology, 2009, 23, 192-209.	2.2	80
106	The Roles of Left Versus Right Anterior Temporal Lobes in Semantic Memory: A Neuropsychological Comparison of Postsurgical Temporal Lobe Epilepsy Patients. Cerebral Cortex, 2018, 28, 1487-1501.	2.9	80
107	Lexical and semantic binding in verbal short-term memory. Journal of Memory and Language, 2006, 54, 81-98.	2.1	76
108	Errorless and errorful therapy for verb and noun naming in aphasia. Aphasiology, 2009, 23, 1311-1337.	2.2	76

#	Article	IF	CITATIONS
109	An emergent functional parcellation of the temporal cortex. NeuroImage, 2018, 170, 385-399.	4.2	76
110	Reverse Concreteness Effects Are Not a Typical Feature of Semantic Dementia: Evidence for the Hub-and-Spoke Model of Conceptual Representation. Cerebral Cortex, 2011, 21, 2103-2112.	2.9	75
111	The Hub-and-Spoke Hypothesis of Semantic Memory. , 2016, , 765-775.		75
112	The neural network for tool-related cognition: An activation likelihood estimation meta-analysis of 70 neuroimaging contrasts. Cognitive Neuropsychology, 2016, 33, 241-256.	1.1	74
113	Semantic loss without surface dyslexia. Neurocase, 1995, 1, 363-369.	0.6	73
114	Efficient Visual Object and Word Recognition Relies on High Spatial Frequency Coding in the Left Posterior Fusiform Gyrus: Evidence from a Case-Series of Patients with Ventral Occipito-Temporal Cortex Damage. Cerebral Cortex, 2013, 23, 2568-2580.	2.9	73
115	The degraded concept representation system in semantic dementia: damage to pan-modal hub, then visual spoke. Brain, 2012, 135, 3770-3780.	7.6	71
116	Guilt-Selective Functional Disconnection of Anterior Temporal and Subgenual Cortices in Major Depressive Disorder. Archives of General Psychiatry, 2012, 69, 1014-21.	12.3	71
117	A Distinctive Case of Word Meaning Deafness?. Cognitive Neuropsychology, 1996, 13, 1139-1162.	1.1	70
118	Deregulated Semantic Cognition Follows Prefrontal and Temporo-parietal Damage: Evidence from the Impact of Task Constraint on Nonverbal Object Use. Journal of Cognitive Neuroscience, 2011, 23, 1125-1135.	2.3	69
119	Self-blame–Selective Hyperconnectivity Between Anterior Temporal and Subgenual Cortices and Prediction of Recurrent Depressive Episodes. JAMA Psychiatry, 2015, 72, 1119.	11.0	69
120	Two age of acquisition effects in the reading of Japanese Kanji. British Journal of Psychology, 1997, 88, 407-421.	2.3	68
121	Transport for language south of the Sylvian fissure: The routes and history of the main tracts and stations in the ventral language network. Cortex, 2015, 69, 141-151.	2.4	68
122	Connectivity-based structural and functional parcellation of the human cortex using diffusion imaging and tractography. Frontiers in Neuroanatomy, 2012, 6, 34.	1.7	67
123	Triangulation of the neurocomputational architecture underpinning reading aloud. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3719-28.	7.1	67
124	Exploring multimodal semantic control impairments in semantic aphasia: Evidence from naturalistic object use. Neuropsychologia, 2009, 47, 2721-2731.	1.6	66
125	Arcuate fasciculus variability and repetition: The left sometimes can be right. Cortex, 2012, 48, 133-143.	2.4	65
126	Wernicke's aphasia reflects a combination of acoustic-phonological and semantic control deficits: A case-series comparison of Wernicke's aphasia, semantic dementia and semantic aphasia. Neuropsychologia, 2012, 50, 266-275.	1.6	65

#	Article	IF	CITATIONS
127	Listening to Narrative Speech after Aphasic Stroke: the Role of the Left Anterior Temporal Lobe. Cerebral Cortex, 2006, 16, 1116-1125.	2.9	64
128	The Anterior Temporal Lobe Semantic Hub Is a Part of the Language Neural Network: Selective Disruption of Irregular Past Tense Verbs by rTMS. Cerebral Cortex, 2010, 20, 2771-2775.	2.9	64
129	The anterior temporal lobes support residual comprehension in Wernicke's aphasia. Brain, 2014, 137, 931-943.	7.6	64
130	Towards theoryâ€driven therapies for aphasic verb impairments: A review of current theory and practice. Aphasiology, 2006, 20, 1159-1185.	2.2	63
131	Using a combination of fMRI and anterior temporal lobe rTMS to measure intrinsic and induced activation changes across the semantic cognition network. Neuropsychologia, 2015, 76, 170-181.	1.6	63
132	A semantic contribution to nonword recall? Evidence for intact phonological processes in semantic dementia. Cognitive Neuropsychology, 2005, 22, 183-212.	1.1	62
133	The effects of decreasing and increasing cue therapy on improving naming speed and accuracy for verbs and nouns in aphasia. Aphasiology, 2009, 23, 707-730.	2.2	60
134	Solving the paradox of the equipotential and modular brain: A neurocomputational model of stroke vs. slow-growing glioma. Neuropsychologia, 2010, 48, 1716-1724.	1.6	59
135	Posterior middle temporal gyrus is involved in verbal and non-verbal semantic cognition: Evidence from rTMS. Aphasiology, 2012, 26, 1119-1130.	2.2	59
136	How intensive does anomia therapy for people with aphasia need to be?. Neuropsychological Rehabilitation, 2011, 21, 26-41.	1.6	57
137	Concrete versus abstract forms of social concept: an fMRI comparison of knowledge about people versus social terms. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170136.	4.0	57
138	A graded tractographic parcellation of the temporal lobe. NeuroImage, 2017, 155, 503-512.	4.2	55
139	Hemispheric Specialization within the Superior Anterior Temporal Cortex for Social and Nonsocial Concepts. Journal of Cognitive Neuroscience, 2016, 28, 351-360.	2.3	54
140	Distributed versus Localist Representations: Evidence from a Study of Item Consistency in a Case of Classical Anomia. Brain and Language, 1998, 64, 339-360.	1.6	53
141	What's in a word? A parametric study of semantic influences on visual word recognition. Psychonomic Bulletin and Review, 2012, 19, 325-331.	2.8	53
142	How right hemisphere damage after stroke can impair speech comprehension. Brain, 2018, 141, 3389-3404.	7.6	53
143	Object recognition under semantic impairment: The effects of conceptual regularities on perceptual decisions. Language and Cognitive Processes, 2003, 18, 625-662.	2.2	52
144	The impact of semantic impairment on verbal short-term memory in stroke aphasia and semantic dementia: A comparative study. Journal of Memory and Language, 2008, 58, 66-87.	2.1	52

#	Article	IF	CITATIONS
145	Shapes, scents and sounds: Quantifying the full multi-sensory basis of conceptual knowledge. Neuropsychologia, 2013, 51, 14-25.	1.6	52
146	A unified model of post-stroke language deficits including discourse production and their neural correlates. Brain, 2020, 143, 1541-1554.	7.6	52
147	A category-specific advantage for numbers in verbal short-term memory: Evidence from semantic dementia. Neuropsychologia, 2004, 42, 639-660.	1.6	51
148	The Differential Contributions of pFC and Temporo-parietal Cortex to Multimodal Semantic Control: Exploring Refractory Effects in Semantic Aphasia. Journal of Cognitive Neuroscience, 2012, 24, 778-793.	2.3	50
149	Lexical and semantic influences on item and order memory in immediate serial recognition: Evidence from a novel task. Quarterly Journal of Experimental Psychology, 2006, 59, 949-964.	1.1	49
150	A horse of a different colour: Do patients with semantic dementia recognise different versions of the same object as the same?. Neuropsychologia, 2006, 44, 566-575.	1.6	49
151	Fundamental deficits of auditory perception in Wernicke's aphasia. Cortex, 2013, 49, 1808-1822.	2.4	49
152	Be concrete to be comprehended: Consistent imageability effects in semantic dementia for nouns, verbs, synonyms and associates. Cortex, 2013, 49, 1206-1218.	2.4	48
153	The tract terminations in the temporal lobe: Their location and associated functions. Cortex, 2017, 97, 277-290.	2.4	48
154	Distinct and common neural coding of semantic and non-semantic control demands. NeuroImage, 2021, 236, 118230.	4.2	48
155	Using Parallel Distributed Processing Models to Simulate Phonological Dyslexia: The Key Role of Plasticity-related Recovery. Journal of Cognitive Neuroscience, 2007, 19, 1125-1139.	2.3	47
156	Varieties of semantic â€~access' deficit in Wernicke's aphasia and semantic aphasia. Brain, 2015, 138, 3776-3792.	7.6	47
157	Progressive non-fluent aphasia is not a progressive form of non-fluent (post-stroke) aphasia. Aphasiology, 2006, 20, 1018-1034.	2.2	46
158	The contribution of executive control to semantic cognition: Convergent evidence from semantic aphasia and executive dysfunction. Journal of Neuropsychology, 2018, 12, 312-340.	1.4	46
159	Predictors of Poststroke Aphasia Recovery. Stroke, 2021, 52, 1778-1787.	2.0	46
160	Multiple dimensions underlying the functional organization of the language network. NeuroImage, 2021, 241, 118444.	4.2	46
161	Processing deficits for familiar and novel faces in patients with left posterior fusiform lesions. Cortex, 2015, 72, 79-96.	2.4	44
162	Dosage, Intensity, and Frequency of Language Therapy for Aphasia: A Systematic Review–Based, Individual Participant Data Network Meta-Analysis. Stroke, 2022, 53, 956-967.	2.0	44

#	Article	IF	CITATIONS
163	Do deep dyslexia, dysphasia and dysgraphia share a common phonological impairment?. Neuropsychologia, 2007, 45, 1553-1570.	1.6	43
164	Clinical effectiveness, cost-effectiveness and service users' perceptions of early, well-resourced communication therapy following a stroke: a randomised controlled trial (the ACT NoW Study) Health Technology Assessment, 2012, 16, 1-160.	2.8	43
165	Staging of the cognitive decline in Alzheimer's disease: insights from a detailed neuropsychological investigation of mild cognitive impairment and mild Alzheimer's disease. International Journal of Geriatric Psychiatry, 2012, 27, 423-432.	2.7	42
166	The Timing of Anterior Temporal Lobe Involvement in Semantic Processing. Journal of Cognitive Neuroscience, 2015, 27, 1388-1396.	2.3	42
167	Unlocking the Nature of the Phonological–Deep Dyslexia Continuum: The Keys to Reading Aloud Are in Phonology and Semantics. Journal of Cognitive Neuroscience, 2006, 18, 348-362.	2.3	42
168	On the use of regression techniques for the analysis of single case aphasic data. Journal of Neurolinguistics, 1996, 9, 165-174.	1.1	41
169	Targeted memory reactivation of newly learned words during sleep triggers REM-mediated integration of new memories and existing knowledge. Neurobiology of Learning and Memory, 2017, 137, 77-82.	1.9	41
170	Surface Dyslexia in Semantic Dementia: A Comparison of the Influence of Consistency and Regularity. Neurocase, 2004, 10, 290-299.	0.6	40
171	Selective functional integration between anterior temporal and distinct fronto-mesolimbic regions during guilt and indignation. NeuroImage, 2010, 52, 1720-1726.	4.2	40
172	Exploring distinct default mode and semantic networks using a systematic ICA approach. Cortex, 2019, 113, 279-297.	2.4	40
173	Reverse-engineering the cortical architecture for controlled semantic cognition. Nature Human Behaviour, 2021, 5, 774-786.	12.0	40
174	At the Edge of Semantic Space: The Breakdown of Coherent Concepts in Semantic Dementia Is Constrained by Typicality and Severity but Not Modality. Journal of Cognitive Neuroscience, 2011, 23, 2240-2251.	2.3	39
175	The anterior temporal cortex is a primary semantic source of top-down influences on object recognition. Cortex, 2016, 79, 75-86.	2.4	39
176	A unified neurocognitive model of semantics language social behaviour and face recognition in semantic dementia. Nature Communications, 2020, 11, 2595.	12.8	39
177	Unveiling the dynamic interplay between the hub- and spoke-components of the brain's semantic system and its impact on human behaviour. NeuroImage, 2019, 199, 114-126.	4.2	38
178	Revealing and quantifying the impaired phonological analysis underpinning impaired comprehension in Wernicke's aphasia. Neuropsychologia, 2012, 50, 276-288.	1.6	37
179	The roles of the "ventral―semantic and "dorsal―pathways in conduite d'approche: a neuroanatomically-constrained computational modeling investigation. Frontiers in Human Neuroscience, 2013, 7, 422.	2.0	37
180	When does word meaning affect immediate serial recall in semantic dementia?. Cognitive, Affective and Behavioral Neuroscience, 2004, 4, 20-42.	2.0	36

#	Article	IF	CITATIONS
181	The association between semantic dementia and surface dyslexia in Japanese. Neuropsychologia, 2009, 47, 1061-1068.	1.6	36
182	Relearning in semantic dementia reflects contributions from both medial temporal lobe episodic and degraded neocortical semantic systems: Evidence in support of the complementary learning systems theory. Neuropsychologia, 2011, 49, 3591-3598.	1.6	36
183	When does less yield more? The impact of severity upon implicit recognition in pure alexia. Neuropsychologia, 2010, 48, 2437-2446.	1.6	35
184	How many words should we provide in anomia therapy? A meta-analysis and a case series study. Aphasiology, 2010, 24, 1064-1094.	2.2	35
185	The role of plasticity-related functional reorganization in the explanation of central dyslexias. Cognitive Neuropsychology, 2011, 28, 65-108.	1.1	34
186	Time for a quick word? The striking benefits of training speed and accuracy of word retrieval in post-stroke aphasia. Brain, 2018, 141, 1815-1827.	7.6	34
187	Task-based and resting-state fMRI reveal compensatory network changes following damage to left inferior frontal gyrus. Cortex, 2018, 99, 150-165.	2.4	34
188	Triangulation of language-cognitive impairments, naming errors and their neural bases post-stroke. NeuroImage: Clinical, 2018, 17, 465-473.	2.7	34
189	The Left Angular Gyrus Is Causally Involved in Context-dependent Integration and Associative Encoding during Narrative Reading. Journal of Cognitive Neuroscience, 2021, 33, 1082-1095.	2.3	34
190	The impact of phonological or semantic impairment on delayed auditory repetition: Evidence from stroke aphasia and semantic dementia. Aphasiology, 2006, 20, 963-992.	2.2	33
191	The anterior temporal lobes are critically involved in acquiring new conceptual knowledge: Evidence for impaired feature integration in semantic dementia. Cortex, 2014, 50, 19-31.	2.4	33
192	Noun and verb processing in aphasia: Behavioural profiles and neural correlates. NeuroImage: Clinical, 2018, 18, 215-230.	2.7	33
193	The behavioural patterns and neural correlates of concrete and abstract verb processing in aphasia: A novel verb semantic battery. NeuroImage: Clinical, 2018, 17, 811-825.	2.7	33
194	Revealing the Dynamic Modulations That Underpin a Resilient Neural Network for Semantic Cognition: An fMRI Investigation in Patients With Anterior Temporal Lobe Resection. Cerebral Cortex, 2018, 28, 3004-3016.	2.9	33
195	Connectivity Gradient in the Human Left Inferior Frontal Gyrus: Intraoperative Cortico-Cortical Evoked Potential Study. Cerebral Cortex, 2020, 30, 4633-4650.	2.9	33
196	Subregions of DLPFC Display Graded yet Distinct Structural and Functional Connectivity. Journal of Neuroscience, 2022, 42, 3241-3252.	3.6	33
197	Mapping psycholinguistic features to the neuropsychological and lesion profiles in aphasia. Cortex, 2020, 124, 260-273.	2.4	32
198	Revealing the neural networks that extract conceptual gestalts from continuously evolving or changing semantic contexts. NeuroImage, 2020, 220, 116802.	4.2	32

Matthew A Lambon Ralph

#	Article	IF	CITATIONS
199	Language networks in aphasia and health: A 1000 participant activation likelihood estimation meta-analysis. NeuroImage, 2021, 233, 117960.	4.2	32
200	The role of the temporal lobe semantic system in number knowledge: evidence from late-stage semantic dementia. Neuropsychologia, 2005, 43, 887-905.	1.6	31
201	"Pre-semantic―cognition revisited: Critical differences between semantic aphasia and semantic dementia. Neuropsychologia, 2010, 48, 248-261.	1.6	31
202	Finite case series or infinite single-case studies? Comments on "Case series investigations in cognitive neuropsychology―by Schwartz and Dell (2010). Cognitive Neuropsychology, 2011, 28, 466-474.	1.1	31
203	From percept to concept in the ventral temporal lobes: Graded hemispheric specialisation based on stimulus and task. Cortex, 2018, 101, 107-118.	2.4	31
204	Graded, multidimensional intra- and intergroup variations in primary progressive aphasia and post-stroke aphasia. Brain, 2020, 143, 3121-3135.	7.6	31
205	Establishing two principal dimensions of cognitive variation in logopenic progressive aphasia. Brain Communications, 2020, 2, fcaa125.	3.3	30
206	Investigating the effect of changing parameters when building prediction models for post-stroke aphasia. Nature Human Behaviour, 2020, 4, 725-735.	12.0	30
207	Implicit Word Cues Facilitate Impaired Naming Performance: Evidence from a Case of Anomia. Brain and Language, 2001, 79, 185-200.	1.6	29
208	The relationship between phonological and morphological deficits in Broca?s aphasia: Further evidence from errors in verb inflection. Brain and Language, 2005, 92, 278-287.	1.6	29
209	Selective short-term memory deficits arise from impaired domain-general semantic control mechanisms Journal of Experimental Psychology: Learning Memory and Cognition, 2009, 35, 137-156.	0.9	29
210	The Graded Change in Connectivity across the Ventromedial Prefrontal Cortex Reveals Distinct Subregions. Cerebral Cortex, 2020, 30, 165-180.	2.9	29
211	Acquired phonological and deep dyslexia. Neurocase, 2000, 6, 141-178.	0.6	28
212	Using errorless learning to treat letter-by-letter reading: Contrasting word versus letter-based therapy. Neuropsychological Rehabilitation, 2005, 15, 619-642.	1.6	28
213	Mimicking aphasic semantic errors in normal speech production: Evidence from a novel experimental paradigm. Brain and Language, 2008, 104, 89-101.	1.6	28
214	Semantic memory is key to binding phonology: Converging evidence from immediate serial recall in semantic dementia and healthy participants. Neuropsychologia, 2009, 47, 747-760.	1.6	28
215	Deficits of semantic control produce absent or reverse frequency effects in comprehension: Evidence from neuropsychology and dual task methodology. Neuropsychologia, 2012, 50, 1968-1979.	1.6	28
216	ORAL NAMING AND ORAL READING: DO THEY SPEAK THE SAME LANGUAGE?. Cognitive Neuropsychology, 1999, 16, 157-169.	1.1	27

#	Article	IF	CITATIONS
217	What underlies the neuropsychological pattern of irregular>regular past-tense verb production?. Brain and Language, 2005, 93, 106-119.	1.6	27
218	Shared processes resolve competition within and between episodic and semantic memory: Evidence from patients with LIFG lesions. Cortex, 2018, 108, 127-143.	2.4	27
219	Do You Read How I Read? Systematic Individual Differences in Semantic Reliance amongst Normal Readers. Frontiers in Psychology, 2016, 7, 1757.	2.1	26
220	A structural connectivity convergence zone in the ventral and anterior temporal lobes: Data-driven evidence from structural imaging. Cortex, 2019, 120, 298-307.	2.4	26
221	A unified neurocomputational bilateral model of spoken language production in healthy participants and recovery in poststroke aphasia. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32779-32790.	7.1	26
222	Bipartite Functional Fractionation within the Default Network Supports Disparate Forms of Internally Oriented Cognition. Cerebral Cortex, 2020, 30, 5484-5501.	2.9	26
223	Overarching Principles and Dimensions of the Functional Organization in the Inferior Parietal Cortex. Cerebral Cortex, 2020, 30, 5639-5653.	2.9	26
224	A tutorial and tool for exploring feature similarity gradients with MRI data. NeuroImage, 2020, 221, 117140.	4.2	26
225	Evidence for a deep, distributed and dynamic code for animacy in human ventral anterior temporal cortex. ELife, 2021, 10, .	6.0	26
226	"L―is for tiger: Effects of phonological (mis)cueing on picture naming in semantic aphasia. Journal of Neurolinguistics, 2009, 22, 538-547.	1.1	25
227	Explaining semantic short-term memory deficits: Evidence for the critical role of semantic control. Neuropsychologia, 2011, 49, 368-381.	1.6	25
228	Using in vivo probabilistic tractography to reveal two segregated dorsal â€̃language-cognitive' pathways in the human brain. Brain and Language, 2013, 127, 230-240.	1.6	25
229	GABA concentrations in the anterior temporal lobe predict human semantic processing. Scientific Reports, 2017, 7, 15748.	3.3	25
230	Relating resting-state hemodynamic changes to the variable language profiles in post-stroke aphasia. NeuroImage: Clinical, 2018, 20, 611-619.	2.7	25
231	Remembering â€~zeal' but not â€~thing': Reverse frequency effects as a consequence of deregulated semantic processing. Neuropsychologia, 2011, 49, 580-584.	1.6	24
232	Premorbid expertise produces category-specific impairment in a domain-general semantic disorder. Neuropsychologia, 2011, 49, 3213-3223.	1.6	24
233	Unification of behavioural, computational and neural accounts of word production errors in post-stroke aphasia. NeuroImage: Clinical, 2018, 18, 952-962.	2.7	24
234	Evaluating the granularity and statistical structure of lesions and behaviour in post-stroke aphasia. Brain Communications, 2020, 2, fcaa062.	3.3	24

#	Article	IF	CITATIONS
235	A QUESTIONABLE SEMANTICS: THE INTERACTION BETWEEN SEMANTIC KNOWLEDGE AND AUTOBIOGRAPHICAL EXPERIENCE IN SEMANTIC DEMENTIA. Cognitive Neuropsychology, 1999, 16, 689-698.	1.1	23
236	A direct comparison of errorless and errorful therapy for object name relearning in Alzheimer's disease. Neuropsychological Rehabilitation, 2012, 22, 215-234.	1.6	23
237	Not Lost in Translation: Generalization of the Primary Systems Hypothesis to Japanese-specific Language Processes. Journal of Cognitive Neuroscience, 2014, 26, 433-446.	2.3	23
238	The multidimensional nature of aphasia recovery post-stroke. Brain, 2022, 145, 1354-1367.	7.6	23
239	Implicit recognition in pure alexia: The Saffran effect—a tale of two systems or two procedures?. Cognitive Neuropsychology, 2004, 21, 401-421.	1.1	22
240	Conceptual Structure within and between Modalities. Frontiers in Human Neuroscience, 2012, 6, 333.	2.0	22
241	Frontotemporal lobar degeneration and social behaviour: Dissociation between the knowledge of its consequences and its conceptual meaning. Cortex, 2017, 93, 107-118.	2.4	22
242	A comparison of word versus sentence cues as therapy for verb naming in aphasia. Aphasiology, 2009, 23, 462-482.	2.2	21
243	The neural basis of conceptual–emotional integration and its role in major depressive disorder. Social Neuroscience, 2013, 8, 417-433.	1.3	21
244	The Natural History of Late-stage "Pure―Semantic Dementia. Neurocase, 2006, 12, 1-14.	0.6	20
245	SD-squared revisited: Reply to Coltheart, Tree, and Saunders (2010) Psychological Review, 2010, 117, 273-281.	3.8	20
246	Unpicking the Semantic Impairment in Alzheimer's Disease: Qualitative Changes with Disease Severity. Behavioural Neurology, 2012, 25, 23-34.	2.1	20
247	Demonstrating the Qualitative Differences between Semantic Aphasia and Semantic Dementia: A Novel Exploration of Nonverbal Semantic Processing. Behavioural Neurology, 2013, 26, 7-20.	2.1	20
248	Predicting the pattern and severity of chronic post-stroke language deficits from functionally-partitioned structural lesions. NeuroImage: Clinical, 2018, 19, 1-13.	2.7	20
249	Establishing the cognitive signature of human brain networks derived from structural and functional connectivity. Brain Structure and Function, 2018, 223, 4023-4038.	2.3	20
250	More evidence for a continuum between phonological and deep dyslexia: Novel data from three measures of direct orthography-to-phonology translation. Aphasiology, 2011, 25, 615-641.	2.2	19
251	Phonological learning in semantic dementia. Neuropsychologia, 2011, 49, 1208-1218.	1.6	19
252	Task-Related Dynamic Division of Labor Between Anterior Temporal and Lateral Occipital Cortices in Representing Object Size. Journal of Neuroscience, 2016, 36, 4662-4668.	3.6	18

#	Article	IF	CITATIONS
253	Mapping the intersection of language and reading: the neural bases of the primary systems hypothesis. Brain Structure and Function, 2018, 223, 3769-3786.	2.3	18
254	Exploring the impact of plasticity-related recovery after brain damage in a connectionist model of single-word reading. Cognitive, Affective and Behavioral Neuroscience, 2005, 5, 77-92.	2.0	17
255	Using computational, parallel distributed processing networks to model rehabilitation in patients with acquired dyslexia: An initial investigation. Aphasiology, 2005, 19, 789-806.	2.2	17
256	The use of cueing to alleviate recurrent verbal perseverations: Evidence from transcortical sensory aphasia. Aphasiology, 2008, 22, 363-382.	2.2	17
257	Deregulated semantic cognition contributes to objectâ€use deficits in <scp>A</scp> lzheimer's disease: A comparison with semantic aphasia and semantic dementia. Journal of Neuropsychology, 2015, 9, 219-241.	1.4	17
258	Arterial spin labelling shows functional depression of non-lesion tissue in chronic Wernicke's aphasia. Cortex, 2017, 92, 249-260.	2.4	17
259	Word Meaning Blindness: A New Form of Acquired Dyslexia. Cognitive Neuropsychology, 1996, 13, 617-640.	1.1	15
260	How does linguistic knowledge contribute to short-term memory? Contrasting effects of impaired semantic knowledge and executive control. Aphasiology, 2012, 26, 383-403.	2.2	15
261	Using neurostimulation to understand the impact of pre-morbid individual differences on post-lesion outcomes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12279-12284.	7.1	15
262	Category-selective deficits are the exception and not the rule: Evidence from a case-series of 64 patients with ventral occipito-temporal cortex damage. Cortex, 2021, 138, 266-281.	2.4	15
263	The convergence and divergence of episodic and semantic functions across lateral parietal cortex. Cerebral Cortex, 2022, 32, 5664-5681.	2.9	15
264	A â€~Mini Linguistic State Examination' to classify primary progressive aphasia. Brain Communications, 2022, 4, fcab299.	3.3	15
265	What lies beneath: A comparison of reading aloud in pure alexia and semantic dementia. Cognitive Neuropsychology, 2014, 31, 461-481.	1.1	14
266	The immediate impact of transcranial magnetic stimulation on brain structure: Short-term neuroplasticity following one session of cTBS. NeuroImage, 2021, 240, 118375.	4.2	14
267	Reconnecting with Joseph and Augusta Dejerine: 100 years on. Brain, 2017, 140, 2752-2759.	7.6	13
268	Control the source: Source memory for semantic, spatial and self-related items in patients with LIFG lesions. Cortex, 2019, 119, 165-183.	2.4	13
269	The neural bases of resilient semantic system: evidence of variable neuro-displacement in cognitive systems. Brain Structure and Function, 2021, 226, 1585-1599.	2.3	13
270	Using Phonemic Cueing of Spontaneous Naming to Predict Item Responsiveness to Therapy for Anomia in Aphasia. Archives of Physical Medicine and Rehabilitation, 2012, 93, S53-S60.	0.9	12

#	Article	IF	CITATIONS
271	The verbal, non-verbal and structural bases of functional communication abilities in aphasia. Brain Communications, 2020, 2, fcaa118.	3.3	12
272	Precision rehabilitation for aphasia by patient age, sex, aphasia severity, and time since stroke? A prespecified, systematic review-based, individual participant data, network, subgroup meta-analysis. International Journal of Stroke, 2022, 17, 1067-1077.	5.9	12
273	Cued Memory Reactivation During SWS Abolishes the Beneficial Effect of Sleep on Abstraction. Sleep, 2017, 40, .	1.1	11
274	Language Disorder in Progressive Supranuclear Palsy and Corticobasal Syndrome: Neural Correlates and Detection by the MLSE Screening Tool. Frontiers in Aging Neuroscience, 2021, 13, 675739.	3.4	11
275	Unpicking the semantic impairment in Alzheimer's disease: qualitative changes with disease severity. Behavioural Neurology, 2012, 25, 23-34.	2.1	11
276	Demonstrating a wordlikeness effect on nonword repetition performance in a conduction aphasic patient. Brain and Language, 2003, 85, 222-230.	1.6	10
277	Time- but not sleep-dependent consolidation promotes the emergence of cross-modal conceptual representations. Neuropsychologia, 2014, 63, 116-123.	1.6	10
278	The anterior-ventrolateral temporal lobe contributes to boosting visual working memory capacity for items carrying semantic information. Neurolmage, 2018, 169, 453-461.	4.2	10
279	An efficient, accurate and clinically-applicable index of content word fluency in Aphasia. Aphasiology, 2022, 36, 921-939.	2.2	10
280	Prototypicality, distinctiveness, and intercorrelation: Analyses of the semantic attributes of living and nonliving concepts. Cognitive Neuropsychology, 2001, 18, 125-174.	1.1	10
281	Acquired Disorders of Reading. , 0, , 413-430.		9
282	Induction of Semantic Impairments Using rTMS: Evidence for the Hub-And-Spoke Semantic Theory. Behavioural Neurology, 2010, 23, 217-219.	2.1	9
283	Domain-specific control of semantic cognition: A dissociation within patients with semantic working memory deficits. Aphasiology, 2013, 27, 740-764.	2.2	9
284	The roles of long-term phonotactic and lexical prosodic knowledge in phonological short-term memory. Memory and Cognition, 2015, 43, 500-519.	1.6	9
285	Enhancing vs. inhibiting semantic performance with transcranial magnetic stimulation over the anterior temporal lobe: Frequency- and task-specific effects. NeuroImage, 2021, 234, 117959.	4.2	9
286	Mapping lesion, structural disconnection, and functional disconnection to symptoms in semantic aphasia. Brain Structure and Function, 2022, 227, 3043-3061.	2.3	9
287	Reconnecting Cognitive Neuropsychology: Commentary on Harley's †Does Cognitive Neuropsychology have a Future?'. Cognitive Neuropsychology, 2004, 21, 31-35.	1.1	8
288	An emergent effect of phonemic cueing following relearning in semantic dementia. Aphasiology, 2011, 25, 1069-1077.	2.2	8

#	Article	IF	CITATIONS
289	Mapping whole brain connectivity changes: The potential impact of different surgical resection approaches for temporal lobe epilepsy. Cortex, 2019, 113, 1-14.	2.4	8
290	Subgenual activation and the finger of blame: individual differences and depression vulnerability. Psychological Medicine, 2022, 52, 1560-1568.	4.5	8
291	Content Word Production during Discourse in Aphasia: Deficits in Word Quantity, Not Lexical–Semantic Complexity. Journal of Cognitive Neuroscience, 2021, 33, 2494-2511.	2.3	8
292	"W―is for bath: Can associative errors be cued?. Journal of Neurolinguistics, 2011, 24, 445-465.	1.1	7
293	Dissecting the function of networks underpinning language repetition. Frontiers in Human Neuroscience, 2014, 8, 727.	2.0	7
294	Measuring language recovery in the underlying largeâ€scale neural network: Pulling together in the face of adversity. Annals of Neurology, 2010, 68, 570-572.	5.3	6
295	Auditory beat perception is related to speech output fluency in post-stroke aphasia. Scientific Reports, 2021, 11, 3168.	3.3	6
296	Characterising factors underlying praxis deficits in chronic left hemisphere stroke patients. Cortex, 2021, 142, 154-168.	2.4	6
297	Implicit, automatic semantic word categorisation in the left occipito-temporal cortex as revealed by fast periodic visual stimulation. NeuroImage, 2021, 238, 118228.	4.2	6
298	Life in a Mirrored World: Report of a Case Showing Mirror Reversal in Reading and Writing and for Non-verbal Materials. Neurocase, 1997, 3, 249-258.	0.6	6
299	Relative preservation of â€~animate' knowledge in an atypical presentation of herpes simplex virus encephalitis. Neurocase, 2005, 11, 157-166.	0.6	5
300	Repetition priming of picture naming in semantic aphasia: The impact of intervening items. Aphasiology, 2012, 26, 44-63.	2.2	5
301	Distinct but cooperating brain networks supporting semantic cognition. Cerebral Cortex, 2023, 33, 2021-2036.	2.9	5
302	Facilitating and disrupting speech perception in word deafness. Aphasiology, 2012, 26, 177-198.	2.2	4
303	Seeing the Meaning: Top–Down Effects on Letter Identification. Frontiers in Psychology, 2017, 8, 322.	2.1	4
304	Semantic tiles or hub-and-spokes?. Trends in Cognitive Sciences, 2022, 26, 189-190.	7.8	4
305	Assessing executive functions in post-stroke aphasia—utility of verbally based tests. Brain Communications, 2022, 4, .	3.3	4
306	Damage to temporoparietal cortex is sufficient for impaired semantic control. Cortex, 2022, 156, 71-85.	2.4	4

#	Article	IF	CITATIONS
307	Cognitive neuroscience of aphasia recovery and therapy. Aphasiology, 2018, 32, 739-741.	2.2	3
308	Utilising a systematic review-based approach to create a database of individual participant data for meta- and network meta-analyses: the RELEASE database of aphasia after stroke. Aphasiology, 2022, 36, 513-533.	2.2	3
309	The cognitive and neural underpinnings of discourse coherence in post-stroke aphasia. Brain Communications, 0, , .	3.3	3
310	Varieties of silence: the impact of neuro-degenerative diseases on language systems in the brain. , 2008, , 181-205.		2
311	Postscript: SD-squared revisited again Psychological Review, 2010, 117, 282-283.	3.8	2
312	Overview and ways forward for future research. Neuropsychological Rehabilitation, 2012, 22, 319-328.	1.6	2
313	Case series, neuroscience-infused, computational neuropsychology will play a crucial role in the future of aphasiology. Commentary on Laine and Martin, "Cognitive neuropsychology has been, is, and will be significant to aphasiologyâ€ŧ Aphasiology, 2012, 26, 1381-1386.	2.2	2
314	Investigating the language, cognition and self-monitoring abilities of speakers with jargon output. Aphasiology, 2019, 33, 1095-1113.	2.2	2
315	Semantic diversity is best measured with unscaled vectors: Reply to Cevoli, Watkins and Rastle (2020). Behavior Research Methods, 2021, , 1.	4.0	2
316	Effects of accent typicality and phonotactic frequency on nonword immediate serial recall performance in Japanese. , 0, , .		2
317	Neural basis of memory. , 2011, , 145-154.		2
318	Direct neural evidence for the contrastive roles of the complementary learning systems in adult acquisition of native vocabulary. Cerebral Cortex, 2022, 32, 3392-3405.	2.9	2
319	Errorless learning and rehabilitation of language and memory impairments. Neuropsychological Rehabilitation, 2012, 22, 137-137.	1.6	1
320	THE INFLUENCE OF ACCENT PATTERN TYPICALITY ON IMMEDIATE AND DELAYED NONWORD REPETITION. Psychologia, 2015, 58, 145-154.	0.3	1
321	Neurochemical profiles of the anterior temporal lobe predict response of repetitive transcranial magnetic stimulation on semantic processing. NeuroImage, 2022, 258, 119386.	4.2	1
322	Category-specific deficits: Insights from semantic dementia and Alzheimer's disease. Behavioral and Brain Sciences, 2001, 24, 485-486.	0.7	0
323	A Case Series Comparison to Investigate the Comprehension Impairment in Wernicke's Aphasia. Procedia, Social and Behavioral Sciences, 2010, 6, 35-36.	0.5	0
324	Recovery of Language and Reading in Post-CVA Aphasia: A Longitudinal Study. Procedia, Social and Behavioral Sciences, 2010, 6, 158-159.	0.5	0

#	Article	IF	CITATIONS
325	Authors' reply to Enderby, Meteyard, and Thornton. BMJ, The, 2012, 345, e6023-e6023.	6.0	0
326	Clarification of conclusions from the ACT NoW trial. Nature Reviews Neurology, 2013, 9, 118-118.	10.1	0
327	Lexical Processes (Word Knowledge): Psychological, Computational and Neural Aspects. , 2015, , 926-930.		0
328	Report on a novel treatment approach to aphasia: time for a quick word?. British Journal of Neuroscience Nursing, 2018, 14, 138-139.	0.2	0
329	Listen up: it is time to integrate neuroscience and technologies into aphasia rehabilitation. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 346-347.	1.9	0
330	Training flexible conceptual retrieval in post-stroke aphasia. Neuropsychological Rehabilitation, 2021, , 1-27.	1.6	0
331	Bipartite functional fractionation within the neural system for social cognition supports the psychological continuity of self versus other. Cerebral Cortex, 2023, 33, 1277-1299.	2.9	Ο