List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4341941/publications.pdf Version: 2024-02-01

		22153	30087
169	11,947	59	103
papers	citations	h-index	g-index
170	170	170	0.677
172	172	172	8677
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nature Reviews Immunology, 2011, 11, 532-543.	22.7	614
2	High Circulating Levels of the Dengue Virus Nonstructural Protein NS1 Early in Dengue Illness Correlate with the Development of Dengue Hemorrhagic Fever. Journal of Infectious Diseases, 2002, 186, 1165-1168.	4.0	568
3	Differing Influences of Virus Burden and Immune Activation on Disease Severity in Secondary Dengueâ€3 Virus Infections. Journal of Infectious Diseases, 2002, 185, 1213-1221.	4.0	432
4	Epidemiology of Inapparent and Symptomatic Acute Dengue Virus Infection: A Prospective Study of Primary School Children in Kamphaeng Phet, Thailand. American Journal of Epidemiology, 2002, 156, 40-51.	3.4	341
5	Immunopathogenesis of Dengue Hemorrhagic Fever. Virology, 1999, 257, 1-6.	2.4	323
6	Immunopathological mechanisms in dengue and dengue hemorrhagic fever. Current Opinion in Infectious Diseases, 2006, 19, 429-436.	3.1	315
7	Relationship of Preexisting Dengue Virus (DV) Neutralizing Antibody Levels to Viremia and Severity of Disease in a Prospective Cohort Study of DV Infection in Thailand. Journal of Infectious Diseases, 2004, 189, 990-1000.	4.0	302
8	Dengue: defining protective versus pathologic immunity. Journal of Clinical Investigation, 2004, 113, 946-951.	8.2	284
9	Serotype-Specific Differences in the Risk of Dengue Hemorrhagic Fever: An Analysis of Data Collected in Bangkok, Thailand from 1994 to 2006. PLoS Neglected Tropical Diseases, 2010, 4, e617.	3.0	246
10	Spatial and Temporal Clustering of Dengue Virus Transmission in Thai Villages. PLoS Medicine, 2008, 5, e205.	8.4	221
11	Reconstruction of antibody dynamics and infection histories to evaluate dengue risk. Nature, 2018, 557, 719-723.	27.8	213
12	Understanding the contribution of cellular immunity to dengue disease pathogenesis. Immunological Reviews, 2008, 225, 300-313.	6.0	198
13	HLA-A and -B allele associations with secondary dengue virus infections correlate with disease severity and the infecting viral serotype in ethnic Thais. Tissue Antigens, 2002, 60, 309-318.	1.0	194
14	Immune-mediated cytokine storm and its role in severe dengue. Seminars in Immunopathology, 2017, 39, 563-574.	6.1	185
15	Determinants of Inapparent and Symptomatic Dengue Infection in a Prospective Study of Primary School Children in Kamphaeng Phet, Thailand. PLoS Neglected Tropical Diseases, 2011, 5, e975.	3.0	184
16	Dose-Related Effects of Smallpox Vaccine. New England Journal of Medicine, 2002, 346, 1275-1280.	27.0	177
17	Altered Cytokine Responses of Dengue-Specific CD4+ T Cells to Heterologous Serotypes. Journal of Immunology, 2005, 175, 2676-2683.	0.8	173
18	Bystander Target Cell Lysis and Cytokine Production by Dengue Virus-Specific Human CD4 ⁺ Cytotoxic T-Lymphocyte Clones. Journal of Virology, 1999, 73, 3623-3629.	3.4	163

#	Article	IF	CITATIONS
19	Elevated plasma interleukin-10 levels in acute dengue correlate with disease severity. , 1999, 59, 329-334.		160
20	Clinical and laboratory features that distinguish dengue from other febrile illnesses in endemic populations. Tropical Medicine and International Health, 2008, 13, 1328-1340.	2.3	157
21	Burden of symptomatic dengue infection in children at primary school in Thailand: a prospective study. Lancet, The, 2007, 369, 1452-1459.	13.7	151
22	Intracellular Cytokine Production by Dengue Virus–specific T cells Correlates with Subclinical Secondary Infection. Journal of Infectious Diseases, 2011, 203, 1282-1291.	4.0	145
23	Natural History of Plasma Leakage in Dengue Hemorrhagic Fever. Pediatric Infectious Disease Journal, 2007, 26, 283-290.	2.0	141
24	Spatial and Temporal Circulation of Dengue Virus Serotypes: A Prospective Study of Primary School Children in Kamphaeng Phet, Thailand. American Journal of Epidemiology, 2002, 156, 52-59.	3.4	137
25	Dengue Virus Induces Novel Changes in Gene Expression of Human Umbilical Vein Endothelial Cells. Journal of Virology, 2003, 77, 11822-11832.	3.4	136
26	Virus-Induced Decline in Soluble Vascular Endothelial Growth Receptor 2 Is Associated with Plasma Leakage in Dengue Hemorrhagic Fever. Journal of Virology, 2007, 81, 1592-1600.	3.4	135
27	Increased Production of Interleukin-8 in Primary Human Monocytes and in Human Epithelial and Endothelial Cell Lines after Dengue Virus Challenge. Journal of Virology, 2002, 76, 5588-5597.	3.4	133
28	Fine Scale Spatiotemporal Clustering of Dengue Virus Transmission in Children and Aedes aegypti in Rural Thai Villages. PLoS Neglected Tropical Diseases, 2012, 6, e1730.	3.0	127
29	T Cell Responses to an HLA-B*07-Restricted Epitope on the Dengue NS3 Protein Correlate with Disease Severity. Journal of Immunology, 2002, 168, 5959-5965.	0.8	126
30	Dengue‧pecific T Cell Responses in Peripheral Blood Mononuclear Cells Obtained prior to Secondary Dengue Virus Infections in Thai Schoolchildren. Journal of Infectious Diseases, 2002, 185, 1697-1703.	4.0	122
31	Dengue Virus Infection and Virus-Specific HLA-A2 Restricted Immune Responses in Humanized NOD-scid IL2rl ³ null Mice. PLoS ONE, 2009, 4, e7251.	2.5	121
32	Dengue Virus-Reactive CD8+ T Cells Display Quantitative and Qualitative Differences in Their Response to Variant Epitopes of Heterologous Viral Serotypes. Journal of Immunology, 2006, 176, 2817-2824.	0.8	119
33	Quantitation of CD8+ T Cell Responses to Newly Identified HLA-A*0201–restricted T Cell Epitopes Conserved Among Vaccinia and Variola (Smallpox) Viruses. Journal of Experimental Medicine, 2003, 197, 927-932.	8.5	111
34	A Blunted Blood Plasmacytoid Dendritic Cell Response to an Acute Systemic Viral Infection Is Associated with Increased Disease Severity. Journal of Immunology, 2003, 171, 5571-5578.	0.8	110
35	Predominance of HLA-Restricted Cytotoxic T-Lymphocyte Responses to Serotype-Cross-Reactive Epitopes on Nonstructural Proteins following Natural Secondary Dengue Virus Infection. Journal of Virology, 1998, 72, 3999-4004.	3.4	105
36	Dengue Virus Nonstructural Protein NS5 Induces Interleukin-8 Transcription and Secretion. Journal of Virology, 2005, 79, 11053-11061.	3.4	103

#	Article	IF	CITATIONS
37	Cross-subtype antibody and cellular immune responses induced by a polyvalent DNA prime–protein boost HIV-1 vaccine in healthy human volunteers. Vaccine, 2008, 26, 1098-1110.	3.8	103
38	Primary Induction of Human CD8+Cytotoxic T Lymphocytes and Interferonâ€Î³â€"Producing T Cells after Smallpox Vaccination. Journal of Infectious Diseases, 2002, 185, 1657-1659.	4.0	101
39	DengueHow Best to Classify It. Clinical Infectious Diseases, 2011, 53, 563-567.	5.8	100
40	Immunology and Immunopathogenesis of Dengue Disease. Advances in Virus Research, 2003, 60, 397-419.	2.1	99
41	Human Cytotoxic T Lymphocyte Responses to Live Attenuated 17D Yellow Fever Vaccine: Identification of HLA-B35-Restricted CTL Epitopes on Nonstructural Proteins NS1, NS2b, NS3, and the Structural Protein E. Virology, 2002, 293, 151-163.	2.4	98
42	Prediction of Dengue Disease Severity among Pediatric Thai Patients Using Early Clinical Laboratory Indicators. PLoS Neglected Tropical Diseases, 2010, 4, e769.	3.0	98
43	Proinflammatory factors present in sera from patients with acute dengue infection induce activation and apoptosis of human microvascular endothelial cells: Possible role of TNF-α in endothelial cell damage in dengue. Cytokine, 2005, 30, 359-365.	3.2	94
44	Cross-subtype antibody and cellular immune responses induced by a polyvalent DNA prime–protein boost HIV-1 vaccine in healthy human volunteers. Vaccine, 2008, 26, 3947-3957.	3.8	91
45	Cellular Immunology of Sequential Dengue Virus Infection and its Role in Disease Pathogenesis. Current Topics in Microbiology and Immunology, 2010, 338, 83-98.	1.1	90
46	Dengue Hemorrhagic Fever: The Sensitivity and Specificity of the World Health Organization Definition for Identification of Severe Cases of Dengue in Thailand, 1994–2005. Clinical Infectious Diseases, 2010, 50, 1135-1143.	5.8	89
47	Dengue Virus (DV) Enhancing Antibody Activity in Preillness Plasma Does Not Predict Subsequent Disease Severity or Viremia in Secondary DV Infection. Journal of Infectious Diseases, 2005, 192, 510-519.	4.0	88
48	The two-faced T cell epitope. Human Vaccines and Immunotherapeutics, 2013, 9, 1577-1586.	3.3	88
49	Cytokine gene expression and protein production in peripheral blood mononuclear cells of children with acute dengue virus infections. Journal of Medical Virology, 2002, 67, 41-46.	5.0	87
50	Preexisting Japanese Encephalitis Virus Neutralizing Antibodies and Increased Symptomatic Dengue Illness in a School-Based Cohort in Thailand. PLoS Neglected Tropical Diseases, 2011, 5, e1311.	3.0	85
51	Underrecognized Mildly Symptomatic Viremic Dengue Virus Infections in Rural Thai Schools and Villages. Journal of Infectious Diseases, 2012, 206, 389-398.	4.0	84
52	Induction of Human T Cell–Mediated Immune Responses after Primary and Secondary Smallpox Vaccination. Journal of Infectious Diseases, 2004, 190, 1286-1294.	4.0	79
53	Cross-Reactivity and Expansion of Dengue-Specific T cells During Acute Primary and Secondary Infections in Humans. Scientific Reports, 2011, 1, 51.	3.3	79
54	B-Cell Responses During Primary and Secondary Dengue Virus Infections in Humans. Journal of Infectious Diseases, 2011, 204, 1514-1522.	4.0	78

#	Article	IF	CITATIONS
55	Dengue Virus Neutralizing Antibody Levels Associated with Protection from Infection in Thai Cluster Studies. PLoS Neglected Tropical Diseases, 2014, 8, e3230.	3.0	72
56	Memory CD8 ⁺ T cells from naturally acquired primary dengue virus infection are highly crossâ€reactive. Immunology and Cell Biology, 2011, 89, 122-129.	2.3	71
57	Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission. Virology, 2017, 500, 149-160.	2.4	68
58	Analysis of plasma viral RNA levels during acute dengue virus infection using quantitative competitor reverse transcription-polymerase chain reaction. Journal of Medical Virology, 2001, 63, 29-34.	5.0	65
59	<i>TNF</i> and <i>LTA</i> Gene, Allele, and Extended HLA Haplotype Associations with Severe Dengue Virus Infection in Ethnic Thais. Journal of Infectious Diseases, 2009, 199, 1442-1448.	4.0	63
60	Evidence of Vascular Damage in Dengue Disease: Demonstration of High Levels of Soluble Cell Adhesion Molecules and Circulating Endothelial Cells. Endothelium: Journal of Endothelial Cell Research, 2006, 13, 335-340.	1.7	62
61	Viral replication and paracrine effects result in distinct, functional responses of dendritic cells following infection with dengue 2 virus. Journal of Leukocyte Biology, 2008, 84, 1028-1038.	3.3	62
62	Rapid Diagnosis of Dengue Viremia by Reverse Transcriptase-Polymerase Chain Reaction using 3′-Noncoding Region Universal Primers. American Journal of Tropical Medicine and Hygiene, 1997, 56, 424-429.	1.4	60
63	Antibodyâ€Dependent Cellular Cytotoxicity Mediated by Plasma Obtained before Secondary Dengue Virus Infections: Potential Involvement in Early Control of Viral Replication. Journal of Infectious Diseases, 2007, 195, 1108-1116.	4.0	59
64	TRAIL Is a Novel Antiviral Protein against Dengue Virus. Journal of Virology, 2008, 82, 555-564.	3.4	59
65	Elevated levels of soluble ST2 protein in dengue virus infected patients. Cytokine, 2008, 41, 114-120.	3.2	58
66	Crossâ€Reactive Memory CD8 ⁺ T Cells Alter the Immune Response to Heterologous Secondary Dengue Virus Infections in Mice in a Sequenceâ€Specific Manner. Journal of Infectious Diseases, 2008, 197, 608-617.	4.0	58
67	Analysis of Murine CD8 ⁺ T-Cell Clones Specific for the Dengue Virus NS3 Protein: Flavivirus Cross-Reactivity and Influence of Infecting Serotype. Journal of Virology, 1999, 73, 398-403.	3.4	58
68	Microevolution of Dengue Viruses Circulating among Primary School Children in Kamphaeng Phet, Thailand. Journal of Virology, 2008, 82, 5494-5500.	3.4	54
69	Cellular Immune Activation in Children with Acute Dengue Virus Infections Is Modulated by Apoptosis. Journal of Infectious Diseases, 2006, 194, 600-607.	4.0	51
70	Spaceâ€ŧime analysis of hospitalised dengue patients in rural Thailand reveals important temporal intervals in the pattern of dengue virus transmission. Tropical Medicine and International Health, 2012, 17, 1076-1085.	2.3	51
71	Efficient dengue virus (DENV) infection of human muscle satellite cells upregulates type I interferon response genes and differentially modulates MHC I expression on bystander and DENV-infected cells. Journal of General Virology, 2008, 89, 1605-1615.	2.9	50
72	A Comparative Study of Leptospirosis and Dengue in Thai Children. PLoS Neglected Tropical Diseases, 2007, 1, e111.	3.0	50

#	Article	IF	CITATIONS
73	Gene expression profiling of dengue infected human primary cells identifies secreted mediators in vivo. Journal of Medical Virology, 2009, 81, 1403-1411.	5.0	48
74	Induction of T lymphocyte responses to dengue virus by a candidate tetravalent live attenuated dengue virus vaccine. Vaccine, 2001, 19, 4694-4699.	3.8	46
75	Identification of Murine Poxvirus-Specific CD8+CTL Epitopes with Distinct Functional Profiles. Journal of Immunology, 2005, 174, 2212-2219.	0.8	46
76	T Lymphocyte Responses to Heterologous Secondary Dengue Virus Infections. Annals of the New York Academy of Sciences, 2009, 1171, E36-41.	3.8	43
77	Sequential dengue virus infections detected in active and passive surveillance programs in Thailand, 1994–2010. BMC Public Health, 2015, 15, 250.	2.9	43
78	Activation of Peripheral T Follicular Helper Cells During Acute Dengue Virus Infection. Journal of Infectious Diseases, 2018, 218, 1675-1685.	4.0	43
79	MIP-1? and MIP-1? induction by dengue virus. Journal of Medical Virology, 2001, 65, 324-330.	5.0	42
80	The Spatial Dynamics of Dengue Virus in Kamphaeng Phet, Thailand. PLoS Neglected Tropical Diseases, 2014, 8, e3138.	3.0	41
81	Immune mediated and inherited defences against flaviviruses. Clinical and Diagnostic Virology, 1998, 10, 129-139.	1.7	40
82	Inferring the Serotype Associated with Dengue Virus Infections on the Basis of Pre―and Postinfection Neutralizing Antibody Titers. Journal of Infectious Diseases, 2010, 202, 1002-1010.	4.0	40
83	Dynamics of the CD8 Tâ€cell response following yellow fever virus 17D immunization. Immunology, 2009, 128, e718-27.	4.4	39
84	Dengue Viral RNA Levels in Peripheral Blood Mononuclear Cells Are Associated with Disease Severity and Preexisting Dengue Immune Status. PLoS ONE, 2012, 7, e51335.	2.5	39
85	Increased activity of indoleamine 2,3-dioxygenase in serum from acutely infected dengue patients linked to gamma interferon antiviral function. Journal of General Virology, 2009, 90, 810-817.	2.9	38
86	Dengue Virus (DENV) Neutralizing Antibody Kinetics in Children After Symptomatic Primary and Postprimary DENV Infection. Journal of Infectious Diseases, 2016, 213, 1428-1435.	4.0	36
87	Trials and Tribulations on the Path to Developing a Dengue Vaccine. American Journal of Preventive Medicine, 2015, 49, S334-S344.	3.0	34
88	Case Management of Dengue: Lessons Learned. Journal of Infectious Diseases, 2017, 215, S79-S88.	4.0	34
89	T-cell Responses to Dengue Virus in Humans. Tropical Medicine and Health, 2011, 39, S45-S51.	2.8	31
90	Frequent In-Migration and Highly Focal Transmission of Dengue Viruses among Children in Kamphaeng Phet, Thailand. PLoS Neglected Tropical Diseases, 2013, 7, e1990.	3.0	31

#	Article	IF	CITATIONS
91	Trials and tribulations on the path to developing a dengue vaccine. Vaccine, 2015, 33, D24-D31.	3.8	30
92	Limiting vancomycin use to combat vancomycin-resistant Enterococcus faecium. American Journal of Health-System Pharmacy, 1996, 53, 1570-1575.	1.0	29
93	Dengue immune response: low affinity, high febrility. Nature Medicine, 2003, 9, 820-822.	30.7	29
94	Characteristics of Mild Dengue Virus Infection in Thai Children. American Journal of Tropical Medicine and Hygiene, 2013, 89, 1081-1087.	1.4	29
95	Cell Type–Specific Mechanisms of Interleukinâ€8 Induction by Dengue Virus and Differential Response to Drug Treatment. Journal of Infectious Diseases, 2006, 193, 1070-1077.	4.0	28
96	Classification of Dengue Illness Based on Readily Available Laboratory Data. American Journal of Tropical Medicine and Hygiene, 2010, 83, 781-788.	1.4	28
97	Evaluation of Cardiac Involvement in Children with Dengue by Serial Echocardiographic Studies. PLoS Neglected Tropical Diseases, 2015, 9, e0003943.	3.0	28
98	Vaccinia virus-specific CD8+ T-cell responses target a group of epitopes without a strong immunodominance hierarchy in humans. Human Immunology, 2008, 69, 815-825.	2.4	26
99	Improving Dengue Virus Capture Rates in Humans and Vectors in Kamphaeng Phet Province, Thailand, Using an Enhanced Spatiotemporal Surveillance Strategy. American Journal of Tropical Medicine and Hygiene, 2015, 93, 24-32.	1.4	26
100	Development of Antigen-Specific Memory CD8+ T Cells Following Live-Attenuated Chimeric West Nile Virus Vaccination. Journal of Infectious Diseases, 2011, 203, 513-522.	4.0	25
101	Immunopathogenesis versus Protection in Dengue Virus Infections. Current Tropical Medicine Reports, 2014, 1, 13-20.	3.7	25
102	Transcriptional and clonal characterization of B cell plasmablast diversity following primary and secondary natural DENV infection. EBioMedicine, 2020, 54, 102733.	6.1	25
103	Temporally integrated single cell RNA sequencing analysis of PBMC from experimental and natural primary human DENV-1 infections. PLoS Pathogens, 2021, 17, e1009240.	4.7	23
104	Distinct activation phenotype of a highly conserved novel <scp>HLA</scp> â€B57â€restricted epitope during dengue virus infection. Immunology, 2014, 141, 27-38.	4.4	22
105	Dengue Vaccine: The Need, the Challenges, and Progress. Journal of Infectious Diseases, 2016, 214, 825-827.	4.0	22
106	Protective versus pathologic pre-exposure cytokine profiles in dengue virus infection. PLoS Neglected Tropical Diseases, 2018, 12, e0006975.	3.0	21
107	Evaluation of the extended efficacy of the Dengvaxia vaccine against symptomatic and subclinical dengue infection. Nature Medicine, 2021, 27, 1395-1400.	30.7	21
108	Quantitation of dengue virus specific CD4+ T cells by intracellular cytokine staining. Journal of Immunological Methods, 2004, 284, 89-97.	1.4	20

#	Article	IF	CITATIONS
109	HLA Class I Supertype Associations With Clinical Outcome of Secondary Dengue Virus Infections in Ethnic Thais. Journal of Infectious Diseases, 2015, 212, 939-947.	4.0	20
110	Inefficient Recognition of Autologous Viral Sequences by Intrahepatic Hepatitis C Virus-Specific Cytotoxic T Lymphocytes in Chronically Infected Subjects. Virology, 1998, 251, 132-140.	2.4	19
111	State-of-the-art monitoring in treatment of dengue shock syndrome: a case series. Journal of Medical Case Reports, 2016, 10, 233.	0.8	19
112	Dynamics of Dengue Virus (DENV)–Specific B Cells in the Response to DENV Serotype 1 Infections, Using Flow Cytometry With Labeled Virions. Journal of Infectious Diseases, 2016, 214, 1001-1009.	4.0	19
113	Disease-driven reduction in human mobility influences human-mosquito contacts and dengue transmission dynamics. PLoS Computational Biology, 2021, 17, e1008627.	3.2	19
114	Assessment of body fluid compartment volumes by multifrequency bioelectrical impedance spectroscopy in children with dengue. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2002, 96, 295-299.	1.8	18
115	Multiplexed FluoroSpot for the Analysis of Dengue Virus– and Zika Virus–Specific and Cross-Reactive Memory B Cells. Journal of Immunology, 2018, 201, 3804-3814.	0.8	18
116	Herpes Simplex Encephalitis in a Patient With Lymphoma. JAMA - Journal of the American Medical Association, 1988, 259, 1056.	7.4	17
117	Identification and analysis for cross-reactivity among hantaviruses of H-2b-restricted cytotoxic T-lymphocyte epitopes in Sin Nombre virus nucleocapsid protein. Journal of General Virology, 2004, 85, 1909-1919.	2.9	17
118	Dengue illness impacts daily human mobility patterns in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2019, 13, e0007756.	3.0	17
119	Analysis of Human Monoclonal Antibodies Generated by Dengue Virus-Specific Memory B Cells. Viral Immunology, 2012, 25, 348-359.	1.3	16
120	Extended Interferon-Alpha Therapy Accelerates Telomere Length Loss in Human Peripheral Blood T Lymphocytes. PLoS ONE, 2011, 6, e20922.	2.5	16
121	Assessing the role of multiple mechanisms increasing the age of dengue cases in Thailand. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2115790119.	7.1	16
122	Escherichia vulneris as a Cause of Intravenous Catheter-Related Bacteremia. Clinical Infectious Diseases, 1996, 22, 728-729.	5.8	15
123	Cross-Reactive Memory CD4+T Cells Alter the CD8+T-Cell Response to Heterologous Secondary Dengue Virus Infections in Mice in a Sequence-Specific Manner. Viral Immunology, 2009, 22, 215-219.	1.3	15
124	A plasmid-based reporter system for live cell imaging of dengue virus infected cells. Journal of Virological Methods, 2015, 211, 55-62.	2.1	15
125	Viral Suppression of RIPK1-Mediated Signaling. MBio, 2021, 12, e0172321.	4.1	15
126	Sequential Immunization with Heterologous Chimeric Flaviviruses Induces Broad‣pectrum Crossâ€Reactive CD8 ⁺ T Cell Responses. Journal of Infectious Diseases, 2010, 202, 223-233.	4.0	14

#	Article	IF	CITATIONS
127	DifferentialIn VivoClearance and Response to Secondary Heterologous Infections by H2b-Restricted Dengue Virus-Specific CD8+T Cells. Viral Immunology, 2010, 23, 477-485.	1.3	14
128	Flaviviruses (Dengue, Yellow Fever, Japanese Encephalitis, West Nile Encephalitis, St. Louis) Tj ETQq0 0 0 rgBT 2015, , 1881-1903.e6.	Overlock 1	0 Tf 50 707 To 14
129	Zika Virus: The Agent and Its Biology, With Relevance to Pathology. Archives of Pathology and Laboratory Medicine, 2017, 141, 33-42.	2.5	14
130	Transient Decreases in Human T Cell Proliferative Responses Following Vaccinia Immunization. Clinical Immunology, 2000, 96, 100-107.	3.2	13
131	Relationship of thrombopoietin and interleukin-11 levels to thrombocytopenia associated with dengue disease. Cytokine, 2006, 34, 155-160.	3.2	13
132	Telomere length dynamics in human memory T cells specific for viruses causing acute or latent infections. Immunity and Ageing, 2013, 10, 37.	4.2	13
133	Robust Intrapulmonary CD8 T Cell Responses and Protection with an Attenuated N1L Deleted Vaccinia Virus. PLoS ONE, 2008, 3, e3323.	2.5	13
134	Genetic variations and relationship among dengue virus type 3 strains isolated from patients with mild or severe form of dengue disease in Indonesia and Thailand. Southeast Asian Journal of Tropical Medicine and Public Health, 2005, 36, 1187-97.	1.0	13
135	Post-translational intracellular trafficking determines the type of immune response elicited by DNA vaccines expressing Gag antigen of Human Immunodeficiency Virus Type 1 (HIV-1). Human Vaccines and Immunotherapeutics, 2013, 9, 2095-2102.	3.3	12
136	An Innovative, Prospective, Hybrid Cohort-Cluster Study Design to Characterize Dengue Virus Transmission in Multigenerational Households in Kamphaeng Phet, Thailand. American Journal of Epidemiology, 2020, 189, 648-659.	3.4	12
137	Metastatic Complications from Staphylococcus intermedius, a Zoonotic Pathogen. Journal of Clinical Microbiology, 2012, 50, 1099-1101.	3.9	11
138	Longitudinal Analysis of Memory B and T Cell Responses to Dengue Virus in a 5-Year Prospective Cohort Study in Thailand. Frontiers in Immunology, 2019, 10, 1359.	4.8	11
139	Microplate-reverse hybridization method to determine dengue virus serotype. Journal of Virological Methods, 1998, 73, 229-235.	2.1	10
140	Analysis of cell-mediated immune responses in support of dengue vaccine development efforts. Vaccine, 2015, 33, 7083-7090.	3.8	10
141	Use of structural equation models to predict dengue illness phenotype. PLoS Neglected Tropical Diseases, 2018, 12, e0006799.	3.0	10
142	Antigenâ€ s pecific T lymphocyte proliferation decreases over time in advanced chronic hepatitis C. Journal of Viral Hepatitis, 2012, 19, 404-413.	2.0	9
143	Absence of neutralizing antibodies against influenza A/H5N1 virus among children in Kamphaeng Phet, Thailand. Journal of Clinical Virology, 2015, 69, 78-80.	3.1	8
144	Heterogeneity of Dengue Illness in Community-Based Prospective Study, Iquitos, Peru. Emerging Infectious Diseases, 2020, 26, 2077-2086.	4.3	8

#	Article	IF	CITATIONS
145	Cell-Mediated Immunity Generated in Response to a Purified Inactivated Vaccine for Dengue Virus Type 1. MSphere, 2020, 5, .	2.9	8
146	Levofloxacin use at an academic teaching institution. American Journal of Health-System Pharmacy, 2000, 57, 1791-1793.	1.0	7
147	Analysis of cell-associated DENV RNA by oligo(dT) primed 5' capture scRNAseq. Scientific Reports, 2020, 10, 9047.	3.3	7
148	Monomeric IgA Antagonizes IgG-Mediated Enhancement of DENV Infection. Frontiers in Immunology, 2021, 12, 777672.	4.8	7
149	Preliminary evaluation of near infrared spectroscopy as a method to detect plasma leakage in children with dengue hemorrhagic fever. BMC Infectious Diseases, 2014, 14, 396.	2.9	6
150	Individual, Household, and Community Drivers of Dengue Virus Infection Risk in Kamphaeng Phet Province, Thailand. Journal of Infectious Diseases, 2022, 226, 1348-1356.	4.0	6
151	DHIM Supporting Immunologic Investigations and the Identification of Immune Correlates of Protection. Journal of Infectious Diseases, 2014, 209, S61-S65.	4.0	5
152	Major Histocompatibility Complex Class I Chain–Related A and B (MICA and MICB) Gene, Allele, and Haplotype Associations With Dengue Infections in Ethnic Thais. Journal of Infectious Diseases, 2020, 222, 840-846.	4.0	5
153	Dengue: translating scientific progress into workable solutions. Expert Review of Anti-Infective Therapy, 2005, 3, 689-692.	4.4	4
154	Evolution of the Intrahepatic T Cell Repertoire during Chronic Hepatitis C Virus Infection. Viral Immunology, 2005, 18, 179-189.	1.3	4
155	T lymphocyte responses to flaviviruses — diverse cell populations affect tendency toward protection and disease. Current Opinion in Virology, 2020, 43, 28-34.	5.4	4
156	Measuring health related quality of life for dengue patients in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2020, 14, e0008477.	3.0	4
157	Effect of low-passage number on dengue consensus genomes and intra-host variant frequencies. Journal of General Virology, 2021, 102, .	2.9	3
158	Longitudinal Analysis of Dengue Virus–Specific Memory T Cell Responses and Their Association With Clinical Outcome in Subsequent DENV Infection. Frontiers in Immunology, 2021, 12, 710300.	4.8	3
159	Flaviviruses: Dengue. , 2014, , 351-381.		2
160	Next-generation sequencing of 11 HLA loci in a large dengue vaccine cohort from the Philippines. Human Immunology, 2020, 81, 437-444.	2.4	2
161	Correlation between reported dengue illness history and seropositivity in rural Thailand. PLoS Neglected Tropical Diseases, 2021, 15, e0009459.	3.0	2
162	Entomological Risk Assessment for Dengue Virus Transmission during 2016–2020 in Kamphaeng Phet, Thailand. Pathogens, 2021, 10, 1234.	2.8	2

#	Article	IF	CITATIONS
163	Elevated plasma interleukinâ€10 levels in acute dengue correlate with disease severity. Journal of Medical Virology, 1999, 59, 329-334.	5.0	2
164	Analysis of plasma viral RNA levels during acute dengue virus infection using quantitative competitor reverse transcriptionâ€polymerase chain reaction. Journal of Medical Virology, 2001, 63, 29-34.	5.0	2
165	Response to Protocol Review Scenario: Answer unclear. Lab Animal, 2006, 35, 17-18.	0.4	0
166	Elimination of Infection. Tropical Medicine, 2008, , 257-283.	0.3	0
167	The impact of dengue illness on social distancing and caregiving behavior. PLoS Neglected Tropical Diseases, 2021, 15, e0009614.	3.0	0
168	Early scientific progress. Current Topics in Microbiology and Immunology, 2010, 338, v-ix.	1.1	0
169	Immune-Based Interventions Against Infectious Disease - Impact of a Phase I Center for Biomedical Research Excellence in Translational Infectious Diseases Immunology. Rhode Island Medical Journal (2013), 2021, 104, 34-38.	0.2	0