Gianluca Veggiani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4341630/publications.pdf

Version: 2024-02-01

22

all docs

22 879 11 papers citations h-index

citations h-index g-index

22 22 1242
docs citations times ranked citing authors

20

#	Article	IF	CITATIONS
1	Programmable polyproteams built using twin peptide superglues. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1202-1207.	7.1	262
2	SpyLigase peptide–peptide ligation polymerizes affibodies to enhance magnetic cancer cell capture. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1176-81.	7.1	154
3	Superglue from bacteria: unbreakable bridges for protein nanotechnology. Trends in Biotechnology, 2014, 32, 506-512.	9.3	115
4	SpyAvidin Hubs Enable Precise and Ultrastable Orthogonal Nanoassembly. Journal of the American Chemical Society, 2014, 136, 12355-12363.	13.7	62
5	Improved quantitative and qualitative production of single-domain intrabodies mediated by the co-expression of Erv1p sulfhydryl oxidase. Protein Expression and Purification, 2011, 79, 111-114.	1.3	61
6	Emerging drug development technologies targeting ubiquitination for cancer therapeutics., 2019, 199, 139-154.		52
7	Whole-cell biopanning with a synthetic phage display library of nanobodies enabled the recovery of follicle-stimulating hormone receptor inhibitors. Biochemical and Biophysical Research Communications, 2017, 493, 1567-1572.	2.1	22
8	Structural and functional characterization of a ubiquitin variant engineered for tight and specific binding to an alphaâ€helical ubiquitin interacting motif. Protein Science, 2017, 26, 1060-1069.	7.6	20
9	Cholesterol Loading and Ultrastable Protein Interactions Determine the Level of Tumor Marker Required for Optimal Isolation of Cancer Cells. Cancer Research, 2013, 73, 2310-2321.	0.9	18
10	Single-domain antibodies that compete with the natural ligand fibroblast growth factor block the internalization of the fibroblast growth factor receptor 1. Biochemical and Biophysical Research Communications, 2011, 408, 692-696.	2.1	17
11	Comparative analysis of fusion tags used to functionalize recombinant antibodies. Protein Expression and Purification, 2020, 166, 105505.	1.3	12
12	Transmembrane protein rotaxanes reveal kinetic traps in the refolding of translocated substrates. Communications Biology, 2020, 3, 159.	4.4	12
13	Experimental validation of specificity of the squamous cell carcinoma antigen-immunoglobulin M (SCCA-lgM) assay in patients with cirrhosis. Clinical Chemistry and Laboratory Medicine, 2010, 48, 217-23.	2.3	11
14	The ubiquitin interacting motifs of USP37 act on the proximal Ub of a di-Ub chain to enhance catalytic efficiency. Scientific Reports, 2019, 9, 4119.	3.3	11
15	Engineered SH2 domains with tailored specificities and enhanced affinities for phosphoproteome analysis. Protein Science, 2019, 28, 403-413.	7.6	10
16	Dimerization of a ubiquitin variant leads to high affinity interactions with a ubiquitin interacting motif. Protein Science, 2019, 28, 848-856.	7.6	9
17	Discovery of an exosite on the SOCS2-SH2 domain that enhances SH2 binding to phosphorylated ligands. Nature Communications, 2021, 12, 7032.	12.8	8
18	Engineered SH2 Domains for Targeted Phosphoproteomics. ACS Chemical Biology, 0, , .	3.4	6

#	Article	IF	CITATIONS
19	A Panel of Engineered Ubiquitin Variants Targeting the Family of Domains Found in Ubiquitin Specific Proteases (DUSPs). Journal of Molecular Biology, 2021, 433, 167300.	4.2	5
20	Panel of Engineered Ubiquitin Variants Targeting the Family of Human Ubiquitin Interacting Motifs. ACS Chemical Biology, 2022, 17, 941-956.	3.4	5
21	Peptides meet ubiquitin: Simple interactions regulating complex cell signaling. Peptide Science, 2019, 111, e24091.	1.8	4
22	Solidâ€phase preparation of protein complexes. Journal of Molecular Recognition, 2010, 23, 551-558.	2.1	3