Pan Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4341608/publications.pdf

Version: 2024-02-01

267 papers 47,589 citations

98 h-index 213 g-index

277 all docs

277 docs citations

times ranked

277

40473 citing authors

#	Article	IF	CITATIONS
1	Synthesis of Fluoride-Substituted Layered Perovskites ZnMoO ₄ with an Enhanced Photocatalytic Activity. ACS Applied Materials & Interfaces, 2023, 15, 43251-43258.	8.0	4
2	Ultrafast Singleâ€Crystalâ€toâ€Singleâ€Crystal Transformation from Metal–Organic Framework to 2D Hydroxide. Advanced Materials, 2022, 34, e2106400.	21.0	11
3	Anionic Redox Regulated via Metal–Ligand Combinations in Layered Sulfides. Advanced Materials, 2022, 34, e2107353.	21.0	11
4	Universal scaling law of glass rheology. Nature Materials, 2022, 21, 404-409.	27.5	9
5	Deformation behavior of a nanoporous metallic glass at room temperature. International Journal of Plasticity, 2022, 152, 103232.	8.8	25
6	3D Continuously Porous Graphene for Energy Applications. Advanced Materials, 2022, 34, e2108750.	21.0	53
7	Tracking the sliding of grain boundaries at the atomic scale. Science, 2022, 375, 1261-1265.	12.6	115
8	The Universal Growth of Ultrathin Perovskite Single Crystals. Advanced Materials, 2022, 34, e2108396.	21.0	11
9	Copper-involved highly efficient oxygen reduction reaction in both alkaline and acidic media. Chemical Engineering Journal, 2022, 437, 135377.	12.7	25
10	Highly accessible and dense surface single metal FeN ₄ active sites for promoting the oxygen reduction reaction. Energy and Environmental Science, 2022, 15, 2619-2628.	30.8	82
11	Core–Shell Structured Fe–N–C Catalysts with Enriched Iron Sites in Surface Layers for Proton-Exchange Membrane Fuel Cells. ACS Catalysis, 2022, 12, 6409-6417.	11.2	19
12	Nanoindentation investigation of incoherent twin boundary migration in Au nanocrystalline films. Materials Characterization, 2022, 190, 112018.	4.4	3
13	In situ atomic-scale observation of dislocation climb and grain boundary evolution in nanostructured metal. Nature Communications, 2022, $13,\ldots$	12.8	22
14	Vacancy-driven shear localization in silicon nitride. Scripta Materialia, 2021, 190, 163-167.	5.2	1
15	Enhanced pseudocapacitive energy storage of oxides grown on nanoporous alloys by solid solution. Chemical Engineering Journal, 2021, 405, 126632.	12.7	6
16	Visualizing the {110} surface structure of equilibrium-form ZIF-8 crystals by low-dose Cs-corrected TEM. Nanoscale, 2021, 13, 13215-13219.	5.6	5
17	Graphene-coated nanoporous nickel towards a metal-catalyzed oxygen evolution reaction. Nanoscale, 2021, 13, 10916-10924.	5.6	13
18	Atomic-level-designed copper atoms on hierarchically porous gold architectures for high-efficiency electrochemical CO2 reduction. Science China Materials, 2021, 64, 1900-1909.	6.3	26

#	Article	IF	Citations
19	Dislocation-mediated shear amorphization in boron carbide. Science Advances, 2021, 7, .	10.3	49
20	3D Bimodal Porous Amorphous Carbon with Self-Similar Porosity by Low-Temperature Sequential Chemical Dealloying. Chemistry of Materials, 2021, 33, 1013-1021.	6.7	11
21	Vapor phase dealloying kinetics of MnZn alloys. Acta Materialia, 2021, 212, 116916.	7.9	19
22	Hidden Effects of Negative Stacking Fault Energies in Complex Concentrated Alloys. Physical Review Letters, 2021, 126, 255502.	7.8	18
23	Effect of femtosecond laser irradiation on yield strength of nanoporous silver materials. Materials Letters, 2021, 294, 129800.	2.6	0
24	Fast attenuation of high-frequency acoustic waves in bicontinuous nanoporous gold. Applied Physics Letters, $2021,119,119$	3.3	2
25	The effect of nano-silica on the properties of magnesium oxychloride cement. Advances in Cement Research, 2021, 33, 413-422.	1.6	0
26	Hybridized intercalation of CoMoS4 in interlayer-expanded cobalt-LMO nanosheets as high active bifunctional catalysts in Zn-air battery. Electrochimica Acta, 2021, 391, 138980.	5.2	4
27	2D Nanosheets of Mo ₂ C/CoMoS ₄ as Active Electrocatalyst for Water Splitting. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100377.	1.8	4
28	Atomic Ni and Cu co-anchored 3D nanoporous graphene as an efficient oxygen reduction electrocatalyst for zinc–air batteries. Nanoscale, 2021, 13, 10862-10870.	5.6	21
29	Decoupling between Shockley partials and stacking faults strengthens multiprincipal element alloys. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	11
30	A high-performance layered Cr-Based cathode for sodium-ion batteries. Nano Energy, 2020, 67, 104215.	16.0	40
31	Nanoporous Au-Sn with solute strain for simultaneously enhanced selectivity and durability during electrochemical CO2 reduction. Journal of Materials Science and Technology, 2020, 43, 154-160.	10.7	13
32	Inlaid ReS ₂ Quantum Dots in Monolayer MoS ₂ . ACS Nano, 2020, 14, 899-906.	14.6	19
33	Highâ€Resolution Electrochemical Mapping of the Hydrogen Evolution Reaction on Transitionâ€Metal Dichalcogenide Nanosheets. Angewandte Chemie, 2020, 132, 3629-3636.	2.0	11
34	Highâ€Resolution Electrochemical Mapping of the Hydrogen Evolution Reaction on Transitionâ€Metal Dichalcogenide Nanosheets. Angewandte Chemie - International Edition, 2020, 59, 3601-3608.	13.8	136
35	Dualâ€Metal Interbonding as the Chemical Facilitator for Singleâ€Atom Dispersions. Advanced Materials, 2020, 32, e2003484.	21.0	90
36	Promoted oxygen reduction kinetics on nitrogen-doped hierarchically porous carbon by engineering proton-feeding centers. Energy and Environmental Science, 2020, 13, 2849-2855.	30.8	101

#	Article	IF	CITATIONS
37	Hyperpolarized Xe NMR signal advancement by metal-organic framework entrapment in aqueous solution. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17558-17563.	7.1	175
38	Monolithic Nanoporous Zn Anode for Rechargeable Alkaline Batteries. ACS Nano, 2020, 14, 2404-2411.	14.6	64
39	Electron beam irradiation enhanced varistor properties in ZnO nanowire. Applied Physics Letters, 2020, 117, .	3.3	9
40	Structures and Structural Evolution of Sublayer Surfaces of Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2020, 59, 21419-21424.	13.8	18
41	Dirac Fermion Kinetics in 3D Curved Graphene. Advanced Materials, 2020, 32, e2005838.	21.0	24
42	Iron clusters boosted performance in electrocatalytic carbon dioxide conversion. Journal of Materials Chemistry A, 2020, 8, 21661-21667.	10.3	8
43	Structures and Structural Evolution of Sublayer Surfaces of Metal–Organic Frameworks. Angewandte Chemie, 2020, 132, 21603-21608.	2.0	2
44	Twisted 1T TaS2 bilayers by lithiation exfoliation. Nanoscale, 2020, 12, 18031-18038.	5.6	3
45	Dynamic active-site generation of atomic iridium stabilized on nanoporous metal phosphides for water oxidation. Nature Communications, 2020, $11,2701$.	12.8	204
46	Solid solution softening in a Al0.1CoCrFeMnNi high-entropy alloy. Scripta Materialia, 2020, 186, 63-68.	5.2	15
47	Adsorbate-Mediated Deposition of Noble-Metal Nanoparticles on Carbon Substrates for Electrocatalysis. ACS Applied Energy Materials, 2020, 3, 6460-6465.	5.1	5
48	Ultrastable Silicon Anode by Three-Dimensional Nanoarchitecture Design. ACS Nano, 2020, 14, 4374-4382.	14.6	107
49	Synergetic Effect of Liquid and Solid Catalysts on the Energy Efficiency of Li–O ₂ Batteries: Cell Performances and Operando STEM Observations. Nano Letters, 2020, 20, 2183-2190.	9.1	11
50	Dealloying Kinetics of AgAu Nanoparticles by <i>In Situ</i> Liquid-Cell Scanning Transmission Electron Microscopy. Nano Letters, 2020, 20, 1944-1951.	9.1	47
51	Assembly of 1T′-MoS ₂ based fibers for flexible energy storage. Nanoscale, 2020, 12, 6562-6570.	5.6	10
52	Van der Waals interfacial reconstruction in monolayer transition-metal dichalcogenides and gold heterojunctions. Nature Communications, 2020, 11, 1011.	12.8	47
53	Zincâ∈Mediated Template Synthesis of Feâ∈Nâ∈€ Electrocatalysts with Densely Accessible Feâ∈N <i>></i> >> Active Sites for Efficient Oxygen Reduction. Advanced Materials, 2020, 32, e1907399.	21.0	319
54	The interaction of deformation twins with long-period stacking ordered precipitates in a magnesium alloy subjected to shock loading. Acta Materialia, 2020, 188, 203-214.	7.9	31

#	Article	IF	CITATIONS
55	Platinum Atoms and Nanoparticles Embedded Porous Carbons for Hydrogen Evolution Reaction. Materials, 2020, 13, 1513.	2.9	7
56	Scalable synthesis of nanoporous boron for high efficiency ammonia electrosynthesis. Materials Today, 2020, 38, 58-66.	14.2	29
57	Self-Supported Nanoporous Gold with Gradient Tin Oxide for Sustainable and Efficient Hydrogen Evolution in Neutral Media. Journal of Renewable Materials, 2020, 8, 133-151.	2.2	4
58	Efficient alkaline hydrogen evolution on atomically dispersed Ni–N _x Species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics. Energy and Environmental Science, 2019, 12, 149-156.	30.8	416
59	Observation of superconductivity in pressurized 2M WSe ₂ crystals. Journal of Materials Chemistry C, 2019, 7, 8551-8555.	5. 5	23
60	Experimental observations of the mechanisms associated with the high hardening and low strain to failure of magnesium. Materialia, 2019, 8, 100504.	2.7	13
61	Operando Observations of SEI Film Evolution by Massâ€Sensitive Scanning Transmission Electron Microscopy. Advanced Energy Materials, 2019, 9, 1902675.	19.5	64
62	Deformation behavior of ultrahard Al0.3CoCrFeNi high-entropy alloy treated by plasma nitriding. Materials Letters, 2019, 255, 126566.	2.6	7
63	Unprecedented Electromagnetic Interference Shielding from Three-Dimensional Bi-continuous Nanoporous Graphene. Matter, 2019, 1, 1077-1087.	10.0	53
64	Anionic redox reaction in layered NaCr2/3Ti1/3S2 through electron holes formation and dimerization of S–S. Nature Communications, 2019, 10, 4458.	12.8	38
65	Unveiling Electronic Properties in Metal–Phthalocyanine-Based Pyrazine-Linked Conjugated Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 16810-16816.	13.7	227
66	Bioinspired Fe ₃ C@C as Highly Efficient Electrocatalyst for Nitrogen Reduction Reaction under Ambient Conditions. ACS Applied Materials & Samp; Interfaces, 2019, 11, 40062-40068.	8.0	57
67	3D bicontinuous nanoporous plasmonic heterostructure for enhanced hydrogen evolution reaction under visible light. Nano Energy, 2019, 58, 552-559.	16.0	29
68	Direct atomic identification of cation migration induced gradual cubic-to-hexagonal phase transition in Ge2Sb2Te5. Communications Chemistry, 2019, 2, .	4.5	32
69	A Phthalocyanineâ€Based Layered Twoâ€Dimensional Conjugated Metal–Organic Framework as a Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie, 2019, 131, 10787-10792.	2.0	58
70	A Phthalocyanineâ€Based Layered Twoâ€Dimensional Conjugated Metal–Organic Framework as a Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2019, 58, 10677-10682.	13.8	278
71	The atomic origin of nickel-doping-induced catalytic enhancement in MoS ₂ for electrochemical hydrogen production. Nanoscale, 2019, 11, 7123-7128.	5.6	75
72	Temperature-dependent compression behavior of an AlO.5CoCrCuFeNi high-entropy alloy. Materialia, 2019, 5, 100243.	2.7	16

#	Article	IF	Citations
73	Atomically dispersed nickel–nitrogen–sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nature Communications, 2019, 10, 1392.	12.8	424
74	Metal and Nonmetal Codoped 3D Nanoporous Graphene for Efficient Bifunctional Electrocatalysis and Rechargeable Zn–Air Batteries. Advanced Materials, 2019, 31, e1900843.	21.0	236
7 5	Effects of mixing enthalpy and cooling rate on phase formation of AlxCoCrCuFeNi high-entropy alloys. Materialia, 2019, 6, 100292.	2.7	40
76	Room-temperature superplasticity in Au nanowires and their atomistic mechanisms. Nanoscale, 2019, 11, 8727-8735.	5.6	9
77	Bent strain values affect the plastic deformation behaviours of twinned Ni NWs. Scripta Materialia, 2019, 167, 1-5.	5.2	6
78	Lithium-Doping Stabilized High-Performance P2–Na _{0.66} Li _{0.18} Fe _{0.12} Mn _{0.7} O ₂ Cathode for Sodium Ion Batteries. Journal of the American Chemical Society, 2019, 141, 6680-6689.	13.7	187
79	Capturing Reversible Cation Migration in Layered Structure Materials for Naâ€lon Batteries. Advanced Energy Materials, 2019, 9, 1900189.	19.5	41
80	Nanoporous high-entropy alloys for highly stable and efficient catalysts. Journal of Materials Chemistry A, 2019, 7, 6499-6506.	10.3	215
81	Extraordinary tensile strength and ductility of scalable nanoporous graphene. Science Advances, 2019, 5, eaat6951.	10.3	78
82	3D nanoporous iridium-based alloy microwires for efficient oxygen evolution in acidic media. Nano Energy, 2019, 59, 146-153.	16.0	134
83	Fast coalescence of metallic glass nanoparticles. Nature Communications, 2019, 10, 5249.	12.8	37
84	Flexible supercapacitor electrodes fabricated by dealloying nanocrystallized Al-Ni-Co-Y-Cu metallic glasses. Journal of Alloys and Compounds, 2019, 772, 164-172.	5 . 5	26
85	Atomic structure and mechanical response of coincident stacking faults in boron suboxide. Materials Research Letters, 2019, 7, 75-81.	8.7	5
86	Structural Determination and Nonlinear Optical Properties of New 1Tâ€ ² -Type MoS ₂ Compound. Journal of the American Chemical Society, 2019, 141, 790-793.	13.7	95
87	Lithiophilic 3D Nanoporous Nitrogenâ€Doped Graphene for Dendriteâ€Free and Ultrahighâ€Rate Lithiumâ€Metal Anodes. Advanced Materials, 2019, 31, e1805334.	21.0	254
88	Time-resolved atomic-scale observations of deformation and fracture of nanoporous gold under tension. Acta Materialia, 2019, 165, 99-108.	7.9	39
89	Atomic scale structural characterization of B2 phase precipitated along FCC twin boundary in a CoCrFeNiAl0.3 high entropy alloy. Scripta Materialia, 2019, 162, 161-165.	5.2	21
90	Free-standing nanoporous gold for direct plasmon enhanced electro-oxidation of alcohol molecules. Nano Energy, 2019, 56, 286-293.	16.0	48

#	Article	lF	CITATIONS
91	Lithium intercalation into bilayer graphene. Nature Communications, 2019, 10, 275.	12.8	136
92	Flaw-free nanoporous Ni for tensile properties. Acta Materialia, 2019, 166, 402-412.	7.9	25
93	Three-Dimensional Nanoporous Co ₉ S ₄ P ₄ Pentlandite as a Bifunctional Electrocatalyst for Overall Neutral Water Splitting. ACS Applied Materials & Samp; Interfaces, 2019, 11, 3880-3888.	8.0	73
94	Vapor phase dealloying: A versatile approach for fabricating 3D porous materials. Acta Materialia, 2019, 163, 161-172.	7.9	45
95	Fluorineâ€Free Synthesis of Highâ€Purity Ti ₃ C ₂ T _{<i>x</i>} (T=OH, O) via Alkali Treatment. Angewandte Chemie, 2018, 130, 6223-6227.	2.0	459
96	Atomic origins of high electrochemical CO ₂ reduction efficiency on nanoporous gold. Nanoscale, 2018, 10, 8372-8376.	5.6	46
97	Fluorineâ€Free Synthesis of Highâ€Purity Ti ₃ C ₂ T _{<i>x</i>} (T=OH, O) via Alkali Treatment. Angewandte Chemie - International Edition, 2018, 57, 6115-6119.	13.8	809
98	Operando characterization of cathodic reactions in a liquid-state lithium-oxygen micro-battery by scanning transmission electron microscopy. Scientific Reports, 2018, 8, 3134.	3.3	25
99	Cation-mixing stabilized layered oxide cathodes for sodium-ion batteries. Science Bulletin, 2018, 63, 376-384.	9.0	75
100	Reversible anionic redox activity in Na ₃ RuO ₄ cathodes: a prototype Na-rich layered oxide. Energy and Environmental Science, 2018, 11, 299-305.	30.8	126
101	Three-dimensional bicontinuous nanoporous materials by vapor phase dealloying. Nature Communications, 2018, 9, 276.	12.8	123
102	Accelerated Hydrogen Evolution Kinetics on NiFe‣ayered Double Hydroxide Electrocatalysts by Tailoring Water Dissociation Active Sites. Advanced Materials, 2018, 30, 1706279.	21.0	601
103	Synthesizing 1T–1H Two-Phase Mo _{1–<i>>x</i>} W _{<i>x</i>} S ₂ Monolayers by Chemical Vapor Deposition. ACS Nano, 2018, 12, 1571-1579.	14.6	62
104	Three-dimensional porous graphene networks expand graphene-based electronic device applications. Physical Chemistry Chemical Physics, 2018, 20, 6024-6033.	2.8	43
105	Nanoporous metal by dealloying for electrochemical energy conversion and storage. MRS Bulletin, 2018, 43, 43-48.	3.5	96
106	Bilayered nanoporous graphene/molybdenum oxide for high rate lithium ion batteries. Nano Energy, 2018, 45, 273-279.	16.0	54
107	Three-Dimensional Nanoporous Heterojunction of Monolayer MoS ₂ @rGO for Photoenhanced Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 2183-2191.	5.1	27
108	Intercalation pseudocapacitance of amorphous titanium dioxide@nanoporous graphene for high-rate and large-capacity energy storage. Nano Energy, 2018, 49, 354-362.	16.0	74

#	Article	IF	Citations
109	Controllable defects implantation in MoS2 grown by chemical vapor deposition for photoluminescence enhancement. Nano Research, 2018, 11, 4123-4132.	10.4	55
110	Anisotropic and Multicomponent Nanostructures by Controlled Symmetry Breaking of Metal Halide Intermediates. Nano Letters, 2018, 18, 2324-2328.	9.1	4
111	Operando observations of RuO2 catalyzed Li2O2 formation and decomposition in a Li-O2 micro-battery. Nano Energy, 2018, 47, 427-433.	16.0	47
112	Transmission electron microscopy characterization of dislocation structure in a face-centered cubic high-entropy alloy Al0.1CoCrFeNi. Acta Materialia, 2018, 144, 107-115.	7.9	187
113	Quantum Dots of 1T Phase Transitional Metal Dichalcogenides Generated <i>via</i> Electrochemical Li Intercalation. ACS Nano, 2018, 12, 308-316.	14.6	110
114	Structure Reâ€determination and Superconductivity Observation of Bulk 1T MoS ₂ . Angewandte Chemie, 2018, 130, 1246-1249.	2.0	46
115	Structure Reâ€determination and Superconductivity Observation of Bulk 1T MoS ₂ . Angewandte Chemie - International Edition, 2018, 57, 1232-1235.	13.8	126
116	Microstructural origins for a strong and ductile Al0.1CoCrFeNi high-entropy alloy with ultrafine grains. Materialia, 2018, 4, 395-405.	2.7	43
117	Graphene-based quasi-solid-state lithium–oxygen batteries with high energy efficiency and a long cycling lifetime. NPG Asia Materials, 2018, 10, 1037-1045.	7.9	35
118	Grain Boundary Sliding and Amorphization are Responsible for the Reverse Hall-Petch Relation in Superhard Nanocrystalline Boron Carbide. Physical Review Letters, 2018, 121, 145504.	7.8	73
119	Spatial heterogeneity as the structure feature for structure–property relationship of metallic glasses. Nature Communications, 2018, 9, 3965.	12.8	115
120	Low and room temperatures tensile properties of a nanoprecipitate-strengthened (FeCoCr)40Ni40Al10Cu10 high-entropy alloy. Materials Characterization, 2018, 145, 177-184.	4.4	9
121	One-Dimensional Atomic Segregation at Semiconductor–Metal Interfaces of Polymorphic Transition Metal Dichalcogenide Monolayers. Nano Letters, 2018, 18, 6157-6163.	9.1	4
122	Lowâ€Temperature Carbideâ€Mediated Growth of Bicontinuous Nitrogenâ€Doped Mesoporous Graphene as an Efficient Oxygen Reduction Electrocatalyst. Advanced Materials, 2018, 30, e1803588.	21.0	73
123	Locating Si atoms in Si-doped boron carbide: A route to understand amorphization mitigation mechanism. Acta Materialia, 2018, 157, 106-113.	7.9	42
124	Heavily Doped and Highly Conductive Hierarchical Nanoporous Graphene for Electrochemical Hydrogen Production. Angewandte Chemie, 2018, 130, 13486-13491.	2.0	10
125	Heavily Doped and Highly Conductive Hierarchical Nanoporous Graphene for Electrochemical Hydrogen Production. Angewandte Chemie - International Edition, 2018, 57, 13302-13307.	13.8	64
126	Deformation behaviour of 18R long-period stacking ordered structure in an Mg-Zn-Y alloy under shock loading. Intermetallics, 2018, 102, 21-25.	3.9	3

#	Article	IF	Citations
127	Macroporous mesh of nanoporous gold in electrochemical monitoring of superoxide release from skeletal muscle cells. Biosensors and Bioelectronics, 2017, 88, 41-47.	10.1	27
128	Deformation stimulated precipitation of a single-phase CoCrFeMnNi high entropy alloy. Intermetallics, 2017, 85, 90-97.	3.9	82
129	Nobleâ€Metalâ€Free Metallic Class as a Highly Active and Stable Bifunctional Electrocatalyst for Water Splitting. Advanced Materials Interfaces, 2017, 4, 1601086.	3.7	60
130	Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature, 2017, 544, 460-464.	27.8	843
131	Tunable Nanoporous Metallic Glasses Fabricated by Selective Phase Dissolution and Passivation for Ultrafast Hydrogen Uptake. Chemistry of Materials, 2017, 29, 4478-4483.	6.7	38
132	Full Performance Nanoporous Graphene Based Liâ€O ₂ Batteries through Solution Phase Oxygen Reduction and Redoxâ€Additive Mediated Li ₂ O ₂ Oxidation. Advanced Energy Materials, 2017, 7, 1601933.	19.5	65
133	Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nature Communications, 2017, 8, 15437.	12.8	813
134	High-quality single-layer nanosheets of MS $<$ sub $>$ 2 $<$ /sub $>$ (M = Mo, Nb, Ta, Ti) directly exfoliated from AMS $<$ sub $>$ 2 $<$ /sub $>$ (A = Li, Na, K) crystals. Journal of Materials Chemistry C, 2017, 5, 5977-5983.	5.5	35
135	Structure and mechanical properties of boron-rich boron carbides. Journal of the European Ceramic Society, 2017, 37, 4514-4523.	5.7	89
136	Terahertz and mid-infrared plasmons in three-dimensional nanoporous graphene. Nature Communications, 2017, 8, 14885.	12.8	58
137	Enhanced Superconductivity in Restacked TaS ₂ Nanosheets. Journal of the American Chemical Society, 2017, 139, 4623-4626.	13.7	84
138	Observation of superconductivity in 1T′-MoS ₂ nanosheets. Journal of Materials Chemistry C, 2017, 5, 10855-10860.	5.5	77
139	Engineering the internal surfaces of three-dimensional nanoporous catalysts by surfactant-modified dealloying. Nature Communications, 2017, 8, 1066.	12.8	69
140	Chemical Selectivity at Grain Boundary Dislocations in Monolayer Mo _{1–<i>x</i>} W _{<i>x</i>} S ₂ Transition Metal Dichalcogenides. ACS Applied Materials & Dichalcogenides. ACS	8.0	10
141	Direct Observations of the Formation and Redoxâ€Mediatorâ€Assisted Decomposition of Li ₂ O ₂ in a Liquid ell Li–O ₂ Microbattery by Scanning Transmission Electron Microscopy. Advanced Materials, 2017, 29, 1702752.	21.0	41
142	Tuning Surface Structure of 3D Nanoporous Gold by Surfactantâ€Free Electrochemical Potential Cycling. Advanced Materials, 2017, 29, 1703601.	21.0	54
143	Environmentally stable interface of layered oxide cathodes for sodium-ion batteries. Nature Communications, 2017, 8, 135.	12.8	218
144	Ruthenium/nitrogen-doped carbon as an electrocatalyst for efficient hydrogen evolution in alkaline solution. Journal of Materials Chemistry A, 2017, 5, 25314-25318.	10.3	136

#	Article	IF	Citations
145	Correlation between Local Structure Order and Spatial Heterogeneity in a Metallic Glass. Physical Review Letters, 2017, 119, 215501.	7.8	116
146	Microstructural characterization of boron-rich boron carbide. Acta Materialia, 2017, 136, 202-214.	7.9	91
147	A nanoporous nickel catalyst for selective hydrogenation of carbonates into formic acid in water. Green Chemistry, 2017, 19, 716-721.	9.0	46
148	Coupling effect between ultra-small Mn 3 O 4 nanoparticles and porous carbon microrods for hybrid supercapacitors. Energy Storage Materials, 2017, 6, 53-60.	18.0	72
149	New twinning route in face-centered cubic nanocrystalline metals. Nature Communications, 2017, 8, 2142.	12.8	110
150	Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Materialia, 2016, 116, 332-342.	7.9	670
151	Effect of Chemical Doping on Cathodic Performance of Bicontinuous Nanoporous Graphene for Liâ€O ₂ Batteries. Advanced Energy Materials, 2016, 6, 1501870.	19.5	132
152	3D Bicontinuous Nanoporous Reduced Graphene Oxide for Highly Sensitive Photodetectors. Advanced Functional Materials, 2016, 26, 1271-1277.	14.9	48
153	Graphene@Nanoporous Nickel Cathode for Liâ^'O ₂ Batteries. ChemNanoMat, 2016, 2, 176-181.	2.8	12
154	3D Nanoporous Metal Phosphides toward Highâ€Efficiency Electrochemical Hydrogen Production. Advanced Materials, 2016, 28, 2951-2955.	21.0	163
155	Photochemical route for synthesizing atomically dispersed palladium catalysts. Science, 2016, 352, 797-800.	12.6	1,540
156	Versatile nanoporous bimetallic phosphides towards electrochemical water splitting. Energy and Environmental Science, 2016, 9, 2257-2261.	30.8	535
157	Earthâ€Abundant and Durable Nanoporous Catalyst for Exhaustâ€Gas Conversion. Advanced Functional Materials, 2016, 26, 1609-1616.	14.9	18
158	Electric Properties of Dirac Fermions Captured into 3D Nanoporous Graphene Networks. Advanced Materials, 2016, 28, 10304-10310.	21.0	47
159	Correlation between Chemical Dopants and Topological Defects in Catalytically Active Nanoporous Graphene. Advanced Materials, 2016, 28, 10644-10651.	21.0	110
160	An ultrahigh volumetric capacitance of squeezable three-dimensional bicontinuous nanoporous graphene. Nanoscale, 2016, 8, 18551-18557.	5.6	13
161	Interfacial insights into 3D plasmonic multijunction nanoarchitecture toward efficient photocatalytic performance. Nano Energy, 2016, 27, 515-525.	16.0	36
162	Atomicâ€Sized Pores Enhanced Electrocatalysis of TaS ₂ Nanosheets for Hydrogen Evolution. Advanced Materials, 2016, 28, 8945-8949.	21.0	167

#	Article	IF	CITATIONS
163	Understanding sodium-ion diffusion in layered P2 and P3 oxides via experiments and first-principles calculations: a bridge between crystal structure and electrochemical performance. NPG Asia Materials, 2016, 8, e266-e266.	7.9	101
164	Chemical Vapor Deposition of Monolayer Mo1â^'xWxS2 Crystals with Tunable Band Gaps. Scientific Reports, 2016, 6, 21536.	3.3	101
165	Engineering water dissociation sites in MoS ₂ nanosheets for accelerated electrocatalytic hydrogen production. Energy and Environmental Science, 2016, 9, 2789-2793.	30.8	503
166	Hierarchical nanoporosity enhanced reversible capacity of bicontinuous nanoporous metal based Li-O2 battery. Scientific Reports, 2016, 6, 33466.	3.3	52
167	Unveiling Three-Dimensional Stacking Sequences of 1T Phase MoS ₂ Monolayers by Electron Diffraction. ACS Nano, 2016, 10, 10308-10316.	14.6	21
168	Visualizing Under oordinated Surface Atoms on 3D Nanoporous Gold Catalysts. Advanced Materials, 2016, 28, 1753-1759.	21.0	85
169	Atomistic mechanism of nano-scale phase separation in fcc-based high entropy alloys. Journal of Alloys and Compounds, 2016, 663, 340-344.	5.5	16
170	Bicontinuous nanotubular graphene–polypyrrole hybrid for high performance flexible supercapacitors. Nano Energy, 2016, 19, 391-400.	16.0	137
171	Homogeneously dispersed multimetal oxygen-evolving catalysts. Science, 2016, 352, 333-337.	12.6	1,948
172	Size Effects in the Mechanical Properties of Bulk Bicontinuous Ta/Cu Nanocomposites Made by Liquid Metal Dealloying. Advanced Engineering Materials, 2016, 18, 46-50.	3.5	75
173	A hexagonal close-packed high-entropy alloy: The effect of entropy. Materials and Design, 2016, 96, 10-15.	7.0	322
174	Non-aqueous nanoporous gold based supercapacitors with high specific energy. Scripta Materialia, 2016, 116, 76-81.	5.2	22
175	A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Materialia, 2016, 102, 187-196.	7.9	1,665
176	Onâ€Chip Microâ€Pseudocapacitors for Ultrahigh Energy and Power Delivery. Advanced Science, 2015, 2, 1500067.	11.2	66
177	Nanoporous Metal Papers for Scalable Hierarchical Electrode. Advanced Science, 2015, 2, 1500086.	11.2	26
178	3D Nanoporous Nitrogenâ€Doped Graphene with Encapsulated RuO ₂ Nanoparticles for Li–O ₂ Batteries. Advanced Materials, 2015, 27, 6137-6143.	21.0	195
179	Nanoporous Graphene with Singleâ€Atom Nickel Dopants: An Efficient and Stable Catalyst for Electrochemical Hydrogen Production. Angewandte Chemie - International Edition, 2015, 54, 14031-14035.	13.8	628
180	Metallic Glass as a Mechanical Material for Microscanners. Advanced Functional Materials, 2015, 25, 5677-5682.	14.9	26

#	Article	IF	Citations
181	Multifunctional Porous Graphene for Highâ€Efficiency Steam Generation by Heat Localization. Advanced Materials, 2015, 27, 4302-4307.	21.0	769
182	A Highâ€Voltage and Ultralongâ€Life Sodium Full Cell for Stationary Energy Storage. Angewandte Chemie - International Edition, 2015, 54, 11701-11705.	13.8	126
183	A Layered P2―and O3â€Type Composite as a Highâ€Energy Cathode for Rechargeable Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2015, 54, 5894-5899.	13.8	321
184	Extraordinary Supercapacitor Performance of a Multicomponent and Mixedâ€Valence Oxyhydroxide. Angewandte Chemie - International Edition, 2015, 54, 8100-8104.	13.8	50
185	Hierarchical nanoporous metal/metal-oxide composite by dealloying metallic glass for high-performance energy storage. Corrosion Science, 2015, 96, 196-202.	6.6	48
186	Visualization of topological landscape in shear-flow dynamics of amorphous solids. Europhysics Letters, 2015, 110, 38002.	2.0	2
187	B22-O-12In Situ Atomic Scale Observation of Grain Rotation Mediated by Grain Boundary Dislocations. Microscopy (Oxford, England), 2015, 64, i52.2-i52.	1.5	O
188	High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na _{0.8} Ni _{0.4} Ti _{0.6} O ₂ . Energy and Environmental Science, 2015, 8, 1237-1244.	30.8	215
189	Nanoporous metal/oxide hybrid materials for rechargeable lithium–oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 3620-3626.	10.3	45
190	An assessment on the future development of high-entropy alloys: Summary from a recent workshop. Intermetallics, 2015, 66, 67-76.	3.9	355
191	A nanoporous metal recuperated MnO ₂ anode for lithium ion batteries. Nanoscale, 2015, 7, 15111-15116.	5.6	58
192	High Catalytic Activity of Nitrogen and Sulfur Coâ€Doped Nanoporous Graphene in the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2015, 54, 2131-2136.	13.8	760
193	Nanoscale phase separation in a fcc-based CoCrCuFeNiAl0.5 high-entropy alloy. Acta Materialia, 2015, 84, 145-152.	7.9	193
194	Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells. Nano Research, 2014, 7, 1569-1580.	10.4	54
195	Nanoporous Metal Enhanced Catalytic Activities of Amorphous Molybdenum Sulfide for Highâ€Efficiency Hydrogen Production. Advanced Materials, 2014, 26, 3100-3104.	21.0	204
196	Shear amorphization of boron suboxide. Scripta Materialia, 2014, 76, 9-12.	5.2	47
197	Highâ€Quality Threeâ€Dimensional Nanoporous Graphene. Angewandte Chemie - International Edition, 2014, 53, 4822-4826.	13.8	215
198	Core–Shellâ€Structured CNT@RuO ₂ Composite as a Highâ€Performance Cathode Catalyst for Rechargeable Li–O ₂ Batteries. Angewandte Chemie - International Edition, 2014, 53, 442-446.	13.8	495

#	Article	IF	Citations
199	Bicontinuous Nanoporous Nâ€doped Graphene for the Oxygen Reduction Reaction. Advanced Materials, 2014, 26, 4145-4150.	21.0	261
200	Raman characterization of pseudocapacitive behavior of polypyrrole on nanoporous gold. Physical Chemistry Chemical Physics, 2014, 16, 3523.	2.8	56
201	Monolayer MoS ₂ Films Supported by 3D Nanoporous Metals for Highâ€Efficiency Electrocatalytic Hydrogen Production. Advanced Materials, 2014, 26, 8023-8028.	21.0	299
202	Monodispersed hierarchical Co ₃ O ₄ spheres intertwined with carbon nanotubes for use as anode materials in sodium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 13805.	10.3	122
203	A Highâ€Capacity, Lowâ€Cost Layered Sodium Manganese Oxide Material as Cathode for Sodiumâ€lon Batteries. ChemSusChem, 2014, 7, 2115-2119.	6.8	93
204	Fe ₂ O ₃ nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. Chemical Communications, 2014, 50, 1215-1217.	4.1	297
205	Chemically exfoliated ReS ₂ nanosheets. Nanoscale, 2014, 6, 12458-12462.	5.6	160
206	Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nature Communications, 2014, 5, 4402.	12.8	286
207	The ultrastable kinetic behavior of an Au-based nanoglass. Acta Materialia, 2014, 79, 30-36.	7.9	97
208	Selfâ€Grown Oxyâ€Hydroxide@ Nanoporous Metal Electrode for Highâ€Performance Supercapacitors. Advanced Materials, 2014, 26, 269-272.	21.0	152
209	Hierarchical nanoporous nickel alloy as three-dimensional electrodes for high-efficiency energy storage. Scripta Materialia, 2014, 89, 69-72.	5.2	62
210	Asymmetric twins in rhombohedral boron carbide. Applied Physics Letters, 2014, 104, 021907.	3.3	32
211	Nanoporous metal based flexible asymmetric pseudocapacitors. Journal of Materials Chemistry A, 2014, 2, 10910-10916.	10.3	87
212	Atomic Observation of Catalysis-Induced Nanopore Coarsening of Nanoporous Gold. Nano Letters, 2014, 14, 1172-1177.	9.1	109
213	Fabrication of large-scale nanoporous nickel with a tunable pore size for energy storage. Journal of Power Sources, 2014, 247, 896-905.	7.8	140
214	Surface coating of lithium–manganese-rich layered oxides with delaminated MnO2 nanosheets as cathode materials for Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 4422.	10.3	112
215	Dispersing Pt atoms onto nanoporous gold for high performance direct formic acid fuel cells. Chemical Science, 2014, 5, 403-409.	7.4	93
216	Crystalline Liquid and Rubber-Like Behavior in Cu Nanowires. Nano Letters, 2013, 13, 3812-3816.	9.1	45

#	Article	IF	Citations
217	High-energy-density nonaqueous MnO2@nanoporous gold based supercapacitors. Journal of Materials Chemistry A, 2013, 1, 9202.	10.3	84
218	Conducting MoS ₂ Nanosheets as Catalysts for Hydrogen Evolution Reaction. Nano Letters, 2013, 13, 6222-6227.	9.1	1,948
219	A Coreâ€Shell Nanoporous Ptâ€Cu Catalyst with Tunable Composition and High Catalytic Activity. Advanced Functional Materials, 2013, 23, 4156-4162.	14.9	118
220	In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit. Nature Communications, 2013, 4, 2413.	12.8	147
221	Atomic structure of amorphous shear bands in boron carbide. Nature Communications, 2013, 4, 2483.	12.8	190
222	Ultrahigh capacitance of nanoporous metal enhanced conductive polymer pseudocapacitors. Journal of Power Sources, 2013, 225, 304-310.	7.8	52
223	The effect of size on the elastic strain limit in Ni60Nb40 glassy films. Acta Materialia, 2013, 61, 4689-4695.	7.9	23
224	Synergistic alloying effect on microstructural evolution and mechanical properties of Cu precipitation-strengthened ferritic alloys. Acta Materialia, 2013, 61, 7726-7740.	7.9	85
225	Microstructure characterization of Cu-rich nanoprecipitates in a Fe–2.5 Cu–1.5 Mn–4.0 Ni–1.0 Al multicomponent ferritic alloy. Acta Materialia, 2013, 61, 2133-2147.	7.9	153
226	Enhanced Supercapacitor Performance of MnO ₂ by Atomic Doping. Angewandte Chemie - International Edition, 2013, 52, 1664-1667.	13.8	251
227	Electroplated Thick Manganese Oxide Films with Ultrahigh Capacitance. Advanced Energy Materials, 2013, 3, 857-863.	19.5	70
228	Regulating Infrared Photoresponses in Reduced Graphene Oxide Phototransistors by Defect and Atomic Structure Control. ACS Nano, 2013, 7, 6310-6320.	14.6	112
229	Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nature Materials, 2013, 12, 850-855.	27.5	2,326
230	Nanoporous Gold-Catalyzed [4+2] Benzannulation between ortho-Alkynylbenzaldehydes and Alkynes. Synlett, 2012, 2012, 66-69.	1.8	44
231	Screw-rotation twinning through helical movement of triple-partials. Applied Physics Letters, 2012, 101, 121901.	3.3	14
232	Super elastic strain limit in metallic glass films. Scientific Reports, 2012, 2, 852.	3.3	68
233	Enhance the thermal stability and glass forming ability of Al-based metallic glass by Ca minor-alloying. Intermetallics, 2012, 29, 35-40.	3.9	71
234	Quantitative Evidence of Crossover toward Partial Dislocation Mediated Plasticity in Copper Single Crystalline Nanowires. Nano Letters, 2012, 12, 4045-4049.	9.1	108

#	Article	IF	CITATIONS
235	Atomic origins of the high catalytic activity of nanoporous gold. Nature Materials, 2012, 11, 775-780.	27.5	803
236	High resolution transmission electron microscopy studies of $\dagger f$ phase in Ni-based single crystal superalloys. Journal of Alloys and Compounds, 2012, 536, 80-84.	5. 5	28
237	Enhanced mechanical properties of nanocrystalline boron carbide by nanoporosity and interface phases. Nature Communications, 2012, 3, 1052.	12.8	119
238	Coherent Atomic and Electronic Heterostructures of Single-Layer MoS ₂ . ACS Nano, 2012, 6, 7311-7317.	14.6	806
239	Three-dimensional bicontinuous nanoporous Au/polyaniline hybrid films for high-performance electrochemical supercapacitors. Journal of Power Sources, 2012, 197, 325-329.	7.8	100
240	Approaching the Theoretical Elastic Strain Limit in Copper Nanowires. Nano Letters, 2011, 11, 3151-3155.	9.1	202
241	Wrinkled Nanoporous Gold Films with Ultrahigh Surface-Enhanced Raman Scattering Enhancement. ACS Nano, 2011, 5, 4407-4413.	14.6	249
242	Effect of Residual Silver on Surface-Enhanced Raman Scattering of Dealloyed Nanoporous Gold. Journal of Physical Chemistry C, 2011, 115, 19583-19587.	3.1	66
243	Localized surface plasmon resonance of nanoporous gold. Applied Physics Letters, 2011, 98, .	3.3	135
244	Direct observation of local atomic order in a metallic glass. Nature Materials, 2011, 10, 28-33.	27.5	483
245	Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nature Nanotechnology, 2011, 6, 232-236.	31.5	1,914
246	Direct dynamic atomic mechanisms of strain-induced grain rotation in nanocrystalline, textured, columnar-structured thin gold films. Scripta Materialia, 2011, 64, 343-346.	5.2	130
247	Three-dimensional nanoporous gold for electrochemical supercapacitors. Scripta Materialia, 2011, 64, 923-926.	5.2	109
248	Photoluminescence from Chemically Exfoliated MoS ₂ . Nano Letters, 2011, 11, 5111-5116.	9.1	3,402
249	Asymmetrical quantum dot growth on tensile and compressive-strained ZnO nanowire surfaces. Acta Materialia, 2011, 59, 651-657.	7.9	13
250	Nanoporous PdNi Bimetallic Catalyst with Enhanced Electrocatalytic Performances for Electro-oxidation and Oxygen Reduction Reactions. Advanced Functional Materials, 2011, 21, 4364-4370.	14.9	251
251	Li Storage in 3D Nanoporous Auâ€Supported Nanocrystalline Tin. Advanced Materials, 2011, 23, 2443-2447.	21.0	198
252	Nanoindentation characterization of deformation and failure of aluminum oxynitride. Acta Materialia, 2011, 59, 1671-1679.	7.9	47

#	Article	IF	Citations
253	Nanostructured Materials as Catalysts: Nanoporousâ€Coldâ€Catalyzed Oxidation of Organosilanes with Water. Angewandte Chemie - International Edition, 2010, 49, 10093-10095.	13.8	215
254	Atomic-Scale-Deformation-Dynamics (ASDS) of Nanowires and Nanofilms. Materials Science Forum, 2010, 654-656, 1190-1194.	0.3	3
255	Dynamic Atomic Mechanisms of Plasticity of Ni Nanowires and Nano Crystalline Ultra-Thin Films. Materials Science Forum, 2010, 654-656, 2293-2296.	0.3	5
256	<i>InÂSitu</i> Observation of Dislocation Behavior in Nanometer Grains. Physical Review Letters, 2010, 105, 135501.	7.8	135
257	Pressure-induced depolarization and resonance in Raman scattering of single-crystalline boron carbide. Physical Review B, 2010, 81, .	3.2	43
258	Nanoporous Metals for Catalytic and Optical Applications. MRS Bulletin, 2009, 34, 569-576.	3.5	378
259	Mechanical Behavior of Metallic Glasses: Microscopic Understanding of Strength and Ductility. Annual Review of Materials Research, 2008, 38, 445-469.	9.3	513
260	Nanoporous Metals by Dealloying Multicomponent Metallic Glasses. Chemistry of Materials, 2008, 20, 4548-4550.	6.7	272
261	Twinning and stacking fault formation during tensile deformation of nanocrystalline Ni. Scripta Materialia, 2006, 54, 1685-1690.	5.2	130
262	Mechanical scratching induced phase transitions and reactions of boron carbide. Journal of Applied Physics, 2006, 100, 123517.	2.5	32
263	Comment on "Grain Boundary-Mediated Plasticity in Nanocrystalline Nickel". Science, 2005, 308, 356c-356c.	12.6	27
264	Facile preparation and characterization of hyperbranched poly(amine ester) grafted silica nanoparticles. Journal of Materials Science, 2004, 39, 3825-3827.	3.7	15
265	Metallic Mesoporous Nanocomposites for Electrocatalysis. Journal of the American Chemical Society, 2004, 126, 6876-6877.	13.7	410
266	Deformation Twinning in Nanocrystalline Aluminum. Science, 2003, 300, 1275-1277.	12.6	1,058
267	Shock-Induced Localized Amorphization in Boron Carbide. Science, 2003, 299, 1563-1566.	12.6	483