Kaloian Koynov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4341104/publications.pdf

Version: 2024-02-01

257 papers 10,707 citations

51 h-index 88 g-index

261 all docs

261 does citations

times ranked

261

13721 citing authors

#	Article	IF	Citations
1	An Aqueous Route to Multicolor Photoluminescent Carbon Dots Using Silica Spheres as Carriers. Angewandte Chemie - International Edition, 2009, 48, 4598-4601.	13.8	771
2	Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nature Chemistry, 2017, 9, 145-151.	13.6	469
3	Self-Healing Polymer Films Based on Thiol–Disulfide Exchange Reactions and Self-Healing Kinetics Measured Using Atomic Force Microscopy. Macromolecules, 2012, 45, 142-149.	4.8	407
4	Photoluminescent Carbon Dots as Biocompatible Nanoprobes for Targeting Cancer Cells <i>iin Vitro</i> . Journal of Physical Chemistry C, 2010, 114, 12062-12068.	3.1	318
5	Comparative Analysis of Viscosity of Complex Liquids and Cytoplasm of Mammalian Cells at the Nanoscale. Nano Letters, 2011, 11, 2157-2163.	9.1	212
6	Three-dimensional ferroelectric domain visualization by ÄŒerenkov-type second harmonic generation. Optics Express, 2010, 18, 16539.	3.4	192
7	Optical Properties of Composites of PMMA and Surface-Modified Zincite Nanoparticles. Macromolecules, 2007, 40, 1089-1100.	4.8	184
8	How Shape Influences Uptake: Interactions of Anisotropic Polymer Nanoparticles and Human Mesenchymal Stem Cells. Small, 2012, 8, 2222-2230.	10.0	180
9	Redox Responsive Behavior of Thiol/Disulfide-Functionalized Star Polymers Synthesized via Atom Transfer Radical Polymerization. Macromolecules, 2010, 43, 4133-4139.	4.8	159
10	Fluorescence correlation spectroscopy in colloid and interface science. Current Opinion in Colloid and Interface Science, 2012, 17, 377-387.	7.4	142
11	Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate. Nature Photonics, 2018, 12, 591-595.	31.4	135
12	Elimination of charge carrier trapping in dilutedÂsemiconductors. Nature Materials, 2016, 15, 628-633.	27.5	134
13	Solid-supported thin elastomer films deformed by microdrops. Soft Matter, 2009, 5, 3611.	2.7	115
14	Expanding the chemical scope of RNA:methyltransferases to site-specific alkynylation of RNA for click labeling. Nucleic Acids Research, 2011, 39, 1943-1952.	14.5	114
15	Direct Measurements of Hydrophobic Slippage Using Double-Focus Fluorescence Cross-Correlation. Physical Review Letters, 2009, 102, 118302.	7.8	112
16	Cationic Nanohydrogel Particles as Potential siRNA Carriers for Cellular Delivery. ACS Nano, 2012, 6, 2198-2214.	14.6	111
17	Cerenkov-Type Second-Harmonic Generation in Two-Dimensional Nonlinear Photonic Structures. IEEE Journal of Quantum Electronics, 2009, 45, 1465-1472.	1.9	107
18	Light-Switchable Polymer Adhesive Based on Photoinduced Reversible Solid-to-Liquid Transitions. ACS Macro Letters, 2019, 8, 968-972.	4.8	107

#	Article	IF	Citations
19	pH-Responsive Quantum Dots via an Albumin Polymer Surface Coating. Journal of the American Chemical Society, 2010, 132, 5012-5014.	13.7	94
20	Confined Diffusion in Periodic Porous Nanostructures. ACS Nano, 2011, 5, 4607-4616.	14.6	88
21	Local Flow Field and Slip Length of Superhydrophobic Surfaces. Physical Review Letters, 2016, 116, 134501.	7.8	86
22	Fabrication of Anticounterfeiting Nanocomposites with Multiple Security Features via Integration of a Photoresponsive Polymer and Upconverting Nanoparticles. Advanced Functional Materials, 2021, 31, 2103908.	14.9	82
23	Synthesis, morphology and mechanical properties of linear triblock copolymers based on poly(α-methylene-γ-butyrolactone). Polymer, 2009, 50, 2087-2094.	3.8	81
24	Supramolecular Thiophene Nanosheets. Angewandte Chemie - International Edition, 2013, 52, 4845-4848.	13.8	81
25	Contact angle hysteresis. Current Opinion in Colloid and Interface Science, 2022, 59, 101574.	7.4	81
26	Hydrophobic Shell Loading of PB- <i>b</i> -PEO Vesicles. Macromolecules, 2009, 42, 357-361.	4.8	80
27	Comparison of thermomechanical properties of statistical, gradient and block copolymers of isobornyl acrylate and n-butyl acrylate with various acrylate homopolymers. Polymer, 2008, 49, 1567-1578.	3.8	79
28	Diffusion in Polymer Solutions Studied by Fluorescence Correlation Spectroscopy. Journal of Physical Chemistry B, 2009, 113, 3355-3359.	2.6	77
29	Synthesis, Characterization, and Properties of Starlike Poly(<i>n</i> -butyl) Tj ETQq1 1 0.784314 rgBT /Overlock	10 _{4.8} 50 3	42, Td (acryla
30	Ferroelectric domain engineering by focused infrared femtosecond pulses. Applied Physics Letters, 2015, 107, .	3.3	74
31	Using the Polymeric Ouzo Effect for the Preparation of Polysaccharide-Based Nanoparticles. Langmuir, 2013, 29, 8845-8855.	3.5	73
32	Modifying the Body Distribution of HPMA-Based Copolymers by Molecular Weight and Aggregate Formation. Biomacromolecules, 2011, 12, 2841-2849.	5.4	72
33	Incorporation of Nanoparticles into Polymersomes: Size and Concentration Effects. ACS Nano, 2012, 6, 7254-7262.	14.6	71
34	Particle Formation in the Emulsionâ€Solvent Evaporation Process. Small, 2013, 9, 3514-3522.	10.0	71
35	Balancing Passive and Active Targeting to Different Tumor Compartments Using Riboflavin-Functionalized Polymeric Nanocarriers. Nano Letters, 2017, 17, 4665-4674.	9.1	69
36	Fluorescent Nanodiamond–Gold Hybrid Particles for Multimodal Optical and Electron Microscopy Cellular Imaging. Nano Letters, 2016, 16, 6236-6244.	9.1	68

3

#	Article	IF	CITATIONS
37	Singleâ€Photon and Twoâ€Photon Induced Photocleavage for Monolayers of an Alkyltriethoxysilane with a Photoprotected Carboxylic Ester. Advanced Materials, 2008, 20, 4563-4567.	21.0	67
38	Molecular Weight Dependence of Chain Orientation and Optical Constants of Thin Films of the Conjugated Polymer MEH-PPV. Macromolecules, 2006, 39, 8692-8698.	4.8	66
39	Polar Three-Arm Star Block Copolymer Thermoplastic Elastomers Based on Polyacrylonitrile. Macromolecules, 2008, 41, 2451-2458.	4.8	66
40	Water-Soluble NIR-Absorbing Rylene Chromophores for Selective Staining of Cellular Organelles. Journal of the American Chemical Society, 2016, 138, 2881-2884.	13.7	66
41	Star-like poly (n-butyl acrylate)-b-poly (Î \pm -methylene-Î 3 -butyrolactone) block copolymers for high temperature thermoplastic elastomers applications. Polymer, 2010, 51, 4806-4813.	3 . 8	65
42	Synthesis and In Vitro Evaluation of Defined HPMA Folate Conjugates: Influence of Aggregation on Folate Receptor (FR) Mediated Cellular Uptake. Biomacromolecules, 2010, 11, 2274-2282.	5 . 4	64
43	From Single Chains to Aggregates, How Conjugated Polymers Behave in Dilute Solutions. Macromolecules, 2013, 46, 6217-6224.	4.8	64
44	Poly(p-phenylenevinylene) derivatives: new promising materials for nonlinear all-optical waveguide switching. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 2250.	2.1	63
45	Fine-tuning DNA/albumin polyelectrolyte interactions to produce the efficient transfection agent cBSA-147. Biomaterials, 2010, 31, 8789-8801.	11.4	63
46	Supramolecular Organogel Based on Crown Ether and Secondary Ammoniumion Functionalized Glycidyl Triazole Polymers. Macromolecules, 2013, 46, 4617-4625.	4.8	63
47	Novel Fluorescent Core–Shell Nanocontainers for Cell Membrane Transport. Biomacromolecules, 2008, 9, 1381-1389.	5.4	61
48	Fluorescence Correlation Spectroscopy Study of Molecular Probe Diffusion in Polymer Melts. Macromolecules, 2009, 42, 4858-4866.	4.8	61
49	PEGylation of HPMA-based block copolymers enhances tumor accumulation in vivo: A quantitative study using radiolabeling and positron emission tomography. Journal of Controlled Release, 2013, 172, 77-85.	9.9	60
50	DNA–Polymer Conjugates by Photoinduced RAFT Polymerization. Biomacromolecules, 2019, 20, 212-221.	5 . 4	60
51	Effect of Organic Solvent on the Permeability and Stiffness of Polyelectrolyte Multilayer Microcapsules. Macromolecules, 2005, 38, 5214-5222.	4.8	55
52	Monitoring drug nanocarriers in human blood by near-infrared fluorescence correlation spectroscopy. Nature Communications, 2018, 9, 5306.	12.8	55
53	Metallopolymer Organohydrogels with Photoâ€Controlled Coordination Crosslinks Work Properly Below 0 °C. Advanced Materials, 2020, 32, e1908324.	21.0	53
54	Probing mobility and structural inhomogeneities in grafted hydrogel films by fluorescence correlation spectroscopy. Soft Matter, 2011, 7, 7042.	2.7	52

#	Article	lF	Citations
55	Influence of Nongelling Hydrocolloids on the Gelation of Agarose. Biomacromolecules, 2013, 14, 4116-4124.	5.4	52
56	Carbon Nanotubeâ€"Hydrogel Composites Facilitate Neuronal Differentiation While Maintaining Homeostasis of Network Activity. Advanced Materials, 2021, 33, e2102981.	21.0	52
57	A Novel Type of Vesicles Based on Ionic and <i>i; i€</i> i>i€i Interactions. Macromolecular Rapid Communications, 2010, 31, 75-80.	3.9	51
58	SiRNA-mediated in vivo gene knockdown by acid-degradable cationic nanohydrogel particles. Journal of Controlled Release, 2017, 248, 10-23.	9.9	51
59	PBA–PMMA 3â€Arm Star Block Copolymer Thermoplastic Elastomers. Macromolecular Chemistry and Physics, 2008, 209, 1686-1693.	2.2	50
60	Complex Tracer Diffusion Dynamics in Polymer Solutions. Physical Review Letters, 2013, 111, 088301.	7.8	50
61	Preparation and Nonlinear Optics of Monodisperse Oligo(1,4-phenyleneethynylene)s. European Journal of Organic Chemistry, 2001, 2001, 4431-4443.	2.4	49
62	Fluorescence Correlation Spectroscopy Directly Monitors Coalescence During Nanoparticle Preparation. Nano Letters, 2012, 12, 6012-6017.	9.1	49
63	Supramolecular Linear- <i>g</i> -Hyperbranched Graft Polymers: Topology and Binding Strength of Hyperbranched Side Chains. Macromolecules, 2013, 46, 9544-9553.	4.8	49
64	Surface Topographies of Glaucoma Drainage Devices and Their Influence on Human Tenon Fibroblast Adhesion., 2010, 51, 4047.		48
65	A Quantum Dot Photoswitch for DNA Detection, Gene Transfection, and Live ell Imaging. Small, 2012, 8, 3465-3475.	10.0	48
66	Local and Global Dynamics of Transient Polymer Networks and Swollen Gels Anchored on Solid Surfaces. Journal of Physical Chemistry C, 2007, 111, 13205-13211.	3.1	47
67	Synergistic Growth of Giant Wormlike Micelles in Ternary Mixed Surfactant Solutions: Effect of Octanoic Acid. Langmuir, 2016, 32, 12885-12893.	3.5	47
68	Dendritic Mesoporous Silica Nanoparticles for pHâ€Stimuliâ€Responsive Drug Delivery of TNFâ€Alpha. Advanced Healthcare Materials, 2017, 6, 1700012.	7.6	46
69	DNA–Polymer Nanostructures by RAFT Polymerization and Polymerizationâ€Induced Selfâ€Assembly. Angewandte Chemie - International Edition, 2020, 59, 15474-15479.	13.8	46
70	Probing Bioinspired Transport of Nanoparticles into Polymersomes. Angewandte Chemie - International Edition, 2012, 51, 4613-4617.	13.8	45
71	Submicron hybrid vesicles consisting of polymer–lipid and polymer–cholesterol blends. Soft Matter, 2013, 9, 5883.	2.7	45
72	Second-harmonic generation with focused beams under conditions of large group-velocity mismatch. Journal of the Optical Society of America B: Optical Physics, 2004, 21, 591.	2.1	44

#	Article	lF	CITATIONS
73	FRET Monitoring of Intracellular Ketal Hydrolysis in Synthetic Nanoparticles. Angewandte Chemie - International Edition, 2018, 57, 10760-10764.	13.8	43
74	Controlled synthesis of trifluoropropylmethylsiloxane–dimethylsiloxane gradient copolymers by anionic ROP of cyclotrisiloxanes. Journal of Polymer Science Part A, 2009, 47, 1204-1216.	2.3	42
75	Viscoelastic and photo-actuation studies of composites based on polystyrene-grafted carbon nanotubes and styrene-b-isoprene-b-styrene block copolymer. Polymer, 2014, 55, 211-218.	3.8	42
76	Molecular weight dependence of birefringence of thin films of the conjugated polymer poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1, 4-phenylenevinylene]. Applied Physics Letters, 2004, 84, 3792-3794.	3. 3	41
77	Effects of Spacers on Photoinduced Reversible Solidâ€toâ€tiquid Transitions of Azobenzeneâ€Containing Polymers. Chemistry - A European Journal, 2019, 25, 10946-10953.	3.3	41
78	Selective Uptake of Cylindrical Poly(2â€Oxazoline) Brushâ€AntiDEC205 Antibodyâ€OVA Antigen Conjugates into DECâ€Positive Dendritic Cells and Subsequent Tâ€Cell Activation. Chemistry - A European Journal, 2014, 20, 12405-12410.	3.3	40
79	Engineering Proteins at Interfaces: From Complementary Characterization to Material Surfaces with Designed Functions. Angewandte Chemie - International Edition, 2018, 57, 12626-12648.	13.8	40
80	Amphiphilic HPMA–LMA copolymers increase the transport of Rhodamine 123 across a BBB model without harming its barrier integrity. Journal of Controlled Release, 2012, 163, 170-177.	9.9	39
81	Probing Diffusion of Single Nanoparticles at Water–Oil Interfaces. Small, 2011, 7, 3502-3507.	10.0	38
82	Diffusion and Conformation of Peptide-Functionalized Polyphenylene Dendrimers Studied by Fluorescence Correlation and 13C NMR Spectroscopy. Biomacromolecules, 2007, 8, 1745-1750.	5.4	37
83	Tracer Diffusion in Silica Inverse Opals. Langmuir, 2010, 26, 10141-10146.	3.5	37
84	Soft Elastomers via Introduction of Poly(butyl acrylate) "Diluent―to Poly(hydroxyethyl) Tj ETQq0 0 0 rgBT /C	Overlock 1 4.8	0 Tf 50 302 1
85	Dendronized Albumin Core–Shell Transporters with High Drug Loading Capacity. Biomacromolecules, 2013, 14, 367-376.	5.4	37
86	Synthesis of Photoactuating Acrylic Thermoplastic Elastomers Containing Diblock Copolymer-Grafted Carbon Nanotubes. ACS Macro Letters, 2014, 3, 999-1003.	4.8	37
87	Nearâ€Field Lithography by Twoâ€Photon Induced Photocleavage of Organic Monolayers. Advanced Functional Materials, 2010, 20, 4265-4272.	14.9	36
88	Degradable Cationic Nanohydrogel Particles for Stimuliâ€Responsive Release of siRNA. Macromolecular Rapid Communications, 2014, 35, 2057-2064.	3.9	36
89	Hierarchical Supramolecular Assembly of Sterically Demanding Ï€â€Systems by Conjugation with Oligoprolines. Angewandte Chemie - International Edition, 2014, 53, 12537-12541.	13.8	36
90	Polymethacrylates with Polyhedral Oligomeric Silsesquioxane (POSS) Moieties: Influence of Spacer Length on Packing, Thermodynamics, and Dynamics. Macromolecules, 2015, 48, 3376-3385.	4.8	36

#	Article	IF	Citations
91	Squaric Ester-Based, pH-Degradable Nanogels: Modular Nanocarriers for Safe, Systemic Administration of Toll-like Receptor 7/8 Agonistic Immune Modulators. Journal of the American Chemical Society, 2021, 143, 9872-9883.	13.7	36
92	Ru–Se Coordination: A New Dynamic Bond for Visible-Light-Responsive Materials. Journal of the American Chemical Society, 2021, 143, 12736-12744.	13.7	36
93	Nanosensors for Monitoring Early Stages of Metallic Corrosion. ACS Applied Nano Materials, 2019, 2, 812-818.	5.0	35
94	Synthesis, Characterization and Preliminary Biological Evaluation of P(HPMA)â€∢i>b⟨li>â€P(LLA) Copolymers: A New Type of Functional Biocompatible Block Copolymer. Macromolecular Rapid Communications, 2010, 31, 1492-1500.	3.9	34
95	P(HPMA)-block-P(LA) copolymers in paclitaxel formulations: Polylactide stereochemistry controls micellization, cellular uptake kinetics, intracellular localization and drug efficiency. Journal of Controlled Release, 2012, 163, 63-74.	9.9	34
96	Scaling of Polymer Dynamics at an Oil–Water Interface in Regimes Dominated by Viscous Drag and Desorption-Mediated Flights. Journal of the American Chemical Society, 2015, 137, 12312-12320.	13.7	34
97	Nonlinear phase shift via multistep χ(2) cascading. Optics Communications, 1998, 152, 96-100.	2.1	33
98	pH Responsive Janus-like Supramolecular Fusion Proteins for Functional Protein Delivery. Journal of the American Chemical Society, 2013, 135, 17254-17257.	13.7	33
99	One-pot fabrication of amphiphilic photoswitchable thiophene-based fluorescent polymer dots. Polymer Chemistry, 2013, 4, 773-781.	3.9	33
100	Systemically Administered TLR7/8 Agonist and Antigen-Conjugated Nanogels Govern Immune Responses against Tumors. ACS Nano, 2022, 16, 4426-4443.	14.6	33
101	ÄŒerenkov-type second-harmonic generation with fundamental beams of different polarizations. Optics Letters, 2010, 35, 1317.	3.3	32
102	Nanopatterns of polymer brushes for understanding protein adsorption on the nanoscale. RSC Advances, 2014, 4, 45059-45064.	3.6	32
103	Selective Interfacial Olefin Cross Metathesis for the Preparation of Hollow Nanocapsules. ACS Macro Letters, 2014, 3, 40-43.	4.8	32
104	Silicon-Vacancy Nanodiamonds as High Performance Near-Infrared Emitters for Live-Cell Dual-Color Imaging and Thermometry. Nano Letters, 2022, 22, 2881-2888.	9.1	32
105	Effect of Dendrimer Generation on the Assembly and Mechanical Properties of DNA/Phosphorus Dendrimer Multilayer Microcapsules. Macromolecules, 2006, 39, 5479-5483.	4.8	31
106	Cascaded third-harmonic generation in a single short-range-ordered nonlinear photonic crystal. Optics Letters, 2009, 34, 656.	3.3	31
107	HPMA Based Amphiphilic Copolymers Mediate Central Nervous Effects of Domperidone. Macromolecular Rapid Communications, 2011, 32, 712-717.	3.9	31
108	Near Field Guided Chemical Nanopatterning. Langmuir, 2012, 28, 3699-3703.	3.5	31

#	Article	IF	CITATIONS
109	Dynamics in Stimuli-Responsive Poly(<i>N</i> -isopropylacrylamide) Hydrogel Layers As Revealed by Fluorescence Correlation Spectroscopy. Macromolecules, 2014, 47, 5303-5312.	4.8	31
110	Effect of chain topology on the self-organization and the mechanical properties of poly(n-butyl) Tj ETQq0 0 0 rgBT	<i>l</i> Oyerlock	10 Tf 50 7
111	HPMA-LMA Copolymer Drug Carriers in Oncology: An in Vivo PET Study to Assess the Tumor Line-Specific Polymer Uptake and Body Distribution. Biomacromolecules, 2013, 14, 3091-3101.	5.4	30
112	Long Alkyl Side Chains Simultaneously Improve Mechanical Robustness and Healing Ability of a Photoswitchable Polymer. Macromolecules, 2020, 53, 8562-8569.	4.8	30
113	Nonlinear prism coupling of waveguides of the conjugated polymer MEH-PPV and their figures of merit for all-optical switching. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 895.	2.1	29
114	An L2 SUMO interacting motif is important for PML localization and infection of human papillomavirus type 16. Cellular Microbiology, 2014, 16, 1179-1200.	2.1	29
115	Combining Orthogonal Reactive Groups in Block Copolymers for Functional Nanoparticle Synthesis in a Single Step. ACS Macro Letters, 2017, 6, 1140-1145.	4.8	29
116	Histidine-rich glycoprotein-induced vascular normalization improves EPR-mediated drug targeting to and into tumors. Journal of Controlled Release, 2018, 282, 25-34.	9.9	29
117	Effect of Donorâ^'Acceptor Substitution on the Nonlinear Optical Properties of Oligo(1,4-phenyleneethynylene)s Studied by Third Harmonic Generation Spectroscopy. Journal of Physical Chemistry B, 2005, 109, 10184-10188.	2.6	28
118	Fluorescent Nanoparticles through Selfâ€Assembly of Linear Ionenes and Pyrenetetrasulfonate. Macromolecular Chemistry and Physics, 2009, 210, 1678-1690.	2.2	28
119	Aggregation Behavior of Amphiphilic p(HPMA)- <i>co</i> -p(LMA) Copolymers Studied by FCS and EPR Spectroscopy. Biomacromolecules, 2012, 13, 4065-4074.	5.4	28
120	Phototunable Supersoft Elastomers using Coumarin Functionalized Molecular Bottlebrushes for Cell-Surface Interactions Study. Macromolecules, 2014, 47, 7852-7857.	4.8	28
121	Nanocarrier for Oral Peptide Delivery Produced by Polyelectrolyte Complexation in Nanoconfinement. Biomacromolecules, 2015, 16, 2282-2287.	5.4	28
122	The Cytoskeletal Adaptor Obscurin-Like 1 Interacts with the Human Papillomavirus 16 (HPV16) Capsid Protein L2 and Is Required for HPV16 Endocytosis. Journal of Virology, 2016, 90, 10629-10641.	3.4	28
123	Reversible Kinetic Trapping of FUS Biomolecular Condensates. Advanced Science, 2022, 9, e2104247.	11.2	28
124	Solution Properties and Potential Biological Applications of Zwitterionic Poly(Îμ-N-methacryloyl-l-lysine). Macromolecules, 2013, 46, 8519-8527.	4.8	27
125	Anisotropic carrier diffusion in single MAPbI3 grains correlates to their twin domains. Energy and Environmental Science, 2020, 13, 4168-4177.	30.8	27
126	Hydrodynamic boundary condition of water on hydrophobic surfaces. Physical Review E, 2013, 87, 051001.	2.1	26

#	Article	IF	CITATIONS
127	Silica nanocapsules for redox-responsive delivery. Colloid and Polymer Science, 2014, 292, 251-255.	2.1	26
128	Direct studies of liquid flows near solid surfaces by total internal reflection fluorescence cross-correlation spectroscopy. Optics Express, 2009, 17, 21149.	3.4	25
129	2â€Ureidoâ€4â€Pyrimidoneâ€Based Hydrogels with Multiple Responses. ChemPhysChem, 2013, 14, 2932-2938.	2.1	25
130	The Guanidinium Group as a Key Part of Waterâ€Soluble Polymer Carriers for siRNA Complexation and Protection against Degradation. Macromolecular Rapid Communications, 2014, 35, 1191-1197.	3.9	25
131	A multiscale approach to the adsorption of core–shell nanoparticles at fluid interfaces. Soft Matter, 2015, 11, 118-129.	2.7	25
132	Diffusion and Permeation of Labeled IgG in Grafted Hydrogels. Macromolecules, 2017, 50, 4770-4779.	4.8	25
133	Glass Transition of Disentangled and Entangled Polymer Melts: Single-Chain-Nanoparticles Approach. Macromolecules, 2020, 53, 7312-7321.	4.8	25
134	Tetrazine- and <i>trans </i> -cyclooctene-functionalised polypept(o)ides for fast bioorthogonal tetrazine ligation. Polymer Chemistry, 2020, 11, 4396-4407.	3.9	25
135	Tailoring of viscoelastic properties and light-induced actuation performance of triblock copolymer composites through surface modification of carbon nanotubes. Polymer, 2015, 72, 368-377.	3.8	24
136	Kinetic study of gold nanoparticles synthesized in the presence of chitosan and citric acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 557, 106-115.	4.7	24
137	Multiple Segmental Processes in Polymers with <i>cis</i> and <i>trans</i> Stereoregular Configurations. ACS Macro Letters, 2018, 7, 11-15.	4.8	24
138	Ultrasmall Nanocapsules Obtained by Controlling Ostwald Ripening. Angewandte Chemie - International Edition, 2021, 60, 18094-18102.	13.8	24
139	Effects of Chain Topology on the Tracer Diffusion in Star Polyisoprenes. Macromolecules, 2009, 42, 9183-9189.	4.8	23
140	Molecular Exchange Kinetics of Diblock Copolymer Micelles Monitored by Fluorescence Correlation Spectroscopy. ACS Macro Letters, 2014, 3, 428-432.	4.8	23
141	Swelling of cross-linked polystyrene beads in toluene. Microelectronic Engineering, 2008, 85, 1261-1264.	2.4	22
142	Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal. Applied Physics Letters, 2011, 99, 031108.	3.3	22
143	Toward Anticancer Immunotherapeutics: Wellâ€Defined Polymer–Antibody Conjugates for Selective Dendritic Cell Targeting. Macromolecular Bioscience, 2014, 14, 1444-1457.	4.1	22
144	Directing intracellular supramolecular assembly with N-heteroaromatic quaterthiophene analogues. Nature Communications, 2017, 8, 1850.	12.8	22

#	Article	IF	CITATIONS
145	Nanotopographyâ€Induced Unfolding of Fibrinogen Modulates Leukocyte Binding and Activation. Advanced Functional Materials, 2019, 29, 1807453.	14.9	22
146	Brownian Diffusion of Individual Janus Nanoparticles at Water/Oil Interfaces. ACS Nano, 2020, 14, 10095-10103.	14.6	22
147	Nonlinear optical waveguide spectroscopy of a conjugated polymer: poly(p-phenylenevinylene). Journal of the Optical Society of America B: Optical Physics, 1999, 16, 1921.	2.1	21
148	Intensity dependent change of the polarization state as a result of non-linear phase shift in type II frequency doubling crystals. Optics Communications, 1997, 141, 173-179.	2.1	20
149	Monitoring the Dynamics of Phase Separation in a Polymer Blend by Confocal Imaging and Fluorescence Correlation Spectroscopy. Macromolecular Rapid Communications, 2012, 33, 1568-1573.	3.9	20
150	Orthogonal Click Conjugation to the Liposomal Surface Reveals the Stability of the Lipid Anchorage as Crucial for Targeting. Chemistry - A European Journal, 2016, 22, 11578-11582.	3.3	20
151	Lipid-Polyglutamate Nanoparticle Vaccine Platform. ACS Applied Materials & Samp; Interfaces, 2021, 13, 6011-6022.	8.0	20
152	Preparation of Defined Albumin–Polymer Hybrids for Efficient Cell Transfection. Macromolecular Chemistry and Physics, 2010, 211, 146-153.	2.2	19
153	ÄŒerenkov-type second-harmonic spectroscopy in random nonlinear photonic structures. Optics Express, 2013, 21, 8220.	3.4	19
154	Visualization of carbon nanotubes dispersion in composite by using confocal laser scanning microscopy. European Polymer Journal, 2016, 79, 187-197.	5.4	19
155	Covalently Binding of Bovine Serum Albumin to Unsaturated Poly(Globalideâ€Coâ€Îµâ€Caprolactone) Nanoparticles by Thiolâ€Ene Reactions. Macromolecular Bioscience, 2019, 19, e1900145.	4.1	19
156	Collinear second harmonic generations in a nonlinear photonic quasicrystal. Applied Physics Letters, 2008, 92, 201113.	3.3	18
157	New Techniques to Assess In Vitro Release of siRNA from Nanoscale Polyplexes. Pharmaceutical Research, 2015, 32, 1957-1974.	3.5	18
158	Bioreducible Polyâ€≺scp>lâ€Lysine–Poly[HPMA] Block Copolymers Obtained by RAFTâ€Polymerization as Efficient Polyplexâ€Transfection Reagents. Macromolecular Bioscience, 2016, 16, 106-120.	4.1	18
159	The influence of selected NSAIDs on volume phase transition in poly(2-(2-methoxyethoxy)ethyl) Tj ETQq1 1 0.784.	314 rgBT / 5.8	Qyerlock 1
160	Impact of Branching on the Solution Behavior and Serum Stability of Starlike Block Copolymers. Biomacromolecules, 2019, 20, 375-388.	5.4	18
161	Core@shell Poly(<i>n</i> -butylacrylate)@polystyrene Nanoparticles: Baroplastic Force-Responsiveness in Presence of Strong Phase Separation. Macromolecular Rapid Communications, 2016, 37, 584-589.	3.9	17
162	Temperature-Controlled Diffusion in PNIPAM-Modified Silica Inverse Opals. ACS Macro Letters, 2016, 5, 190-194.	4.8	17

#	Article	IF	Citations
163	A modular approach for multifunctional polymersomes with controlled adhesive properties. Soft Matter, 2018, 14, 894-900.	2.7	17
164	Water-dispersed semiconductor nanoplatelets with high fluorescence brightness, chemical and colloidal stability. Journal of Materials Chemistry B, 2020, 8, 146-154.	5.8	17
165	Portable Ultrafast Blue Light Sources Designed With Frequency Doubling in KTP and <tex>\$hboxKNbO_3\$</tex> . IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10, 1268-1276.	2.9	16
166	MEMS analogous micro-patterning of thermotropic nematic liquid crystalline elastomer films using a fluorinated photoresist and a hard mask process. Journal of Materials Chemistry C, 2017, 5, 12635-12644.	5 . 5	16
167	Precision Anisotropic Brush Polymers by Sequence Controlled Chemistry. Journal of the American Chemical Society, 2020, 142, 1332-1340.	13.7	16
168	Shining Light on Polymeric Drug Nanocarriers with Fluorescence Correlation Spectroscopy. Macromolecular Rapid Communications, 2022, 43, e2100892.	3.9	16
169	pH-degradable, bisphosphonate-loaded nanogels attenuate liver fibrosis by repolarization of M2-type macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2122310119.	7.1	16
170	Collinear second harmonic generation of 20 wavelengths in a single two-dimensional decagonal nonlinear photonic quasi-crystal. Optics Communications, 2009, 282, 3602-3606.	2.1	15
171	Hybrid Poly(urethane–urea)/Silica Nanocapsules with pH-Sensitive Gateways. Chemistry of Materials, 2015, 27, 4311-4318.	6.7	15
172	Fluorescence labels may significantly affect the protein adsorption on hydrophilic nanomaterials. Colloids and Surfaces B: Biointerfaces, 2016, 147, 124-128.	5.0	15
173	Molecular Probe Diffusion in Thin Polymer Films: Evidence for a Layer with Enhanced Mobility Far above the Glass Temperature. ACS Macro Letters, 2018, 7, 425-430.	4.8	15
174	Fluorescence Correlation Spectroscopy Monitors the Fate of Degradable Nanocarriers in the Blood Stream. Biomacromolecules, 2022, 23, 1065-1074.	5.4	15
175	pH-change protective PB-b-PEO polymersomes. Polymer, 2011, 52, 1263-1267.	3.8	14
176	Direct 3D Visualization of the Phaseâ€Separated Morphology in Chlorinated Polyethylene/Nylon Terpolyamide Based Thermoplastic Elastomers. Macromolecular Rapid Communications, 2012, 33, 114-119.	3.9	14
177	Layer with reduced viscosity at water-oil interfaces probed by fluorescence correlation spectroscopy. Physical Review E, 2013, 87, 012403.	2.1	14
178	Noncovalent Hydrogen Bonds Tune the Mechanical Properties of Phosphoester Polyethylene Mimics. ACS Omega, 2019, 4, 9324-9332.	3.5	14
179	Preparation of Monodisperse Giant Unilamellar Anchored Vesicles Using Micropatterned Hydrogel Substrates. ACS Omega, 2019, 4, 9393-9399.	3.5	14
180	Poly(methyl ethylene phosphate) hydrogels: Degradable and cell-repellent alternatives to PEG-hydrogels. European Polymer Journal, 2020, 141, 110075.	5.4	14

#	Article	IF	CITATIONS
181	Near-Field-Mediated Enhancement of Two-Photon-Induced Fluorescence on Plasmonic Nanostructures. Journal of Physical Chemistry C, 2010, 114, 20968-20973.	3.1	13
182	Amine functionalized ZrO ₂ nanoparticles as biocompatible and luminescent probes for ligand specific cellular imaging. Journal of Materials Chemistry B, 2015, 3, 2371-2377.	5.8	13
183	Site-Specific DBCO Modification of DEC205 Antibody for Polymer Conjugation. Polymers, 2018, 10, 141.	4.5	13
184	Core Crossâ€Linked Polymeric Micelles for Specific Iron Delivery: Inducing Sterile Inflammation in Macrophages. Advanced Healthcare Materials, 2021, 10, e2100385.	7.6	13
185	Nonlinear phase shift resulting from two-color multistep cascading. Journal of the Optical Society of America B: Optical Physics, 2000, 17, 959.	2.1	12
186	Efficiency of cascaded third harmonic generation in single quadratic crystal in focused beam. Optics Communications, 2002, 212, 397-403.	2.1	12
187	Molecular Weight Effects in the Third-Harmonic Generation Spectroscopy of Thin Films of the Conjugated Polymer MEH-PPV. Journal of Physical Chemistry B, 2008, 112, 3605-3610.	2.6	12
188	Second- and third-harmonic parametric scattering in disordered quadratic media. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 215404.	1.5	12
189	Studying flow close to an interface by total internal reflection fluorescence cross-correlation spectroscopy: Quantitative data analysis. Physical Review E, 2011, 84, 066306.	2.1	12
190	Frequency Response of Polymer Films Made from a Precursor Colloidal Monolayer on a Nanomechanical Cantilever. Macromolecules, 2012, 45, 862-871.	4.8	12
191	Fluorescence Correlation Spectroscopy in Dilute Polymer Solutions: Effects of Molar Mass Dispersity and the Type of Fluorescent Labeling. ACS Macro Letters, 2015, 4, 171-176.	4.8	12
192	Surfactants Mediate the Dewetting of Acrylic Polymer Films Commonly Applied to Works of Art. ACS Applied Materials & Dewetting of Acrylic Polymer Films Commonly Applied to Works of Art. ACS Applied Materials & Dewetting of Acrylic Polymer Films Commonly Applied to Works of Art. ACS Applied Materials & Dewetting of Acrylic Polymer Films Commonly Applied to Works of Art. ACS Applied Materials & Dewetting of Acrylic Polymer Films Commonly Applied to Works of Art. ACS Applied Materials & Dewetting of Acrylic Polymer Films Commonly Applied to Works of Art. ACS Applied Materials & Dewetting of Acrylic Polymer Films Commonly Applied to Works of Art. ACS Applied Materials & Dewetting Of Acrylic Polymer Films Commonly Applied to Works of Art. ACS Applied Materials & Dewetting Of Acrylic Polymer Films Commonly Applied to Works of Art. ACS Applied Materials & Dewetting Of Acrylic Polymer Films Commonly Applied to Works of Art. ACS Applied Materials & Dewetting Of Acrylic Polymer Films Commonly Applied to Works of Art. ACS Applied Materials & Dewetting Of Acrylic Polymer Films Commonly Applied to Works of Art. ACS Applied Materials & Dewetting Of Acrylic Polymer Films Commonly Applied to Works of Art. ACS Applied Materials & Dewetting Of Acrylic Polymer Films Commonly Applied to Works of Art. ACS Applied Materials & Dewetting Of Acrylic Polymer Films Commonly Applied To Works Of Art. ACS Applied To Works Of Acrylic Polymer Films Commonly Applied To Works Of Art. ACS Applied To Works Of Acrylic Polymer Films Commonly Applie	8.0	12
193	Adaptation of a Styrene–Acrylic Acid Copolymer Surface to Water. Langmuir, 2021, 37, 1571-1577.	3.5	12
194	Hierarchical Selfâ€Assembly of PDMAâ€∢i>bà€PS Chains into Granular Nanoparticles: Genesis and Fate. Macromolecular Rapid Communications, 2014, 35, 1994-1999.	3.9	11
195	¹⁸ Fâ€Radiolabeling, Preliminary Evaluation of Folateâ€pHPMA Conjugates via PET. Macromolecular Bioscience, 2014, 14, 1396-1405.	4.1	11
196	Evolution of high-temperature molecular relaxations in poly(2-(2-methoxyethoxy)ethyl methacrylate) upon network formation. Colloid and Polymer Science, 2015, 293, 1357-1367.	2.1	11
197	Dynamic Heterogeneity in Random Copolymers of Polymethacrylates Bearing Different Polyhedral Oligomeric Silsesquioxane Moieties (POSS). Macromolecules, 2017, 50, 4043-4053.	4.8	11
198	Multifunctional Cationic PeptoStars as siRNA Carrier: Influence of Architecture and Histidine Modification on Knockdown Potential. Macromolecular Bioscience, 2020, 20, 1900152.	4.1	11

#	Article	IF	Citations
199	Transient Lymph Node Immune Activation by Hydrolysable Polycarbonate Nanogels. Advanced Functional Materials, 2022, 32, .	14.9	11
200	Molecular Tracer Diffusion in Nondilute Polymer Solutions: Universal Master Curve and Glass Transition Effects. Macromolecules, 2015, 48, 8907-8912.	4.8	10
201	Overcoming the barrier of CD8+ T cells: Two types of nano-sized carriers for siRNA transport. Acta Biomaterialia, 2019, 100, 338-351.	8.3	10
202	Irregular, nanostructured superhydrophobic surfaces: Local wetting and slippage monitored by fluorescence correlation spectroscopy. Physical Review Fluids, 2021, 6, .	2.5	10
203	Fluorescence correlation spectroscopy to unravel the interactions between macromolecules in wine. Food Chemistry, 2021, 352, 129343.	8.2	10
204	Analytical formulae for the optimization of the process of low-power phase modulation in a quadratic nonlinear medium. Applied Physics B: Lasers and Optics, 1996, 63, 39-42.	2.2	9
205	Glutathioneâ€Responsive DNAâ€Based Nanocontainers Through an "Interfacial Click―Reaction in Inverse Miniemulsion. Macromolecular Chemistry and Physics, 2014, 215, 2457-2462.	2.2	9
206	Fluorescence Correlation Spectroscopy Monitors the Hydrophobic Collapse of pH-Responsive Hairy Nanoparticles at the Individual Particle Level. Macromolecules, 2015, 48, 7237-7244.	4.8	9
207	Forced dewetting dynamics of high molecular weight surfactant solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 521, 30-37.	4.7	9
208	HPMA-Based Nanoparticles for Fast, Bioorthogonal iEDDA Ligation. Biomacromolecules, 2019, 20, 3786-3797.	5.4	9
209	Modulation of Mitochondriotropic Properties of Cyanine Dyes by in Organello Copperâ€Free Click Reaction. ChemBioChem, 2017, 18, 1814-1818.	2.6	8
210	Redoxâ€Responsive and Thermoresponsive Supramolecular Nanosheet Gels with High Young's Moduli. Macromolecular Rapid Communications, 2018, 39, e1800282.	3.9	8
211	Influence of Riboflavin Targeting on Tumor Accumulation and Internalization of Peptostar Based Drug Delivery Systems. Bioconjugate Chemistry, 2020, 31, 2691-2696.	3.6	8
212	Hierarchical Silica Inverse Opals as a Catalyst Support for Asymmetric Molecular Heterogeneous Catalysis with Chiral Rhâ€diene Complexes. ChemCatChem, 2021, 13, 2242-2252.	3.7	8
213	All-optical switching by means of an interferometer with nonlinear frequency doubling mirrors. Journal of the Optical Society of America B: Optical Physics, 1997, 14, 834.	2.1	7
214	Optical, Electro-Optical, and Dielectric Properties of Acrylic Tripropyleneglycol Based Polymer Network Systems Including LCs. Molecular Crystals and Liquid Crystals, 2012, 561, 124-135.	0.9	7
215	Calcium barium niobate as a functional material for broadband optical frequency conversion. Optics Letters, 2014, 39, 1330.	3.3	7
216	A Supramolecular Approach toward Bioinspired PAMAMâ€Dendronized Fusion Toxins. Macromolecular Bioscience, 2016, 16, 803-810.	4.1	7

#	Article	IF	Citations
217	Tackling the Limitations of Copolymeric Small Interfering RNA Delivery Agents by a Combined Experimental–Computational Approach. Biomacromolecules, 2019, 20, 4389-4406.	5.4	7
218	The mechanics of single cross-links which mediate cell attachment at a hydrogel surface. Nanoscale, 2019, 11, 11596-11604.	5.6	7
219	From Macro to Mesoporous ZnO Inverse Opals: Synthesis, Characterization and Tracer Diffusion Properties. Nanomaterials, 2021, 11, 196.	4.1	7
220	Note: An easy way to enable total internal reflection-fluorescence correlation spectroscopy (TIR-FCS) by combining commercial devices for FCS and TIR microscopy. Review of Scientific Instruments, 2011, 82, 036105.	1.3	6
221	Broadband cascading of second-order nonlinearity in randomized nonlinear photonic crystal. Journal Physics D: Applied Physics, 2012, 45, 365105.	2.8	6
222	Multi-directional ÄŒerenkov second harmonic generation in two-dimensional nonlinear photonic crystal. Optics Express, 2012, 20, 3948.	3.4	6
223	Macroscopic Viscosity of Polymer Solutions from the Nanoscale Analysis. ACS Applied Polymer Materials, 2021, 3, 2813-2822.	4.4	6
224	Nonlinear phase shift as a result of cascaded third-order processes. Physical Review A, 1998, 57, 3028-3035.	2.5	5
225	Slab waveguides of poly(p-phenylenevinylene)s for all-optical switching: impact of side-chain substitution. Journal of Materials Chemistry, 2009, 19, 7490.	6.7	5
226	Broadband third-harmonic generation in two-dimensional short-range ordered nonlinear photonic structure. Applied Physics B: Lasers and Optics, 2011, 103, 13-16.	2.2	5
227	Fluorescence correlation spectroscopy of repulsive systems: Theory, simulation, and experiment. Journal of Chemical Physics, 2013, 138, 214902.	3.0	5
228	Scaling equation for viscosity of polydimethylsiloxane in ethyl acetate: From dilute to concentrated solutions. Polymer, 2020, 203, 122779.	3.8	5
229	A theoretical analysis of absorption and refractive index changes in optically excited In1-xGaxSb. Semiconductor Science and Technology, 1994, 9, 1584-1590.	2.0	4
230	Optimization of the process of frequency tripling and quadrupling in double grating quasi-phase matched structures. Optics Communications, 2000, 178, 437-447.	2.1	4
231	Multistep cascading in periodically poled directional couplers. Optics Letters, 2005, 30, 2284.	3.3	4
232	Diffusion of isolated surface-active molecules at the air/water interface. Colloid and Polymer Science, 2014, 292, 1817-1823.	2.1	4
233	Polylactideâ€Based Nanoparticles with Tailorâ€Made Functionalization. Macromolecular Chemistry and Physics, 2015, 216, 1774-1781.	2.2	4
234	Cross-phase modulation caused by cascading of third-order processes. Journal of the Optical Society of America B: Optical Physics, 1999, 16, 262.	2.1	3

#	Article	IF	Citations
235	Effect of the domain shape on noncollinear second-harmonic emission in disordered quadratic media. Optics Express, 2013, 21, 31462.	3.4	3
236	Engineering von Proteinen an OberflÄ z hen: Von komplementÄ z er Charakterisierung zu MaterialoberflÄ z hen mit maÄŸgeschneiderten Funktionen. Angewandte Chemie, 2018, 130, 12806-12830.	2.0	3
237	DNAâ€Polymerâ€Nanostrukturen durch RAFTâ€Polymerisation und polymerisationsinduzierte Selbstassemblierung. Angewandte Chemie, 2020, 132, 15602-15607.	2.0	3
238	Real-time monitoring of biomechanical activity in aphids by laser speckle contrast imaging. Optics Express, 2021, 29, 28461.	3.4	3
239	Design and investigation of semiconductor waveguide structures with grating couplers used as all-optical switches. Journal of Optics, 2001, 3, 26-33.	1.5	2
240	Multiphoton spectroscopy of polymers for all-optical switching. , 2006, , .		2
241	Försterâ€Resonanzenergietransferâ€basierter Nachweis intrazelluläer Ketalâ€Hydrolyse in synthetisch vernetzten Nanopartikeln. Angewandte Chemie, 2018, 130, 10920-10925.	2.0	2
242	Tracer Mobility in Aqueous Poly(N-isopropylacrylamide) Grafted Networks: Effect of Interactions and Permanent Crosslinks., 2013,, 53-62.		2
243	Small molecule diffusion in poly-(olygo ethylene glycol methacrylate) based hydrogels studied by fluorescence correlation spectroscopy. Polymer, 2022, 244, 124628.	3.8	2
244	Double phase-matched cascaded fifth harmonic generation in single nonlinear medium by focussed laser beam. Applied Physics B: Lasers and Optics, 2004, 78, 87-92.	2.2	1
245	EFFICIENT FREQUENCY-DOUBLING OF FEMTOSECOND PULSES IN WAVEGUIDE AND BULK NONLINEAR CRYSTALS Design, fabrication, theory and experiment. , 2006, , 189-227.		1
246	Contact fatigue in an alumina microcontact: A confocal laser scanning microscope study. Journal of Materials Research, 2007, 22, 3196-3200.	2.6	1
247	Particle and tracer diffusion in complex liquids. , 2013, , .		1
248	<title>Analytical description of the process of nonlinear phase shift due to cascade second-order processes</title> ., 1996, 3052, 185.		0
249	<title>Frequency doubling of focused ultrashort pulses under conditions of significant temporal walk-off</title> ., 2004, 5478, 173.		0
250	Design of phase-reversed QPM structures for cascaded third and fourth harmonic generation in single quadratic crystal. , 2005, , .		0
251	Quasi-phase matching harmonic generations in short-range ordered nonlinear photonic crystal. , 2008, , .		0
252	Acrylate Based Copolymers by ATRP: The Effect of Molecular Structure on Thermo-Mechanical Properties. ACS Symposium Series, 2009, , 297-311.	0.5	0

#	Article	IF	CITATIONS
253	All optical effects in nonlinear photonic crystals. , 2010, , .		O
254	Ultrasmall Nanocapsules Obtained by Controlling Ostwald Ripening. Angewandte Chemie, 2021, 133, 18242-18250.	2.0	0
255	Cascaded third-harmonic generation in a single two-dimensional nonlinear photonic crystal with a short-range order. , 2009, , .		O
256	Quasi-phase matched harmonic generation in short-range ordered nonlinear photonic structure. , 2010, , .		0
257	$\ddot{\text{A}}$ Œerenkov-type second-harmonic generation spectroscopy of random nonlinear photonic structures. , 2013, , .		0