
Tin Wee Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4340830/publications.pdf Version: 2024-02-01

Τινι \λ/ff Τλνι

#	Article	IF	CITATIONS
1	A multi-task CNN learning model for taxonomic assignment of human viruses. BMC Bioinformatics, 2021, 22, 194.	2.6	3
2	Architecture of population-differentiated polymorphisms in the human genome. PLoS ONE, 2019, 14, e0224089.	2.5	4
3	Towards precision medicine: interrogating the human genome to identify drug pathways associated with potentially functional, population-differentiated polymorphisms. Pharmacogenomics Journal, 2019, 19, 516-527.	2.0	32
4	Exploring the transcriptome of non-model oleaginous microalga Dunaliella tertiolecta through high-throughput sequencing and high performance computing. BMC Bioinformatics, 2017, 18, 122.	2.6	17
5	Elevated acetyl oA by amino acid recycling fuels microalgal neutral lipid accumulation in exponential growth phase for biofuel production. Plant Biotechnology Journal, 2017, 15, 497-509.	8.3	36
6	Analysis of viral diversity for vaccine target discovery. BMC Medical Genomics, 2017, 10, 78.	1.5	14
7	Development of a clinical decision support system for diabetes care: A pilot study. PLoS ONE, 2017, 12, e0173021.	2.5	39
8	Distinct Host Tropism Protein Signatures to Identify Possible Zoonotic Influenza A Viruses. PLoS ONE, 2016, 11, e0150173.	2.5	14
9	T-Cell Epitope Prediction of Chikungunya Virus. Methods in Molecular Biology, 2016, 1426, 201-207.	0.9	3
10	Coverage analysis in a targeted amplicon-based next-generation sequencing panel for myeloid neoplasms. Journal of Clinical Pathology, 2016, 69, 801-804.	2.0	27
11	GIW and InCoB are advancing bioinformatics in the Asia-Pacific. BMC Bioinformatics, 2015, 16, 11.	2.6	1
12	RNA-Seq transcriptomic analysis with Bag2D software identifies key pathways enhancing lipid yield in a high lipid-producing mutant of the non-model green alga Dunaliella tertiolecta. Biotechnology for Biofuels, 2015, 8, 191.	6.2	20
13	STATdb: A Specialised Resource for the STATome. PLoS ONE, 2014, 9, e104597.	2.5	0
14	Simple re-instantiation of small databases using cloud computing. BMC Genomics, 2013, 14, S13.	2.8	10
15	APBioNet—Transforming Bioinformatics in the Asia-Pacific Region. PLoS Computational Biology, 2013, 9, e1003317.	3.2	7
16	Dissecting the Dynamics of HIV-1 Protein Sequence Diversity. PLoS ONE, 2013, 8, e59994.	2.5	14
17	West Nile Virus T-Cell Ligand Sequences Shared with Other Flaviviruses: a Multitude of Variant Sequences as Potential Altered Peptide Ligands. Journal of Virology, 2012, 86, 7616-7624.	3.4	14
18	Towards big data science in the decade ahead from ten years of InCoB and the 1st ISCB-Asia Joint Conference. BMC Bioinformatics, 2011, 12, S1.	2.6	20

TIN WEE TAN

#	Article	IF	CITATIONS
19	Towards BioDBcore: a community-defined information specification for biological databases. Nucleic Acids Research, 2011, 39, D7-D10.	14.5	32
20	InCoB2010 - 9th International Conference on Bioinformatics at Tokyo, Japan, September 26-28, 2010. BMC Bioinformatics, 2010, 11, S1.	2.6	3
21	T3SEdb: data warehousing of virulence effectors secreted by the bacterial Type III Secretion System. BMC Bioinformatics, 2010, 11, S4.	2.6	42
22	Challenges of the next decade for the Asia Pacific region: 2010 International Conference in Bioinformatics (InCoB 2010). BMC Genomics, 2010, 11, S1.	2.8	14
23	Advancing standards for bioinformatics activities: persistence, reproducibility, disambiguation and Minimum Information About a Bioinformatics investigation (MIABi). BMC Genomics, 2010, 11, S27.	2.8	29
24	Complete-Proteome Mapping of Human Influenza A Adaptive Mutations: Implications for Human Transmissibility of Zoonotic Strains. PLoS ONE, 2010, 5, e9025.	2.5	85
25	Classification of Dengue Fever Patients Based on Gene Expression Data Using Support Vector Machines. PLoS ONE, 2010, 5, e11267.	2.5	36
26	Conservation and Variability of West Nile Virus Proteins. PLoS ONE, 2009, 4, e5352.	2.5	24
27	The implementation of e-learning tools to enhance undergraduate bioinformatics teaching and learning: a case study in the National University of Singapore. BMC Bioinformatics, 2009, 10, S12.	2.6	10
28	A comprehensive assessment of N-terminal signal peptides prediction methods. BMC Bioinformatics, 2009, 10, S2.	2.6	58
29	Extending Asia Pacific bioinformatics into new realms in the "-omics" era. BMC Genomics, 2009, 10, S1.	2.8	13
30	A proposed minimum skill set for university graduates to meet the informatics needs and challenges of the "-omics" era. BMC Genomics, 2009, 10, S36.	2.8	45
31	A multi-factor model for caspase degradome prediction. BMC Genomics, 2009, 10, S6.	2.8	16
32	Bioinformatics research in the Asia Pacific: a 2007 update. BMC Bioinformatics, 2008, 9, S1.	2.6	7
33	Identification of human-to-human transmissibility factors in PB2 proteins of influenza A by large-scale mutual information analysis. BMC Bioinformatics, 2008, 9, S18.	2.6	94
34	Rule-based knowledge aggregation for large-scale protein sequence analysis of influenza A viruses. BMC Bioinformatics, 2008, 9, S7.	2.6	9
35	Structural Immunoinformatics. , 2008, , 51-61.		1
36	Automatic synchronization and distribution of biological databases and software over low-bandwidth networks among developing countries. Bioinformatics, 2008, 24, 299-301.	4.1	9

TIN WEE TAN

#	Article	IF	CITATIONS
37	Conservation and Variability of Dengue Virus Proteins: Implications for Vaccine Design. PLoS Neglected Tropical Diseases, 2008, 2, e272.	3.0	79
38	CASVM: web server for SVM-based prediction of caspase substrates cleavage sites. Bioinformatics, 2007, 23, 3241-3243.	4.1	71
39	In silico grouping of peptide/HLA class I complexes using structural interaction characteristics. Bioinformatics, 2007, 23, 177-183.	4.1	133
40	Evolutionarily Conserved Protein Sequences of Influenza A Viruses, Avian and Human, as Vaccine Targets. PLoS ONE, 2007, 2, e1190.	2.5	157
41	In silico characterization of immunogenic epitopes presented by HLA-Cw*0401. Immunome Research, 2007, 3, 7.	0.1	13
42	MPID-T. Applied Bioinformatics, 2006, 5, 111-114.	1.6	25
43	A systematic bioinformatics approach for selection of epitope-based vaccine targets. Cellular Immunology, 2006, 244, 141-147.	3.0	78
44	Establishing bioinformatics research in the Asia Pacific. BMC Bioinformatics, 2006, 7, 1.	2.6	356
45	SVM-based prediction of caspase substrate cleavage sites. BMC Bioinformatics, 2006, 7, S14.	2.6	53
46	Large-scale analysis of antigenic diversity of T-cell epitopes in dengue virus. BMC Bioinformatics, 2006, 7, S4.	2.6	37
47	Prediction of desmoglein-3 peptides reveals multiple shared T-cell epitopes in HLA DR4- and DR6- associated Pemphigus vulgaris. BMC Bioinformatics, 2006, 7, S7.	2.6	81
48	ASGS: an alternative splicing graph web service. Nucleic Acids Research, 2006, 34, W444-W447.	14.5	14
49	Prediction of HLA-DQ3.2β Ligands: evidence of multiple registers in class II binding peptides. Bioinformatics, 2006, 22, 1232-1238.	4.1	42
50	Methods and protocols for prediction of immunogenic epitopes. Briefings in Bioinformatics, 2006, 8, 96-108.	6.5	91
51	PROCESS INTEGRATION FOR BIO-MANUFACTURING GRID. , 2006, , .		0
52	Accurate prediction of scorpion toxin functional properties from primary structures. Journal of Molecular Graphics and Modelling, 2005, 24, 17-24.	2.4	12
53	SPdba signal peptide database. BMC Bioinformatics, 2005, 6, 249.	2.6	78
54	Extraction by Example: Induction of Structural Rules for the Analysis of Molecular Sequence Data from Heterogeneous Sources. Lecture Notes in Computer Science, 2005, , 398-405.	1.3	3

TIN WEE TAN

#	Article	IF	CITATIONS
55	BIOLOGICAL DATABASES AND WEB SERVICES: METRICS FOR QUALITY. Series on Advances in Bioinformatics and Computational Biology, 2005, , 771-777.	0.2	0
56	Supporting the curation of biological databases with reusable text mining. Genome Informatics, 2005, 16, 32-44.	0.4	15
57	SDPMOD: an automated comparative modeling server for small disulfide-bonded proteins. Nucleic Acids Research, 2004, 32, W356-W359.	14.5	18
58	DEDB: a database of Drosophila melanogaster exons in splicing graph form. BMC Bioinformatics, 2004, 5, 189.	2.6	31
59	Xpro: database of eukaryotic protein-encoding genes. Nucleic Acids Research, 2004, 32, 59D-63.	14.5	21
60	Modeling the structure of bound peptide ligands to major histocompatibility complex. Protein Science, 2004, 13, 2523-2532.	7.6	84
61	The S-star trial bioinformatics course: An on-line learning success. Biochemistry and Molecular Biology Education, 2003, 31, 20-23.	1.2	18
62	MGAlignIt: a web service for the alignment of mRNA/EST and genomic sequences. Nucleic Acids Research, 2003, 31, 3533-3536.	14.5	32
63	MPID: MHC-Peptide Interaction Database for sequence-structure-function information on peptides binding to MHC molecules. Bioinformatics, 2003, 19, 309-310.	4.1	35
64	XdomView: protein domain and exon position visualization. Bioinformatics, 2003, 19, 159-160.	4.1	9
65	APBioNet: the Asia-Pacific regional consortium for bioinformatics. Applied Bioinformatics, 2002, 1, 101-5.	1.6	7
66	A functional significance for codon third bases. Gene, 2000, 245, 291-298.	2.2	54