

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4340225/publications.pdf Version: 2024-02-01

FCYOOT

#	Article	lF	CITATIONS
1	Deciphering the Molecular Mechanisms of Chilling Tolerance in Lsi1-Overexpressing Rice. International Journal of Molecular Sciences, 2022, 23, 4667.	4.1	4
2	Silicon Modulates Molecular and Physiological Activities in Lsi1 Transgenic and Wild Lemont Rice Seedlings under Arsenic Stress. Agronomy, 2021, 11, 1532.	3.0	4
3	Usage of Si, P, Se, and Ca Decrease Arsenic Concentration/Toxicity in Rice, a Review. Applied Sciences (Switzerland), 2021, 11, 8090.	2.5	11
4	Comparison of Silicon-Evoked Responses on Arsenic Stress between Different Dular Rice Genotypes. Plants, 2021, 10, 2210.	3.5	4
5	MYB57 transcriptionally regulates MAPK11 to interact with PAL2;3 and modulate rice allelopathy. Journal of Experimental Botany, 2020, 71, 2127-2141.	4.8	14
6	Physiochemical mechanisms involved in the improvement of grain-filling, rice quality mediated by related enzyme activities in the ratoon cultivation system. Field Crops Research, 2020, 258, 107962.	5.1	27
7	Serine hydroxymethyltransferase localised in the endoplasmic reticulum plays a role in scavenging H2O2 to enhance rice chilling tolerance. BMC Plant Biology, 2020, 20, 236.	3.6	15
8	Lsi1 plays an active role in enhancing the chilling tolerance of rice roots. Plant Growth Regulation, 2020, 90, 529-543.	3.4	7
9	Lsi1 modulates the antioxidant capacity of rice and protects against ultraviolet-B radiation. Plant Science, 2019, 278, 96-106.	3.6	14
10	Proteomic analysis of positive influence of alternate wetting and moderate soil drying on the process of rice grain filling. Plant Growth Regulation, 2018, 84, 533-548.	3.4	14
11	Increasing Rice Allelopathy by Induction of Barnyard Grass (Echinochloa crus-galli) Root Exudates. Journal of Plant Growth Regulation, 2018, 37, 745-754.	5.1	21
12	Protein Phosphatase (PP2C9) Induces Protein Expression Differentially to Mediate Nitrogen Utilization Efficiency in Rice under Nitrogen-Deficient Condition. International Journal of Molecular Sciences, 2018, 19, 2827.	4.1	18
13	Lsi1-regulated Cd uptake and phytohormones accumulation in rice seedlings in presence of Si. Plant Growth Regulation, 2018, 86, 149-157.	3.4	7
14	Overexpression of Lsi1 in cold-sensitive rice mediates transcriptional regulatory networks and enhances resistance to chilling stress. Plant Science, 2017, 262, 115-126.	3.6	41
15	Cadmium-stress mitigation through gene expression of rice and silicon addition. Plant Growth Regulation, 2017, 81, 91-101.	3.4	32
16	Mixed Phenolic Acids Mediated Proliferation of Pathogens Talaromyces helicus and Kosakonia sacchari in Continuously Monocultured Radix pseudostellariae Rhizosphere Soil. Frontiers in Microbiology, 2016, 7, 335.	3.5	66
17	Effect of silicon on grain yield of rice under cadmium-stress. Acta Physiologiae Plantarum, 2016, 38, 1.	2.1	18
18	Methyl-CpG binding domain protein acts to regulate the repair of cyclobutane pyrimidine dimers on rice DNA. Scientific Reports, 2016, 6, 34569.	3.3	8

Fcxoo7

#	Article	IF	CITATIONS
19	Role of allene oxide cyclase in the regulation of rice phenolic acids synthesis and allelopathic inhibition on barnyardgrass. Plant Growth Regulation, 2016, 79, 265-273.	3.4	5
20	Soil Microbial Community Structure and Metabolic Activity of Pinus elliottii Plantations across Different Stand Ages in a Subtropical Area. PLoS ONE, 2015, 10, e0135354.	2.5	41
21	Interaction of Pseudostellaria heterophylla with Fusarium oxysporum f.sp. heterophylla mediated by its root exudates in a consecutive monoculture system. Scientific Reports, 2015, 5, 8197.	3.3	57
22	Identification and comparative analysis of micro <scp>RNAs</scp> in barnyardgrass (<scp><i>E</i></scp> <i>chinochloa crusâ€galli</i>) in response to rice allelopathy. Plant, Cell and Environment, 2015, 38, 1368-1381.	5.7	30
23	Terminal Restriction Fragment Length Polymorphism Analysis of Soil Bacterial Communities under Different Vegetation Types in Subtropical Area. PLoS ONE, 2015, 10, e0129397.	2.5	18
24	Method for RNA extraction and cDNA library construction from microbes in crop rhizosphere soil. World Journal of Microbiology and Biotechnology, 2014, 30, 783-789.	3.6	7
25	Changes in Rice Allelopathy and Rhizosphere Microflora by Inhibiting Rice Phenylalanine Ammonia-Iyase Gene Expression. Journal of Chemical Ecology, 2013, 39, 204-212.	1.8	77
26	Barnyard grass stress up regulates the biosynthesis of phenolic compounds in allelopathic rice. Journal of Plant Physiology, 2012, 169, 1747-1753.	3.5	46
27	Proteomic and phosphoproteomic determination of ABA's effects on grain-filling of Oryza sativa L. inferior spikelets. Plant Science, 2012, 185-186, 259-273.	3.6	38
28	Molecular physiological mechanism on consecutive monoculture problems of Rehmannia glutinosa. Journal of Integrated OMICS, 2011, 1, .	0.5	0
29	Rice allelopathy and its properties of molecular ecology. Frontiers in Biology, 2010, 5, 255-262.	0.7	7
30	Molecular Physiological Properties of Rice on the Enhanced Weed-Suppression Ability Induced by Lower Phosphorus Supplies*. Ying Yong Yu Huan Jing Sheng Wu Xue Bao = Chinese Journal of Applied and Environmental Biology, 2010, 2009, 289-294.	0.1	0
31	Allelopathic Enhancement and Differential Gene Expression in Rice under Low Nitrogen Treatment. Journal of Chemical Ecology, 2008, 34, 688-695.	1.8	41