Rima Slim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4339819/publications.pdf

Version: 2024-02-01

71	3,451	29 h-index	57
papers	citations		g-index
73	73	73	2826
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A protein-truncating mutation in <i>CCNB3</i> in a patient with recurrent miscarriages and failure of meiosis I. Journal of Medical Genetics, 2022, 59, 568-570.	3.2	7
2	Novel pathogenic variants in <scp><i>NLRP7</i></scp> , <scp><i>NLRP5</i>,</scp> and <scp><i>PADI6</i></scp> in patients with recurrent hydatidiform moles and reproductive failure. Clinical Genetics, 2021, 99, 823-828.	2.0	17
3	The genetics of recurrent hydatidiform moles in Mexico: further evidence of a strong founder effect for one mutation in NLRP7 and its widespread. Journal of Assisted Reproduction and Genetics, 2021, 38, 1879-1886.	2.5	5
4	NLRP7 Promotes Choriocarcinoma Growth and Progression through the Establishment of an Immunosuppressive Microenvironment. Cancers, 2021, 13, 2999.	3.7	16
5	Comprehensive analysis of 204 sporadic hydatidiform moles: revisiting risk factors and their correlations with the molar genotypes. Modern Pathology, 2020, 33, 880-892.	5.5	19
6	A novel NLRP7 protein-truncating mutation associated with discordant and divergent p57 immunostaining in diploid biparental and triploid digynic moles. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2020, 477, 309-315.	2.8	9
7	Hydatidiform Moles. , 2019, , 485-497.		3
8	Microsatellite DNA Genotyping and Flow Cytometry Ploidy Analyses of Formalin-fixed Paraffin-embedded Hydatidiform Molar Tissues. Journal of Visualized Experiments, 2019, , .	0.3	2
9	The genetics of recurrent hydatidiform moles: new insights and lessons from a comprehensive analysis of 113 patients. Modern Pathology, 2018, 31, 1116-1130.	5.5	51
10	A bioinformatics transcriptome meta-analysis highlights the importance of trophoblast differentiation in the pathology of hydatidiform moles. Placenta, 2018, 65, 29-36.	1.5	4
11	Biallelic PADI6 variants linking infertility, miscarriages, and hydatidiform moles. European Journal of Human Genetics, 2018, 26, 1007-1013.	2.8	69
12	Causative Mutations and Mechanism of Androgenetic Hydatidiform Moles. American Journal of Human Genetics, 2018, 103, 740-751.	6.2	69
13	Antagonism of EG-VEGF Receptors as Targeted Therapy for Choriocarcinoma Progression <i>In Vitro</i> and <i>In Vivo</i> Clinical Cancer Research, 2017, 23, 7130-7140.	7.0	31
14	Recurrent triploid digynic conceptions and mature ovarian teratomas: Are they different manifestations of the same genetic defect?. Genes Chromosomes and Cancer, 2017, 56, 832-840.	2.8	7
15	Pathogenic variant in <i>NLRP7</i> (19q13.42) associated with recurrent gestational trophoblastic disease: Data from early embryo development observed during <i>in vitro</i> fertilization. Clinical and Experimental Reproductive Medicine, 2017, 44, 40.	1.5	23
16	Circulating Tumor DNA: A Potential Novel Diagnostic Approach in Gestational Trophoblastic Neoplasia. EBioMedicine, 2016, 4, 11-12.	6.1	4
17	Two novel mutations in the KHDC3L gene in Asian patients with recurrent hydatidiform mole. Human Genome Variation, 2016, 3, 16027.	0.7	26
18	The genomic architecture of NLRP7 is Alu rich and predisposes to disease-associated large deletions. European Journal of Human Genetics, 2016, 24, 1445-1452.	2.8	21

#	Article	IF	CITATIONS
19	Live births in women with recurrent hydatidiform mole and two NLRP7 mutations. Reproductive BioMedicine Online, 2015, 31, 120-124.	2.4	36
20	NLRP7 and KHDC3L, the two maternal-effect proteins responsible for recurrent hydatidiform moles, co-localize to the oocyte cytoskeleton. Human Reproduction, 2015, 30, 159-169.	0.9	55
21	NLRP7 inter-domain interactions: the NACHT-associated domain is the physical mediator for oligomeric assembly. Molecular Human Reproduction, 2014, 20, 990-1001.	2.8	20
22	Genetics and Epigenetics of Recurrent Hydatidiform Moles: Basic Science and Genetic Counselling. Current Obstetrics and Gynecology Reports, 2014, 3, 55-64.	0.8	76
23	Comprehensive genotype–phenotype correlations between <i>NLRP7</i> mutations and the balance between embryonic tissue differentiation and trophoblastic proliferation. Journal of Medical Genetics, 2014, 51, 623-634.	3.2	28
24	Molecular Genetics of the Usher Syndrome in Lebanon: Identification of 11 Novel Protein Truncating Mutations by Whole Exome Sequencing. PLoS ONE, 2014, 9, e107326.	2.5	10
25	Differential expression of E-cadherin, \hat{l}^2 -catenin, and Lewis x between invasive hydatidiform moles and post-molar choriocarcinomas. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2013, 462, 653-663.	2.8	15
26	Absence of KHDC3L mutations in Chinese patients with recurrent and sporadic hydatidiform moles. Cancer Genetics, 2013, 206, 327-329.	0.4	4
27	Report of four new patients with protein-truncating mutations in C6orf221/KHDC3L and colocalization with NLRP7. European Journal of Human Genetics, 2013, 21, 957-964.	2.8	59
28	NLRP7 and the Genetics of Hydatidiform Moles: Recent Advances and New Challenges. Frontiers in Immunology, 2013, 4, 242.	4.8	40
29	Recurrent Pregnancy Loss in a Woman With NLRP7 Mutation. International Journal of Gynecological Pathology, 2013, 32, 399-405.	1.4	15
30	NLRP7 and the genetics of post-molar choriocarcinomas in Senegal. Molecular Human Reproduction, 2012, 18, 52-56.	2.8	14
31	Targeted next-generation sequencing identifies a homozygous nonsense mutation in ABHD12, the gene underlying PHARC, in a family clinically diagnosed with Usher syndrome type 3. Orphanet Journal of Rare Diseases, 2012, 7, 59.	2.7	61
32	TMED2/p24 \hat{i}^2 1 is expressed in all gestational stages of human placentas and in choriocarcinoma cell lines. Placenta, 2012, 33, 214-219.	1.5	17
33	NLRP7 in the spectrum of reproductive wastage: rare non-synonymous variants confer genetic susceptibility to recurrent reproductive wastage. Journal of Medical Genetics, 2011, 48, 540-548.	3.2	68
34	Recurrent triploid and dispermic conceptions in patients with NLRP7 mutations. Placenta, 2011, 32, 409-412.	1.5	22
35	A novel 5-bp deletion in Clarin 1 in a family with Usher syndrome. Ophthalmic Genetics, $2011, 32, 245-249$.	1.2	8
36	A novel approach identifies new differentially methylated regions (DMRs) associated with imprinted genes. Genome Research, 2011, 21, 465-476.	5.5	101

#	Article	IF	CITATIONS
37	The genetics of recurrent hydatidiform moles in China: correlations between NLRP7 mutations, molar genotypes and reproductive outcomes. Molecular Human Reproduction, 2011, 17, 612-619.	2.8	39
38	NLRP7, a Nucleotide Oligomerization Domain-like Receptor Protein, Is Required for Normal Cytokine Secretion and Co-localizes with Golgi and the Microtubule-organizing Center. Journal of Biological Chemistry, 2011, 286, 43313-43323.	3.4	60
39	NLRP7 mutations in women with diploid androgenetic and triploid moles: a proposed mechanism for mole formation. Human Molecular Genetics, 2009, 18, 888-897.	2.9	84
40	A novel VPS13B mutation in two brothers with Cohen syndrome, cutis verticis gyrata and sensorineural deafness. European Journal of Human Genetics, 2009, 17, 1076-1079.	2.8	11
41	A strong founder effect for two <i>NLRP7</i> mutations in the Indian population: an intriguing observation. Clinical Genetics, 2009, 76, 292-295.	2.0	34
42	The infevers autoinflammatory mutation online registry: update with new genes and functions. Human Mutation, 2008, 29, 803-808.	2.5	239
43	Women heterozygous forNALP7/NLRP7 mutations are at risk for reproductive wastage: report of two novel mutations. Human Mutation, 2007, 28, 741-741.	2.5	78
44	The genetics of hydatidiform moles: new lights on an ancient disease. Clinical Genetics, 2006, 71, 25-34.	2.0	65
45	Detailed gene and allele content analysis of three homozygous KIR haplotypes. Tissue Antigens, 2006, 68, 72-77.	1.0	17
46	Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nature Genetics, 2006, 38, 300-302.	21.4	419
47	Familial molar tissues due to mutations in the inflammatory gene, NALP7, have normal postzygotic DNA methylation. Human Genetics, 2006, 120, 390-395.	3.8	31
48	Familial Hydatidiform Molar Pregnancy: The Germline Imprinting Defect Hypothesis?., 2006, 301, 229-241.		6
49	Patients with familial biparental hydatidiform moles have normal methylation at imprinted genes. European Journal of Human Genetics, 2005, 13, 486-490.	2.8	20
50	Evidence of a genetic heterogeneity of familial hydatidiform moles. Placenta, 2005, 26, 5-9.	1.5	23
51	Maternal alleles acquiring paternal methylation patterns in biparental complete hydatidiform moles. Human Molecular Genetics, 2003, 12, 1405-1413.	2.9	129
52	Two families from New England with usher syndrome type IC with distinct haplotypes. American Journal of Ophthalmology, 2001, 131, 355-358.	3.3	4
53	Microcephaly, cutis verticis gyrata of the scalp, retinitis pigmentosa, cataracts, sensorineural deafness, and mental retardation in two brothers. American Journal of Medical Genetics Part A, 2001, 98, 244-249.	2.4	16
54	The human homologue (PEG3) of the mouse paternally expressed gene 3 (Peg3) is maternally imprinted but not mutated in women with familial recurrent hydatidiform molar pregnancies. Journal of the Society for Gynecologic Investigation, 2001, 8, 305-313.	1.7	7

#	Article	IF	Citations
55	A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies Usher syndrome type 1C. Nature Genetics, 2000, 26, 51-55.	21.4	449
56	Genetic Mapping of a Maternal Locus Responsible for Familial Hydatidiform Moles. Human Molecular Genetics, 1999, 8, 667-667.	2.9	130
57	A familial case of recurrent hydatidiform molar pregnancies with biparental genomic contribution. Human Genetics, 1999, 105, 112-115.	3.8	92
58	The Usher syndrome in the Lebanese population and further refinement of the USH2A candidate region. Human Genetics, 1998, 103, 193-198.	3.8	17
59	Further refinement of Pendred syndrome locus by homozygosity analysis to a 0.8 cM interval flanked by D7S496 and D7S2425 Journal of Medical Genetics, 1998, 35, 202-204.	3.2	3
60	Map refinement of the Usher syndrome type 1B gene, MYO7A, relative to 11q13.5 microsatellite markers. Clinical Genetics, 1998, 54, 155-158.	2.0	4
61	A newly identified locus for Usher syndrome type I, USH1E, maps to chromosome 21q21. Human Molecular Genetics, 1997, 6, 27-31.	2.9	101
62	Prenatal identification of an isochromosome for the short arm of the Y i(Yp), by cytogenetic and Molecular analyses. Prenatal Diagnosis, 1994, 14, 23-28.	2.3	11
63	A proposed new contiguous gene syndrome on 8q consists of Branchio-Oto-Renal (BOR) syndrome, Duane syndrome, a dominant form of hydrocephalus and trapeze aplasia; implications for the mapping of the BOR gene. Human Molecular Genetics, 1994, 3, 1859-1866.	2.9	121
64	Assignments of 37 YAC clones to R-banded chromosomes by fluorescent in situ hybridization. Cytogenetic and Genome Research, 1994, 65, 104-107.	1.1	4
65	Rearrangements between irradiated chromosomes in three-species radiation hybrid cell lines revealed by two-color in situ hybridization. Human Genetics, 1993, 92, 11-17.	3.8	12
66	A Human Pseudoautosomal Gene Encodes the ANT3 ADP/ATP Translocase and Escapes X-Inactivation. Genomics, 1993, 16, 26-33.	2.9	55
67	Construction of a Yeast Artificial Chromosome Contig Spanning the Pseudoautosomal Region and Isolation of 25 New Sequence-Tagged Sites. Genomics, 1993, 16, 691-697.	2.9	21
68	A cytokine receptor gene cluster in the X-Y pseudoautosomal region?. Blood, 1993, 82, 22-28.	1.4	45
69	The neurofibromatosis 1 gene transcripts expressed in peripheral nerve and neurofibromas bear the additional exon located in the GAP domain. Biochemical and Biophysical Research Communications, 1992, 188, 851-857.	2.1	14
70	The human placental protein 14 (PP14) gene is localized on chromosome 9q34. Human Genetics, 1991, 86, 515-518.	3.8	39
71	Relative order determination of four Yp cosmids on metaphase and interphase chromosomes by two-color competitive in situ hybridization. Human Genetics, 1991, 88, 21-26.	3.8	16