
Melissa K Gardner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/433975/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Centromere Tension Measurement in Budding Yeast Mitosis. Methods in Molecular Biology, 2022, 2415, 199-210.	0.9	1
2	Quantification of microtubule stutters: dynamic instability behaviors that are strongly associated with catastrophe. Molecular Biology of the Cell, 2022, 33, mbcE20060348.	2.1	10
3	Kinesin-14 motors participate in a force balance at microtubule plus-ends to regulate dynamic instability. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119,	7.1	10
4	Straightening up is required to nucleate new microtubules. Journal of Cell Biology, 2021, 220, .	5.2	1
5	Oxidative stress pathogenically remodels the cardiac myocyte cytoskeleton via structural alterations to the microtubule lattice. Developmental Cell, 2021, 56, 2252-2266.e6.	7.0	28
6	UNC-45A Breaks MT Lattice Independent of its Effect on Non-Muscle Myosin II. Journal of Cell Science, 2021, 134, .	2.0	8
7	Non-enzymatic Activity of the α-Tubulin Acetyltransferase αTAT Limits Synaptic Bouton Growth in Neurons. Current Biology, 2020, 30, 610-623.e5.	3.9	5
8	Is there a role for GPs in teaching neurology to medical students? A qualitative evaluation. Education for Primary Care, 2019, 30, 110-116.	0.6	3
9	Centromere mechanical maturation during mammalian cell mitosis. Nature Communications, 2019, 10, 1761.	12.8	19
10	A Gradient in Metaphase Tension Leads to a Scaled Cellular Response in Mitosis. Developmental Cell, 2019, 49, 63-76.e10.	7.0	25
11	UNC-45A Is a Novel Microtubule-Associated Protein and Regulator of Paclitaxel Sensitivity in Ovarian Cancer Cells. Molecular Cancer Research, 2019, 17, 370-383.	3.4	21
12	Structural state recognition facilitates tip tracking of EB1 at growing microtubule ends. ELife, 2019, 8, .	6.0	22
13	Long term effect of primary health care training on HIV testing: A quasi-experimental evaluation of the Sexual Health in Practice (SHIP) intervention. PLoS ONE, 2018, 13, e0199891.	2.5	7
14	Talking to your patients about female genital mutilation. InnovAiT, 2017, 10, 304-306.	0.0	1
15	Manipulation and quantification of microtubule lattice integrity. Biology Open, 2017, 6, 1245-1256.	1.2	21
16	Geometry and expression enhance enrichment of functional yeastâ€displayed ligands via cell panning. Biotechnology and Bioengineering, 2016, 113, 2328-2341.	3.3	32
17	Cell Biology: Microtubule Collisions to the Rescue. Current Biology, 2016, 26, R1287-R1289.	3.9	2
18	Mechanism of microtubule lumen entry for the α-tubulin acetyltransferase enzyme αTAT1. Proceedings of the United States of America, 2016, 113, F7176-F7184	7.1	95

Melissa K Gardner

#	Article	IF	CITATIONS
19	A novel role for SALL4 during scar-free wound healing in axolotl. Npj Regenerative Medicine, 2016, 1, .	5.2	22
20	A noncatalytic function of the topoisomerase II CTD in Aurora B recruitment to inner centromeres during mitosis. Journal of Cell Biology, 2016, 213, 651-664.	5.2	38
21	Coordination of autophagosome-lysosome fusion and transport by a Klp98A-Rab14 complex. Journal of Cell Science, 2016, 129, 971-82.	2.0	39
22	Interactions between the Microtubule Binding Protein EB1 and F-Actin. Journal of Molecular Biology, 2016, 428, 1304-1314.	4.2	21
23	Suppression of microtubule assembly kinetics by the mitotic protein TPX2. Journal of Cell Science, 2016, 129, 1319-28.	2.0	45
24	Microtubule binding distinguishes dystrophin from utrophin. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5723-5728.	7.1	132
25	Quantitative Analysis of Microtubule Self-assembly Kinetics and Tip Structure. Methods in Enzymology, 2014, 540, 35-52.	1.0	36
26	Minus-End-Directed Kinesin-14 Motors Align Antiparallel Microtubules to Control Metaphase Spindle Length. Developmental Cell, 2014, 31, 61-72.	7.0	71
27	Pericentromere tension is self-regulated by spindle structure in metaphase. Journal of Cell Biology, 2014, 205, 313-324.	5.2	49
28	Evolving Tip Structures Can Explain Age-Dependent Microtubule Catastrophe. Current Biology, 2013, 23, 1342-1348.	3.9	116
29	CENP-E hangs on at dynamic microtubule ends. Nature Cell Biology, 2013, 15, 1030-1032.	10.3	0
30	Analysis and Modeling of Chromosome Congression During Mitosis in the Chemotherapy Drug Cisplatin. Cellular and Molecular Bioengineering, 2013, 6, 406-417.	2.1	6
31	Microtubule catastrophe and rescue. Current Opinion in Cell Biology, 2013, 25, 14-22.	5.4	151
32	Islands Containing Slowly Hydrolyzable GTP Analogs Promote Microtubule Rescues. PLoS ONE, 2012, 7, e30103.	2.5	48
33	Dynein Tethers and Stabilizes Dynamic Microtubule Plus Ends. Current Biology, 2012, 22, 632-637.	3.9	102
34	Rapid Microtubule Self-Assembly Kinetics. Cell, 2011, 146, 582-592.	28.9	201
35	Depolymerizing Kinesins Kip3 and MCAK Shape Cellular Microtubule Architecture by Differential Control of Catastrophe. Cell, 2011, 147, 1092-1103.	28.9	201
36	Kif18A Uses a Microtubule Binding Site in the Tail for Plus-End Localization and Spindle Length Regulation. Current Biology, 2011, 21, 1500-1506.	3.9	95

Melissa K Gardner

#	Article	IF	CITATIONS
37	Microtubule Tip Tracking and Tip Structures at the Nanometer Scale Using Digital Fluorescence Microscopy. Cellular and Molecular Bioengineering, 2011, 4, 192-204.	2.1	55
38	Model Convolution: A Computational Approach to Digital Image Interpretation. Cellular and Molecular Bioengineering, 2010, 3, 163-170.	2.1	32
39	Slk19p of Saccharomyces cerevisiae Regulates Anaphase Spindle Dynamics Through Two Independent Mechanisms. Genetics, 2010, 186, 1247-1260.	2.9	10
40	Stochastic simulation and graphic visualization of mitotic processes. Methods, 2010, 51, 251-256.	3.8	8
41	Highly Variable Microtubule Assembly Dynamics Reflect Near-Kilohertz Kinetics: Evidence Against Traditional Linear Growth Theory. Biophysical Journal, 2010, 98, 363a.	0.5	0
42	Dam1 complexes go it alone on disassembling microtubules. Nature Cell Biology, 2008, 10, 379-381.	10.3	9
43	Microtubule assembly dynamics: new insights at the nanoscale. Current Opinion in Cell Biology, 2008, 20, 64-70.	5.4	57
44	Kinesin-8 molecular motors: putting the brakes on chromosome oscillations. Trends in Cell Biology, 2008, 18, 307-310.	7.9	55
45	Chromosome Congression by Kinesin-5 Motor-Mediated Disassembly of Longer Kinetochore Microtubules. Cell, 2008, 135, 894-906.	28.9	168
46	The microtubule-based motor Kar3 and plus end–binding protein Bim1 provide structural support for the anaphase spindle. Journal of Cell Biology, 2008, 180, 91-100.	5.2	64
47	Hypothesis testing via integrated computer modeling and digital fluorescence microscopy. Methods, 2007, 41, 232-237.	3.8	19
48	Microtubule Assembly Dynamics at the Nanoscale. Current Biology, 2007, 17, 1445-1455.	3.9	159
49	Modeling of chromosome motility during mitosis. Current Opinion in Cell Biology, 2006, 18, 639-647.	5.4	33
50	Mps1 Phosphorylation of Dam1 Couples Kinetochores to Microtubule Plus Ends at Metaphase. Current Biology, 2006, 16, 1489-1501.	3.9	93
51	Asymmetric Division: Motor Persistence Pays off. Current Biology, 2006, 16, R1021-R1023.	3.9	0
52	Tension-dependent Regulation of Microtubule Dynamics at Kinetochores Can Explain Metaphase Congression in Yeast. Molecular Biology of the Cell, 2005, 16, 3764-3775.	2.1	124
53	Stable Kinetochore-Microtubule Attachment Constrains Centromere Positioning in Metaphase. Current Biology, 2004, 14, 1962-1967.	3.9	144