David Nogués-Bravo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4339718/publications.pdf

Version: 2024-02-01

56 papers 7,989 citations

36 h-index 55 g-index

60 all docs 60 does citations

60 times ranked

12173 citing authors

#	Article	IF	CITATIONS
1	Processâ€explicit models reveal pathway to extinction for woolly mammoth using patternâ€oriented validation. Ecology Letters, 2022, 25, 125-137.	6.4	22
2	Exposure of mammal genetic diversity to midâ€21st century global change. Ecography, 2021, 44, 817-831.	4.5	25
3	Using paleo-archives to safeguard biodiversity under climate change. Science, 2020, 369, .	12.6	98
4	Evolutionary history and past climate change shape the distribution of genetic diversity in terrestrial mammals. Nature Communications, 2020, 11, 2557.	12.8	62
5	The role of cryptic diversity and its environmental correlates in global conservation status assessments: Insights from the threatened bird'sâ€eye primrose (<i>Primula farinosa</i> L.). Diversity and Distributions, 2019, 25, 1457-1471.	4.1	15
6	Abrupt Change in Climate and Biotic Systems. Current Biology, 2019, 29, R1045-R1054.	3.9	37
7	Humboldt's enigma: What causes global patterns of mountain biodiversity?. Science, 2019, 365, 1108-1113.	12.6	505
8	Building mountain biodiversity: Geological and evolutionary processes. Science, 2019, 365, 1114-1119.	12.6	415
9	The population history of northeastern Siberia since the Pleistocene. Nature, 2019, 570, 182-188.	27.8	259
10	Persistence of genetic diversity and phylogeographic structure of three New Zealand forest beetles under climate change. Diversity and Distributions, 2019, 25, 142-153.	4.1	12
11	Cracking the Code of Biodiversity Responses to Past Climate Change. Trends in Ecology and Evolution, 2018, 33, 765-776.	8.7	119
12	Late Quaternary horses in Eurasia in the face of climate and vegetation change. Science Advances, 2018, 4, eaar5589.	10.3	32
13	Phylogeny and the prediction of tree functional diversity across novel continental settings. Global Ecology and Biogeography, 2017, 26, 553-562.	5.8	31
14	Niche dynamics of Palaeolithic modern humans during the settlement of the Palaearctic. Global Ecology and Biogeography, 2017, 26, 359-370.	5.8	19
15	A second horizon scan of biogeography: Golden Ages, Midas touches, and the Red Queen. Frontiers of Biogeography, 2016, 8, .	1.8	3
16	An Anthropocene map of genetic diversity. Science, 2016, 353, 1532-1535.	12.6	251
17	Climate change not to blame for late Quaternary megafauna extinctions in Australia. Nature Communications, 2016, 7, 10511.	12.8	109
18	Rewilding is the new Pandora's box in conservation. Current Biology, 2016, 26, R87-R91.	3.9	132

#	Article	IF	Citations
19	High proportion of smaller ranged hummingbird species coincides with ecological specialization across the Americas. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152512.	2.6	32
20	The macroecology of phylogenetically structured hummingbird–plant networks. Global Ecology and Biogeography, 2015, 24, 1212-1224.	5. 8	100
21	Linking environmental filtering and disequilibrium to biogeography with a community climate framework. Ecology, 2015, 96, 972-985.	3.2	70
22	Looking forward through the past: identification of 50 priority research questions in palaeoecology. Journal of Ecology, 2014, 102, 256-267.	4.0	212
23	Integrating multiple lines of evidence into historical biogeography hypothesis testing: a <i>Bison bison</i> case study. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132782.	2.6	41
24	Phenotypic correlates of potential range size and range filling in European trees. Perspectives in Plant Ecology, Evolution and Systematics, 2014, 16, 219-227.	2.7	39
25	Better forecasts of range dynamics using genetic data. Trends in Ecology and Evolution, 2014, 29, 436-443.	8.7	93
26	Phylogeography: spanning the ecologyâ€evolution continuum. Ecography, 2013, 36, 1169-1181.	4.5	45
27	Climate and humans set the place and time of Proboscidean extinction in late Quaternary of South America. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 392, 546-556.	2.3	25
28	An Update of Wallace's Zoogeographic Regions of the World. Science, 2013, 339, 74-78.	12.6	1,037
29	Climate envelope models suggest spatioâ€temporal coâ€occurrence of refugia of <scp>A</scp> frican birds and mammals. Global Ecology and Biogeography, 2013, 22, 351-363.	5 . 8	45
30	Historical climateâ€change influences modularity and nestedness of pollination networks. Ecography, 2013, 36, 1331-1340.	4.5	116
31	Response to Comment on "An Update of Wallace's Zoogeographic Regions of the World― Science, 2013, 341, 343-343.	12.6	15
32	Human arrival scenarios have a strong influence on interpretations of the late Quaternary extinctions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2409-10; author reply E2411.	7.1	8
33	Modeling the potential area of occupancy at fine resolution may reduce uncertainty in species range estimates. Biological Conservation, 2012, 147, 190-196.	4.1	47
34	Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change. Journal of Biogeography, 2012, 39, 162-176.	3.0	132
35	Why Do Tropical Mountains Support Exceptionally High Biodiversity? The Eastern Arc Mountains and the Drivers of Saintpaulia Diversity. PLoS ONE, 2012, 7, e48908.	2.5	43
36	Potential suitable areas of giant ground sloths dropped before its extinction in South America: the evidences from bioclimatic envelope modeling. Natureza A Conservacao, 2012, 10, 145-151.	2.5	16

#	Article	lF	CITATIONS
37	Communities Under Climate Change. Science, 2011, 334, 1070-1071.	12.6	45
38	Species-specific responses of Late Quaternary megafauna to climate and humans. Nature, 2011, 479, 359-364.	27.8	586
39	Applications of species distribution modeling to paleobiology. Quaternary Science Reviews, 2011, 30, 2930-2947.	3.0	243
40	Climate change threatens European conservation areas. Ecology Letters, 2011, 14, 484-492.	6.4	660
41	lce age climate, evolutionary constraints and diversity patterns of European dung beetles. Ecology Letters, 2011, 14, 741-748.	6.4	183
42	21st century climate change threatens mountain flora unequally across Europe. Global Change Biology, 2011, 17, 2330-2341.	9.5	478
43	CLIMATE PREDICTORS OF LATE QUATERNARY EXTINCTIONS. Evolution; International Journal of Organic Evolution, 2010, 64, no-no.	2.3	77
44	Celebrating the diversity of biogeographical research. Ecography, 2010, 33, 209-211.	4.5	0
45	Ensemble forecasting shifts in climatically suitable areas for <i>Tropidacris cristata</i> (Orthoptera:) Tj ETQq1 1	0.784314	rgBT /Overlo
46	Predicting the past distribution of species climatic niches. Global Ecology and Biogeography, 2009, 18, 521-531.	5.8	406
47	Measurements of area and the (island) species–area relationship: new directions for an old pattern. Oikos, 2008, 117, 1555-1559.	2.7	51
48	Quaternary climate changes explain diversity among reptiles and amphibians. Ecography, 2008, 31, 8-15.	4.5	345
49	Climate Change, Humans, and the Extinction of the Woolly Mammoth. PLoS Biology, 2008, 6, e79.	5.6	250
50	Creative Use of Mountain Biodiversity Databases: The Kazbegi Research Agenda of GMBA-DIVERSITAS. Mountain Research and Development, 2007, 27, 276-281.	1.0	16
51	data for five taxa. Global Ecology and Biogeography, 2007, 16, 76-89.	5.8	198
52	Change of topographic control on the extent of cirque glaciers since the Little Ice Age. Geophysical Research Letters, 2006, 33, .	4.0	26
53	Species richness, area and climate correlates. Global Ecology and Biogeography, 2006, 15, 452-460.	5.8	48
54	Assessing the effect of environmental and anthropogenic factors on land-cover diversity in a Mediterranean mountain environment. Area, 2006, 38, 432-444.	1.6	17

#	Article	IF	CITATIONS
55	data for five taxa. Global Ecology and Biogeography, 2006, .	5.8	6
56	Factors controlling the spatial species richness pattern of four groups of terrestrial vertebrates in an area between two different biogeographic regions in northern Spain. Journal of Biogeography, 2004, 31, 629-640.	3.0	34