Lain-Jong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4339592/publications.pdf

Version: 2024-02-01

813 784 66,146 451 118 248 citations h-index g-index papers 458 458 458 51416 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Liquid-phase catalytic growth of graphene. Journal of Materials Chemistry C, 2022, 10, 571-578.	5.5	2
2	Wafer-scale single-orientation 2D layers by atomic edge-guided epitaxial growth. Chemical Society Reviews, 2022, 51, 803-811.	38.1	18
3	2D Materialsâ€Based Static Randomâ€Access Memory. Advanced Materials, 2022, 34, e2107894.	21.0	12
4	Two-Dimensional Cs ₂ AgBiBr ₆ /WS ₂ Heterostructure-Based Photodetector with Boosted Detectivity via Interfacial Engineering. ACS Nano, 2022, 16, 3985-3993.	14.6	49
5	Bi ₂ O ₂ Se-Based True Random Number Generator for Security Applications. ACS Nano, 2022, 16, 6847-6857.	14.6	18
6	Alloy-buffer-controlled van der Waals epitaxial growth of aligned tellurene. Nano Research, 2022, 15, 5712-5718.	10.4	4
7	Unusual Activity of Rationally Designed Cobalt Phosphide/Oxide Heterostructure Composite for Hydrogen Production in Alkaline Medium. ACS Nano, 2022, 16, 3906-3916.	14.6	50
8	High-l̂º perovskite membranes as insulators for two-dimensional transistors. Nature, 2022, 605, 262-267.	27.8	109
9	Nanoscale Electronic Transparency of Wafer-Scale Hexagonal Boron Nitride. Nano Letters, 2022, , .	9.1	2
10	Directly Visualizing Photoinduced Renormalized Momentum-Forbidden Electronic Quantum States in an Atomically Thin Semiconductor. ACS Nano, 2022, 16, 9660-9666.	14.6	1
11	Electric-field-induced metal-insulator transition and quantum transport in large-area polycrystalline <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2<td>2:4 mn:><td>nl:msub></td></td></mml:mn></mml:msub></mml:math 	2:4 mn:> <td>nl:msub></td>	nl:msub>
12	Low-defect-density WS2 by hydroxide vapor phase deposition. Nature Communications, 2022, 13, .	12.8	37
13	Ultrasensitive broadband photodetectors based on two-dimensional Bi ₂ O ₂ Te films. Journal of Materials Chemistry C, 2021, 9, 13713-13721.	5.5	12
14	One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nature Communications, 2021, 12, 709.	12.8	137
15	High On-State Current in Chemical Vapor Deposited Monolayer MoS ₂ nFETs With Sn Ohmic Contacts. IEEE Electron Device Letters, 2021, 42, 272-275.	3.9	38
16	Strain-Directed Layer-By-Layer Epitaxy Toward van der Waals Homo- and Heterostructures. , 2021, 3, 442-453.		9
17	Bi ₂ O ₂ Se-Based Memristor-Aided Logic. ACS Applied Materials & amp; Interfaces, 2021, 13, 15391-15398.	8.0	16
18	Atomic-Layer Controlled Interfacial Band Engineering at Two-Dimensional Layered PtSe ₂ /Si Heterojunctions for Efficient Photoelectrochemical Hydrogen Production. ACS Nano, 2021, 15, 4627-4635.	14.6	27

#	Article	IF	Citations
19	Lithiumâ€ion Desolvation Induced by Nitrate Additives Reveals New Insights into High Performance Lithium Batteries. Advanced Functional Materials, 2021, 31, 2101593.	14.9	100
20	Giant Ferroelectric Resistance Switching Controlled by a Modulatory Terminal for Lowâ€Power Neuromorphic Inâ€Memory Computing. Advanced Materials, 2021, 33, e2008709.	21.0	63
21	Optically Controlled Ferroelectric Nanodomains for Logic-in-Memory Photonic Devices With Simplified Structures. IEEE Transactions on Electron Devices, 2021, 68, 1992-1995.	3.0	11
22	Typeâ€l Energy Level Alignment at the PTCDAâ€"Monolayer MoS ₂ Interface Promotes Resonance Energy Transfer and Luminescence Enhancement. Advanced Science, 2021, 8, 2100215.	11.2	19
23	Ferroelectric Switching: Giant Ferroelectric Resistance Switching Controlled by a Modulatory Terminal for Lowâ€Power Neuromorphic Inâ€Memory Computing (Adv. Mater. 21/2021). Advanced Materials, 2021, 33, 2170167.	21.0	1
24	Temperatureâ€Dependent Electronic Groundâ€State Charge Transfer in van der Waals Heterostructures. Advanced Materials, 2021, 33, e2008677.	21.0	12
25	Ultralow contact resistance between semimetal and monolayer semiconductors. Nature, 2021, 593, 211-217.	27.8	579
26	Atomic Layer Nucleation Engineering: Inhibitor-Free Area-Selective Atomic Layer Deposition of Oxide and Nitride. Chemistry of Materials, 2021, 33, 5584-5590.	6.7	6
27	Van der Waals Heterostructures: Temperatureâ€Dependent Electronic Groundâ€State Charge Transfer in van der Waals Heterostructures (Adv. Mater. 29/2021). Advanced Materials, 2021, 33, 2170229.	21.0	0
28	Spatial Control of Dynamic <i>p–i–n</i> Junctions in Transition Metal Dichalcogenide Light-Emitting Devices. ACS Nano, 2021, 15, 12911-12921.	14.6	8
29	The Schottky–Mott Rule Expanded for Two-Dimensional Semiconductors: Influence of Substrate Dielectric Screening. ACS Nano, 2021, 15, 14794-14803.	14.6	25
30	Bottom-Up Synthesized All-Thermal-Catalyst Aerogels for Heat-Regenerative Air Filtration. Nano Letters, 2021, 21, 8160-8165.	9.1	6
31	Capturing 3D atomic defects and phonon localization at the 2D heterostructure interface. Science Advances, 2021, 7, eabi6699.	10.3	13
32	Precision Chemistry in Two-Dimensional Materials: Adding, Removing, and Replacing the Atoms at Will. Accounts of Materials Research, 2021, 2, 863-868.	11.7	4
33	Van der Waals heterostructures with one-dimensional atomic crystals. Progress in Materials Science, 2021, 122, 100856.	32.8	29
34	Layered Semiconducting 2D Materials for Future Transistor Applications. Small Structures, 2021, 2, 2000103.	12.0	85
35	Recent Progress on Two-Dimensional Materials. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2021, .	4.9	269
36	Two-dimensional solid-phase crystallization toward centimeter-scale monocrystalline layered MoTe ₂ <i>via</i> two-step annealing. Journal of Materials Chemistry C, 2021, 9, 15566-15576.	5. 5	7

#	Article	IF	Citations
37	Transistors based on two-dimensional materials for future integrated circuits. Nature Electronics, 2021, 4, 786-799.	26.0	335
38	Unraveling the origin of ferroelectric resistance switching through the interfacial engineering of layered ferroelectric-metal junctions. Nature Communications, 2021, 12, 7291.	12.8	26
39	Strain engineering and epitaxial stabilization of halide perovskites. Nature, 2020, 577, 209-215.	27.8	417
40	High-Accuracy Deep Neural Networks Using a Contralateral-Gated Analog Synapse Composed of Ultrathin MoSâ,, nFET and Nonvolatile Charge-Trap Memory. IEEE Electron Device Letters, 2020, 41, 1649-1652.	3.9	3
41	Giant Electroresistance Switching of Two-dimensional Ferroelectric α-In2Se3 on p+-Si., 2020, , .		0
42	Yield, variability, reliability, and stability of two-dimensional materials based solid-state electronic devices. Nature Communications, 2020, 11, 5689.	12.8	62
43	Uncovering Atomic and Nano-scale Deformations in Two-dimensional Lateral Heterojunctions. Microscopy and Microanalysis, 2020, 26, 1630-1631.	0.4	0
44	Optoelectronic Ferroelectric Domainâ€Wall Memories Made from a Single Van Der Waals Ferroelectric. Advanced Functional Materials, 2020, 30, 2004206.	14.9	67
45	Additive manufacturing assisted van der Waals integration of 3D/3D hierarchically functional nanostructures. Communications Materials, 2020, 1 , .	6.9	5
46	<i>In Operando</i> X-ray Studies of High-Performance Lithium-Ion Storage in Keplerate-Type Polyoxometalate Anodes. ACS Applied Materials & Samp; Interfaces, 2020, 12, 40296-40309.	8.0	17
47	Epitaxial Growth and Determination of Band Alignment of Bi ₂ Te ₃ –WSe ₂ Vertical van der Waals Heterojunctions. , 2020, 2, 1351-1359.		9
48	Temperature-dependent optical constants of monolayer \$\${ext {MoS}}_2\$\$, \$\${ext {MoSe}}_2\$\$, \$\${ext {WS}}_2\$\$, and \$\${ext {WSe}}_2\$\$: spectroscopic ellipsometry and first-principles calculations. Scientific Reports, 2020, 10, 15282.	3.3	52
49	Ledge-directed epitaxy of continuously self-aligned single-crystalline nanoribbons of transition metal dichalcogenides. Nature Materials, 2020, 19, 1300-1306.	27.5	104
50	Energy-Efficient Monolithic 3-D SRAM Cell With BEOL MoS2 FETs for SoC Scaling. IEEE Transactions on Electron Devices, 2020, 67, 4216-4221.	3.0	11
51	Aberration-corrected STEM imaging of 2D materials: Artifacts and practical applications of threefold astigmatism. Science Advances, 2020, 6, .	10.3	13
52	Mobility-Fluctuation-Controlled Linear Positive Magnetoresistance in 2D Semiconductor Bi ₂ O ₂ Se Nanoplates. ACS Nano, 2020, 14, 11319-11326.	14.6	22
53	Bidirectional Allâ€Optical Synapses Based on a 2D Bi ₂ O ₂ Se/Graphene Hybrid Structure for Multifunctional Optoelectronics. Advanced Functional Materials, 2020, 30, 2001598.	14.9	123
54	Mixed-state electron ptychography enables sub-angstrom resolution imaging with picometer precision at low dose. Nature Communications, 2020, 11, 2994.	12.8	63

#	Article	IF	CITATIONS
55	Two-dimensional materials as anodes for sodium-ion batteries. Materials Today Advances, 2020, 6, 100054.	5.2	49
56	Nonvolatile molecular memory with the multilevel states based on MoS ₂ nanochannel field effect transistor through tuning gate voltage to control molecular configurations. Nanotechnology, 2020, 31, 275204.	2.6	3
57	Layer-Dependent and In-Plane Anisotropic Properties of Low-Temperature Synthesized Few-Layer PdSe ₂ Single Crystals. ACS Nano, 2020, 14, 4963-4972.	14.6	64
58	Wafer-scale single-crystal hexagonal boron nitride monolayers on CuÂ(111). Nature, 2020, 579, 219-223.	27.8	409
59	Self-Exfoliated Synthesis of Transition Metal Phosphate Nanolayers for Selective Aerobic Oxidation of Ethyl Lactate to Ethyl Pyruvate. ACS Catalysis, 2020, 10, 3958-3967.	11.2	17
60	Solution-Processed Mixed-Dimensional Hybrid Perovskite/Carbon Nanotube Electronics. ACS Nano, 2020, 14, 3969-3979.	14.6	30
61	Steam-Assisted Chemical Vapor Deposition of Zeolitic Imidazolate Framework., 2020, 2, 485-491.		26
62	Pinning-Free Edge Contact Monolayer MoS ₂ FET., 2020,,.		8
63	Reliability of Ultrathin High-κ Dielectrics on Chemical-vapor Deposited 2D Semiconductors. , 2020, , .		5
64	Switchable NAND and NOR Logic Computing in Single Triple-Gate Monolayer MoS2 n-FET., 2020, , .		3
65	Impact of Schottky Barrier on the Performance of Two-Dimensional Material Transistors., 2020,,.		2
66	Synergistic additive-mediated CVD growth and chemical modification of 2D materials. Chemical Society Reviews, 2019, 48, 4639-4654.	38.1	108
67	First demonstration of 40-nm channel length top-gate WS ₂ pFET using channel area-selective CVD growth directly on SiO _x /Si substrate., 2019,,.		22
68	An Aqueous Rechargeable Fluoride Ion Battery with Dual Fluoride Electrodes. Journal of the Electrochemical Society, 2019, 166, A2419-A2424.	2.9	19
69	Layer Rotation-Angle-Dependent Excitonic Absorption in van der Waals Heterostructures Revealed by Electron Energy Loss Spectroscopy. ACS Nano, 2019, 13, 9541-9550.	14.6	25
70	Growth of 2H stacked WSe ₂ bilayers on sapphire. Nanoscale Horizons, 2019, 4, 1434-1442.	8.0	20
71	Quasi-Two-Dimensional Se-Terminated Bismuth Oxychalcogenide (Bi ₂ O ₂ Se). ACS Nano, 2019, 13, 13439-13444.	14.6	61
72	New Insight on the Role of Electrolyte Additives in Rechargeable Lithium Ion Batteries. ACS Energy Letters, 2019, 4, 2613-2622.	17.4	160

#	Article	IF	Citations
73	Demonstration of 40-nm Channel Length Top-Gate p-MOSFET of WS $<$ sub $>2<$ /sub $>$ Channel Directly Grown on SiO5[x}5] /Si Substrates Using Area-Selective CVD Technology. IEEE Transactions on Electron Devices, 2019, 66, 5381-5386.	3.0	5
74	2D Materials Characterization: Should We Rely on HR STEM Imaging?. Microscopy and Microanalysis, 2019, 25, 1638-1639.	0.4	0
75	How 2D semiconductors could extend Moore's law. Nature, 2019, 567, 169-170.	27.8	222
76	Demonstration of the key substrate-dependent charge transfer mechanisms between monolayer MoS2 and molecular dopants. Communications Physics, 2019, 2, .	5.3	38
77	Graphene and two-dimensional materials for silicon technology. Nature, 2019, 573, 507-518.	27.8	936
78	Electrochemical Conversion of CO ₂ to 2-Bromoethanol in a Membraneless Cell. ACS Energy Letters, 2019, 4, 600-605.	17.4	21
79	Engineering Point-Defect States in Monolayer WSe ₂ . ACS Nano, 2019, 13, 1595-1602.	14.6	35
80	Scalable fabrication of a complementary logic inverter based on MoS ₂ fin-shaped field effect transistors. Nanoscale Horizons, 2019, 4, 683-688.	8.0	31
81	Electronic band dispersion determination in azimuthally disordered transition-metal dichalcogenide monolayers. Communications Physics, 2019, 2, .	5.3	11
82	Toward the Growth of High Mobility 2D Transition Metal Dichalcogenide Semiconductors. Advanced Materials Interfaces, 2019, 6, 1900220.	3.7	42
83	Gateâ€Tunable and Multidirectionâ€Switchable Memristive Phenomena in a Van Der Waals Ferroelectric. Advanced Materials, 2019, 31, e1901300.	21.0	121
84	Plasmonicâ€Enhanced Light Harvesting and Perovskite Solar Cell Performance Using Au Biometric Dimers with Broadband Structural Darkness. Solar Rrl, 2019, 3, 1900138.	5.8	34
85	Design and Mechanistic Study of Highly Durable Carbon-Coated Cobalt Diphosphide Core–Shell Nanostructure Electrocatalysts for the Efficient and Stable Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 20752-20761.	8.0	20
86	Point Defects and Localized Excitons in 2D WSe ₂ . ACS Nano, 2019, 13, 6050-6059.	14.6	127
87	Continuous desalination with a metal-free redox-mediator. Journal of Materials Chemistry A, 2019, 7, 13941-13947.	10.3	38
88	MXene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li–S battery. Nano Energy, 2019, 61, 478-485.	16.0	131
89	2D Materials: Metalâ€Guided Selective Growth of 2D Materials: Demonstration of a Bottomâ€Up CMOS Inverter (Adv. Mater. 18/2019). Advanced Materials, 2019, 31, 1970132.	21.0	1
90	One-Step Vapor-Phase Synthesis and Quantum-Confined Exciton in Single-Crystal Platelets of Hybrid Halide Perovskites. Journal of Physical Chemistry Letters, 2019, 10, 2363-2371.	4.6	25

#	Article	IF	Citations
91	Colorless-to-colorful switching electrochromic polyimides with very high contrast ratio. Nature Communications, 2019, 10, 1239.	12.8	109
92	Negative capacitance from the inductance of ferroelectric switching. Communications Physics, 2019, 2, .	5.3	14
93	Metalâ€Guided Selective Growth of 2D Materials: Demonstration of a Bottomâ€Up CMOS Inverter. Advanced Materials, 2019, 31, e1900861.	21.0	36
94	Cross-plane thermoelectric figure of merit in graphene - C60 heterostructures at room temperature. FlatChem, 2019, 14, 100089.	5.6	10
95	Dielectric impact on exciton binding energy and quasiparticle bandgap in monolayer WS ₂ and WSe ₂ . 2D Materials, 2019, 6, 025028.	4.4	44
96	Monolithic Heterogeneous Integration of BEOL Power Gating Transistors of Carbon Nanotube Networks with FEOL Si Ring Oscillator Circuits. , 2019, , .		5
97	Tailoring excitonic states of van der Waals bilayers through stacking configuration, band alignment, and valley spin. Science Advances, 2019, 5, eaax7407.	10.3	56
98	Effective N-methyl-2-pyrrolidone wet cleaning for fabricating high-performance monolayer MoS2 transistors. Nano Research, 2019, 12, 303-308.	10.4	13
99	Experimental observation of chiral phonons in monolayer WSe2., 2019,,.		0
100	Nanoscale Surface Photovoltage Mapping of 2D Materials and Heterostructures by Illuminated Kelvin Probe Force Microscopy. Journal of Physical Chemistry C, 2018, 122, 13564-13571.	3.1	30
101	Chemical hole doping into large-area transition metal dichalcogenide monolayers using boron-based oxidant. Japanese Journal of Applied Physics, 2018, 57, 02CB15.	1.5	9
102	Selfâ€Aligned and Scalable Growth of Monolayer WSe ₂ –MoS ₂ Lateral Heterojunctions. Advanced Functional Materials, 2018, 28, 1706860.	14.9	48
103	Liquid-solid surface phase transformation of fluorinated fullerene on monolayer tungsten diselenide. Physical Review B, 2018, 97, .	3.2	7
104	Multidirection Piezoelectricity in Mono- and Multilayered Hexagonal \hat{l} ±-In ₂ Se ₃ . ACS Nano, 2018, 12, 4976-4983.	14.6	215
105	Circular Dichroism Control of Tungsten Diselenide (WSe ₂) Atomic Layers with Plasmonic Metamolecules. ACS Applied Materials & Interfaces, 2018, 10, 15996-16004.	8.0	25
106	Negative circular polarization emissions from WSe2/MoSe2 commensurate heterobilayers. Nature Communications, 2018, 9, 1356.	12.8	88
107	Intercorrelated In-Plane and Out-of-Plane Ferroelectricity in Ultrathin Two-Dimensional Layered Semiconductor In ₂ Se ₃ . Nano Letters, 2018, 18, 1253-1258.	9.1	509
108	Observation of chiral phonons. Science, 2018, 359, 579-582.	12.6	217

#	Article	IF	Citations
109	MoS _x -coated NbS ₂ nanoflakes grown on glass carbon: an advanced electrocatalyst for the hydrogen evolution reaction. Nanoscale, 2018, 10, 3444-3450.	5.6	24
110	Strain distributions and their influence on electronic structures of WSe2–MoS2 laterally strained heterojunctions. Nature Nanotechnology, 2018, 13, 152-158.	31.5	206
111	Direct determination of monolayer MoS ₂ and WSe ₂ exciton binding energies on insulating and metallic substrates. 2D Materials, 2018, 5, 025003.	4.4	142
112	Transmissive-to-black fast electrochromic switching from a long conjugated pendant group and a highly dispersed polymer/SWNT. Polymer Chemistry, 2018, 9, 619-626.	3.9	29
113	New Insights on Graphite Anode Stability in Rechargeable Batteries: Li Ion Coordination Structures Prevail over Solid Electrolyte Interphases. ACS Energy Letters, 2018, 3, 335-340.	17.4	217
114	Functional Two-Dimensional Coordination Polymeric Layer as a Charge Barrier in Li–S Batteries. ACS Nano, 2018, 12, 836-843.	14.6	76
115	Selectively Plasmon-Enhanced Second-Harmonic Generation from Monolayer Tungsten Diselenide on Flexible Substrates. ACS Nano, 2018, 12, 1859-1867.	14.6	97
116	Observation of Wigner crystal phase and ripplon-limited mobility behavior in monolayer CVD MoS2with grain boundary. Nanotechnology, 2018, 29, 225707.	2.6	0
117	Epitaxial Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Growth Mechanism, Controllability, and Scalability. Chemical Reviews, 2018, 118, 6134-6150.	47.7	285
118	Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection. Biosensors and Bioelectronics, 2018, 99, 85-91.	10.1	60
119	Sub-nanometre channels embedded in two-dimensional materials. Nature Materials, 2018, 17, 129-133.	27.5	97
120	Synthesis and optoelectronic applications of graphene/transition metal dichalcogenides flat-pack assembly. Carbon, 2018, 127, 602-610.	10.3	15
121	Mapping Strain and Relaxation in 2D Heterojunctions with Sub-picometer Precision. Microscopy and Microanalysis, 2018, 24, 1588-1589.	0.4	0
122	Recognizing the Mechanism of Sulfurized Polyacrylonitrile Cathode Materials for Li–S Batteries and beyond in Al–S Batteries. ACS Energy Letters, 2018, 3, 2899-2907.	17.4	224
123	High Performance WSe <inf>2</inf> Transistors with Multilayer Graphene Source/Drain. , 2018, , .		0
124	Energy-Resolved Photoconductivity Mapping in a Monolayer–Bilayer WSe2 Lateral Heterostructure. Nano Letters, 2018, 18, 7200-7206.	9.1	26
125	Metal contact and carrier transport in single crystalline CH3NH3PbBr3 perovskite. Nano Energy, 2018, 53, 817-827.	16.0	26
126	Roomâ€Temperature Ferroelectricity in Hexagonally Layered αâ€In ₂ Se ₃ Nanoflakes down to the Monolayer Limit. Advanced Functional Materials, 2018, 28, 1803738.	14.9	241

#	Article	IF	CITATIONS
127	Recent Advances in van der Waals Heterojunctions Based on Semiconducting Transition Metal Dichalcogenides. Advanced Electronic Materials, 2018, 4, 1800270.	5.1	25
128	Efficient electrochemical transformation of CO ₂ to C ₂ /C ₃ chemicals on benzimidazole-functionalized copper surfaces. Chemical Communications, 2018, 54, 11324-11327.	4.1	39
129	Enhanced Emission from WSe ₂ Monolayers Coupled to Circular Bragg Gratings. ACS Photonics, 2018, 5, 3950-3955.	6.6	31
130	A Nanostructuring Method to Decouple Electrical and Thermal Transport through the Formation of Electrically Triggered Conductive Nanofilaments. Advanced Materials, 2018, 30, e1705385.	21.0	13
131	Phase Inversion Strategy to Flexible Freestanding Electrode: Critical Coupling of Binders and Electrolytes for High Performance Li–S Battery. Advanced Functional Materials, 2018, 28, 1802244.	14.9	64
132	Unraveling Spatially Heterogeneous Ultrafast Carrier Dynamics of Single-Layer WSe ₂ by Femtosecond Time-Resolved Photoemission Electron Microscopy. Nano Letters, 2018, 18, 5172-5178.	9.1	42
133	Two-dimensional materials with piezoelectric and ferroelectric functionalities. Npj 2D Materials and Applications, 2018, 2, .	7.9	258
134	Deep-ultraviolet Raman scattering spectroscopy of monolayer WS2. Scientific Reports, 2018, 8, 11398.	3.3	15
135	Thermoelectrics: A Nanostructuring Method to Decouple Electrical and Thermal Transport through the Formation of Electrically Triggered Conductive Nanofilaments (Adv. Mater. 28/2018). Advanced Materials, 2018, 30, 1870243.	21.0	0
136	Facile Doping in Two-Dimensional Transition-Metal Dichalcogenides by UV Light. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 29893-29901.	8.0	18
137	Circular Polarized Emission of Tungsten Diselenide (WSe2) Atomic Layers with Plasmonic Metasurface. , 2018, , .		0
138	Spectroscopic signature of chiral phonons in 2D materials. , 2018, , .		0
139	Dynamical observations on the crack tip zone and stress corrosion of two-dimensional MoS2. Nature Communications, 2017, 8, 14116.	12.8	69
140	Symmetrical synergy of hybrid Co9S8-MoSx electrocatalysts for hydrogen evolution reaction. Nano Energy, 2017, 32, 470-478.	16.0	116
141	Impact of N-plasma and Ga-irradiation on MoS2 layer in molecular beam epitaxy. Applied Physics Letters, 2017, 110, .	3.3	38
142	Interlayer couplings, Moir \tilde{A} © patterns, and 2D electronic superlattices in MoS <code>₂ /WSe ₂ hetero-bilayers</code> . Science Advances, 2017, 3, e1601459.	10.3	414
143	Scalable Approach To Construct Free-Standing and Flexible Carbon Networks for Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2017, 9, 8047-8054.	8.0	78
144	Band Alignment at GaN/Single-Layer WSe ₂ Interface. ACS Applied Materials & amp; Interfaces, 2017, 9, 9110-9117.	8.0	72

#	Article	IF	Citations
145	Facile synthesis of carbon/MoO 3 nanocomposites as stable battery anodes. Journal of Power Sources, 2017, 348, 270-280.	7.8	54
146	Ultrathin 1T-phase MoS 2 nanosheets decorated hollow carbon microspheres as highly efficient catalysts for solar energy harvesting and storage. Journal of Power Sources, 2017, 345, 156-164.	7.8	62
147	A Versatile and Simple Approach to Generate Light Emission in Semiconductors Mediated by Electric Double Layers. Advanced Materials, 2017, 29, 1606918.	21.0	37
148	Surface-reconstructed Cu electrode via a facile electrochemical anodization-reduction process for low overpotential CO2 reduction. Journal of Saudi Chemical Society, 2017, 21, 708-712.	5.2	8
149	Janus monolayers of transition metal dichalcogenides. Nature Nanotechnology, 2017, 12, 744-749.	31.5	1,459
150	Advances in Twoâ€Dimensional Layered Materials. Advanced Functional Materials, 2017, 27, 1701403.	14.9	11
151	InGaN/GaN nanowires epitaxy on large-area MoS2 for high-performance light-emitters. RSC Advances, 2017, 7, 26665-26672.	3.6	32
152	Graphene-Au nanoparticle based vertical heterostructures: A novel route towards high- ZT Thermoelectric devices. Nano Energy, 2017, 38, 385-391.	16.0	26
153	Extraordinarily Stretchable All arbon Collaborative Nanoarchitectures for Epidermal Sensors. Advanced Materials, 2017, 29, 1606411.	21.0	194
154	Nitrogen-Doped Nanoporous Carbon Membranes with Co/CoP Janus-Type Nanocrystals as Hydrogen Evolution Electrode in Both Acidic and Alkaline Environments. ACS Nano, 2017, 11, 4358-4364.	14.6	199
155	Synthesis of single-crystal-like nanoporous carbon membranes and their application in overall water splitting. Nature Communications, 2017, 8, 13592.	12.8	142
156	Atomic-Monolayer Two-Dimensional Lateral Quasi-Heterojunction Bipolar Transistors with Resonant Tunneling Phenomenon. ACS Nano, 2017, 11, 11015-11023.	14.6	45
157	Structurally Deformed MoS ₂ for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction. Advanced Materials, 2017, 29, 1703863.	21.0	107
158	Evidence of indirect gap in monolayer WSe2. Nature Communications, 2017, 8, 929.	12.8	98
159	2D Materials: Single Atomically Sharp Lateral Monolayer pâ€n Heterojunction Solar Cells with Extraordinarily High Power Conversion Efficiency (Adv. Mater. 32/2017). Advanced Materials, 2017, 29, .	21.0	0
160	Symmetric synergy of hybrid CoS ₂ –WS ₂ electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 15552-15558.	10.3	81
161	Type-I band alignment at MoS2/In0.15Al0.85N lattice matched heterojunction and realization of MoS2 quantum well. Applied Physics Letters, $2017,111,\ldots$	3.3	30
162	Metal–Organic Framework-Based Separators for Enhancing Li–S Battery Stability: Mechanism of Mitigating Polysulfide Diffusion. ACS Energy Letters, 2017, 2, 2362-2367.	17.4	229

#	Article	IF	CITATIONS
163	Disorder-dependent valley properties in monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>WS</mml:mi><mml:msub><mml:m athvariant="normal">e<mml:mn>2</mml:mn></mml:m></mml:msub></mml:mrow></mml:math> . Physical Review B, 2017, 96, .	າi _{3.2}	17
164	Defect Structure of Localized Excitons in a <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mn>2<td>nl?n8n><td>nml:msub><</td></td></mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>	nl ?n 8n> <td>nml:msub><</td>	nml:msub><
165	Electronic Properties of a 1D Intrinsic/p-Doped Heterojunction in a 2D Transition Metal Dichalcogenide Semiconductor. ACS Nano, 2017, 11, 9128-9135.	14.6	58
166	Moir \tilde{A} @-related in-gap states in a twisted MoS2/graphite heterojunction. Npj 2D Materials and Applications, 2017, 1, .	7.9	13
167	Oxygen Passivation Mediated Tunability of Trion and Excitons in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mro< td=""><td>nľ:mn>2<,</td><td>/mml:mn><!--</td--></td></mml:mro<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	nľ:mn>2<,	/mml:mn> </td
168	Substrate Lattice-Guided Seed Formation Controls the Orientation of 2D Transition-Metal Dichalcogenides. ACS Nano, 2017, 11, 9215-9222.	14.6	102
169	Multilayer Graphene–WSe ₂ Heterostructures for WSe ₂ Transistors. ACS Nano, 2017, 11, 12817-12823.	14.6	95
170	Bioinspired Dimensional Transition: Structurally Deformed MoS ₂ for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction (Adv. Mater. 44/2017). Advanced Materials, 2017, 29, .	21.0	1
171	Single Atomically Sharp Lateral Monolayer pâ€n Heterojunction Solar Cells with Extraordinarily High Power Conversion Efficiency. Advanced Materials, 2017, 29, 1701168.	21.0	111
172	High-efficiency omnidirectional photoresponses based on monolayer lateral p–n heterojunctions. Nanoscale Horizons, 2017, 2, 37-42.	8.0	21
173	Integration of ammonia-plasma-functionalized graphene nanodiscs as charge trapping centers for nonvolatile memory applications. Carbon, 2017, 113, 318-324.	10.3	22
174	Band Alignment of 2D Transition Metal Dichalcogenide Heterojunctions. Advanced Functional Materials, 2017, 27, 1603756.	14.9	74
175	Anomalous photoluminescence thermal quenching of sandwiched single layer MoS_2. Optical Materials Express, 2017, 7, 3697.	3.0	14
176	Electrocatalytic Reduction of Carbon Dioxide with a Wellâ€Defined PN ³ â^'Ru Pincer Complex. ChemPlusChem, 2016, 81, 166-171.	2.8	21
177	Reviewâ€"Two-Dimensional Layered Materials for Energy Storage Applications. ECS Journal of Solid State Science and Technology, 2016, 5, Q3021-Q3025.	1.8	68
178	Pressureâ€Induced Charge Transfer Doping of Monolayer Graphene/MoS ₂ Heterostructure. Small, 2016, 12, 4063-4069.	10.0	45
179	Highly Flexible and Highâ€Performance Complementary Inverters of Largeâ€Area Transition Metal Dichalcogenide Monolayers. Advanced Materials, 2016, 28, 4111-4119.	21.0	112
180	Effects of electrolyte gating on photoluminescence spectra of large-area WSe2monolayer films. Japanese Journal of Applied Physics, 2016, 55, 06GB02.	1.5	9

#	Article	IF	CITATIONS
181	Properties and Applications of 2-Dimensional Layered Materials. ECS Journal of Solid State Science and Technology, 2016, 5, Y7-Y7.	1.8	2
182	Determination of band offsets at GaN/single-layer MoS2 heterojunction. Applied Physics Letters, 2016, 109, .	3.3	64
183	Electron energy loss spectroscopy of excitons in two-dimensional-semiconductors as a function of temperature. Applied Physics Letters, 2016, 108, .	3.3	14
184	Photodetection in p–n junctions formed by electrolyte-gated transistors of two-dimensional crystals. Applied Physics Letters, 2016, 109, .	3.3	15
185	A numerical study of Si-TMD contact with n/p type operation and interface barrier reduction for sub-5 nm monolayer MoS ₂ FET., 2016,,.		3
186	Bifunctional separator as a polysulfide mediator for highly stable Li–S batteries. Journal of Materials Chemistry A, 2016, 4, 9661-9669.	10.3	86
187	Gap States at Low-Angle Grain Boundaries in Monolayer Tungsten Diselenide. Nano Letters, 2016, 16, 3682-3688.	9.1	55
188	Highly acid-durable carbon coated Co3O4 nanoarrays as efficient oxygen evolution electrocatalysts. Nano Energy, 2016, 25, 42-50.	16.0	187
189	Observation of Switchable Photoresponse of a Monolayer WSe ₂ –MoS ₂ Lateral Heterostructure via Photocurrent Spectral Atomic Force Microscopic Imaging. Nano Letters, 2016, 16, 3571-3577.	9.1	86
190	Atomic-Monolayer MoS ₂ Band-to-Band Tunneling Field-Effect Transistor. Small, 2016, 12, 5676-5683.	10.0	41
191	Activating basal-plane catalytic activity of two-dimensional MoS2 monolayer with remote hydrogen plasma. Nano Energy, 2016, 30, 846-852.	16.0	136
192	MoS <inf>2</inf> U-shape MOSFET with 10 nm channel length and poly-Si source/drain serving as seed for full wafer CVD MoS <inf>2</inf> availability. , 2016, , .		10
193	Enhanced thermoelectric power in two-dimensional transition metal dichalcogenide monolayers. Physical Review B, 2016, 94, .	3.2	71
194	Scalable Patterning of MoS ₂ Nanoribbons by Micromolding in Capillaries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 20993-21001.	8.0	23
195	Highâ€Sulfurâ€Vacancy Amorphous Molybdenum Sulfide as a High Current Electrocatalyst in Hydrogen Evolution. Small, 2016, 12, 5530-5537.	10.0	177
196	Redox Species-Based Electrolytes for Advanced Rechargeable Lithium Ion Batteries. ACS Energy Letters, 2016, 1, 529-534.	17.4	51
197	Visualizing band offsets and edge states in bilayer–monolayer transition metal dichalcogenides lateral heterojunction. Nature Communications, 2016, 7, 10349.	12.8	120
198	Efficiency Enhancement of InGaN-Based Solar Cells via Stacking Layers of Light-Harvesting Nanospheres. Scientific Reports, 2016, 6, 28671.	3.3	8

#	Article	IF	Citations
199	Low overpotential and high current CO2 reduction with surface reconstructed Cu foam electrodes. Nano Energy, 2016, 27, 121-129.	16.0	100
200	Editors' Choiceâ€"Growth of Layered WS ₂ Electrocatalysts for Highly Efficient Hydrogen Production Reaction. ECS Journal of Solid State Science and Technology, 2016, 5, Q3067-Q3071.	1.8	10
201	Strong Rashba-Edelstein Effect-Induced Spin–Orbit Torques in Monolayer Transition Metal Dichalcogenide/Ferromagnet Bilayers. Nano Letters, 2016, 16, 7514-7520.	9.1	247
202	Giant photoluminescence enhancement in tungsten-diselenide–gold plasmonic hybrid structures. Nature Communications, 2016, 7, 11283.	12.8	244
203	Laterally Stitched Heterostructures of Transition Metal Dichalcogenide: Chemical Vapor Deposition Growth on Lithographically Patterned Area. ACS Nano, 2016, 10, 10516-10523.	14.6	52
204	Dual-mode operation of 2D material-base hot electron transistors. Scientific Reports, 2016, 6, 32503.	3.3	12
205	Monolayer MoS2 for nonvolatile memory applications., 2016,,.		0
206	Heterostructured WS ₂ /CH ₃ NH ₃ PbI ₃ Photoconductors with Suppressed Dark Current and Enhanced Photodetectivity. Advanced Materials, 2016, 28, 3683-3689.	21.0	396
207	Multilayer Approach for Advanced Hybrid Lithium Battery. ACS Nano, 2016, 10, 6037-6044.	14.6	83
208	Large-area few-layer MoS ₂ deposited by sputtering. Materials Research Express, 2016, 3, 065007.	1.6	34
209	Novel poly(triphenylamine- <i>alt</i> fluorene) with asymmetric hexaphenylbenzene and pyrene moieties: synthesis, fluorescence, flexible near-infrared electrochromic devices and theoretical investigation. Polymer Chemistry, 2016, 7, 1505-1516.	3.9	24
210	Heterostructures based on two-dimensional layered materials and their potential applications. Materials Today, 2016, 19, 322-335.	14.2	469
211	Coherent quantum dynamics of excitons in monolayer transition metal dichalcogenides. Proceedings of SPIE, 2016, , .	0.8	1
212	Heterointerface Screening Effects between Organic Monolayers and Monolayer Transition Metal Dichalcogenides. ACS Nano, 2016, 10, 2476-2484.	14.6	87
213	Direct measurement of exciton valley coherence in monolayer WSe2. Nature Physics, 2016, 12, 677-682.	16.7	223
214	Photoluminescence Enhancement and Structure Repairing of Monolayer MoSe ₂ by Hydrohalic Acid Treatment. ACS Nano, 2016, 10, 1454-1461.	14.6	179
215	Photoluminescence Enhancement in Defect Monolayer MoSe2 by Hydrohalic Acid Treatment., 2016,,.		0
216	Synthesis and structure of two-dimensional transition-metal dichalcogenides. MRS Bulletin, 2015, 40, 566-576.	3.5	43

#	Article	IF	CITATIONS
217	TMD FinFET with 4 nm thin body and back gate control for future low power technology. , 2015, , .		25
218	Plasmonic Gold Nanorods Coverage Influence on Enhancement of the Photoluminescence of Two-Dimensional MoS2 Monolayer. Scientific Reports, 2015, 5, 16374.	3.3	102
219	Exciton Mapping at Subwavelength Scales in Two-Dimensional Materials. Physical Review Letters, 2015, 114, 107601.	7.8	79
220	Rugae-like FeP nanocrystal assembly on a carbon cloth: an exceptionally efficient and stable cathode for hydrogen evolution. Nanoscale, 2015, 7, 10974-10981.	5.6	133
221	CoP nanosheet assembly grown on carbon cloth: A highly efficient electrocatalyst for hydrogen generation. Nano Energy, 2015, 15, 634-641.	16.0	357
222	Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nature Communications, 2015, 6, 6298.	12.8	358
223	Epitaxial growth of a monolayer WSe ₂ -MoS ₂ lateral p-n junction with an atomically sharp interface. Science, 2015, 349, 524-528.	12.6	1,009
224	Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nature Communications, 2015, 6, 7666.	12.8	524
225	Anomalous lattice vibrations of monolayer MoS ₂ probed by ultraviolet Raman scattering. Physical Chemistry Chemical Physics, 2015, 17, 14561-14568.	2.8	36
226	Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures. Nature Communications, 2015, 6, 7311.	12.8	382
227	Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics. Nature Communications, 2015, 6, 7430.	12.8	233
228	Ultrafast Multi-Level Logic Gates with Spin-Valley Coupled Polarization Anisotropy in Monolayer MoS2. Scientific Reports, 2015, 5, 8289.	3.3	34
229	High-performance graphene/sulphur electrodes for flexible Li-ion batteries using the low-temperature spraying method. Nanoscale, 2015, 7, 8093-8100.	5.6	23
230	Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe ₂ . Nano Letters, 2015, 15, 6494-6500.	9.1	175
231	Emerging energy applications of two-dimensionalÂlayered transition metal dichalcogenides. Nano Energy, 2015, 18, 293-305.	16.0	236
232	Green Strategy to Single Crystalline Anatase TiO ₂ Nanosheets with Dominant (001) Facets and Its Lithiation Study toward Sustainable Cobalt-Free Lithium Ion Full Battery. ACS Sustainable Chemistry and Engineering, 2015, 3, 3086-3095.	6.7	34
233	High-Current Gain Two-Dimensional MoS ₂ -Base Hot-Electron Transistors. Nano Letters, 2015, 15, 7905-7912.	9.1	52
234	Graphite edge controlled registration of monolayer MoS2 crystal orientation. Applied Physics Letters, 2015, 106, 181904.	3.3	34

#	Article	IF	Citations
235	Three-Dimensional Heterostructures of MoS ₂ Nanosheets on Conducting MoO ₂ as an Efficient Electrocatalyst To Enhance Hydrogen Evolution Reaction. ACS Applied Materials & Diterfaces, 2015, 7, 23328-23335.	8.0	150
236	Grain size effect of monolayer MoS2 transistors characterized by second harmonic generation mapping. , 2015, , .		1
237	Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nature Communications, 2015, 6, 8315.	12.8	408
238	Optically initialized robust valley-polarized holes in monolayer WSe2. Nature Communications, 2015, 6, 8963.	12.8	151
239	Large-area WSe ₂ electric double layer transistors on a plastic substrate. Japanese Journal of Applied Physics, 2015, 54, 06FF06.	1.5	10
240	Pressure-Dependent Optical and Vibrational Properties of Monolayer Molybdenum Disulfide. Nano Letters, 2015, 15, 346-353.	9.1	284
241	Enhanced Thermoelectric Performance of PEDOT:PSS Flexible Bulky Papers by Treatment with Secondary Dopants. ACS Applied Materials & Secondary Dopants.	8.0	194
242	Deep-ultraviolet Raman scattering studies of monolayer graphene thin films. Carbon, 2015, 81, 807-813.	10.3	28
243	Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chemical Society Reviews, 2015, 44, 2744-2756.	38.1	709
244	Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry. Applied Physics Letters, 2014, 105, .	3.3	317
245	Evolution of magnetostructural transition and magnetocaloric effect with Al doping in MnCoGe _{1â^²<i>x</i>} Al _{<i>x</i>} compounds. Journal Physics D: Applied Physics, 2014, 47, 055003.	2.8	59
246	$Fast \ visible-light \ phototransistor \ using \ CVD-synthesized \ large-area \ bilayer \ WSe < inf > 2 < / inf > . \ , \ 2014, \ , \ .$		0
247	Hole mobility enhancement and <i>p</i> -doping in monolayer WSe ₂ by gold decoration. 2D Materials, 2014, 1, 034001.	4.4	134
248	Ultrafast generation of pseudo-magnetic field for valley excitons in WSe ₂ monolayers. Science, 2014, 346, 1205-1208.	12.6	261
249	Ultrafast Transient Terahertz Conductivity of Monolayer MoS ₂ and WSe ₂ Grown by Chemical Vapor Deposition. ACS Nano, 2014, 8, 11147-11153.	14.6	191
250	Few layer graphene paper from electrochemical process for heat conduction. Materials Research Innovations, 2014, 18, 208-213.	2.3	11
251	Hybrid Si/TMD 2D electronic double channels fabricated using solid CVD few-layer-MoS2 stacking for V <inf>th</inf> matching and CMOS-compatible 3DFETs. , 2014, , .		12
252	Direct Intermolecular Force Measurements between Functional Groups and Individual Metallic or Semiconducting Singleâ€Walled Carbon Nanotubes. Small, 2014, 10, 750-757.	10.0	7

#	Article	IF	Citations
253	Oneâ€Step Formation of a Single Atomicâ€Layer Transistor by the Selective Fluorination of a Graphene Film. Small, 2014, 10, 989-997.	10.0	59
254	Threeâ€Dimensional Molybdenum Sulfide Sponges for Electrocatalytic Water Splitting. Small, 2014, 10, 895-900.	10.0	82
255	Band Gapâ€Tunable Molybdenum Sulfide Selenide Monolayer Alloy. Small, 2014, 10, 2589-2594.	10.0	109
256	Second Harmonic Generation from Artificially Stacked Transition Metal Dichalcogenide Twisted Bilayers. ACS Nano, 2014, 8, 2951-2958.	14.6	388
257	Enhancing the electrocatalytic water splitting efficiency for amorphous MoS. International Journal of Hydrogen Energy, 2014, 39, 4788-4793.	7.1	40
258	Trilayered MoS\$_{f 2}\$ Metal â€"Semiconductorâ€"Metal Photodetectors: Photogain and Radiation Resistance. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 30-35.	2.9	40
259	Graphene/MoS ₂ Heterostructures for Ultrasensitive Detection of DNA Hybridisation. Advanced Materials, 2014, 26, 4838-4844.	21.0	290
260	Molybdenum Sulfide Supported on Crumpled Graphene Balls for Electrocatalytic Hydrogen Production. Advanced Energy Materials, 2014, 4, 1400398.	19.5	101
261	Large-Area Synthesis of Highly Crystalline WSe ₂ Monolayers and Device Applications. ACS Nano, 2014, 8, 923-930.	14.6	885
262	Plasma-assisted electrochemical exfoliation of graphite for rapid production of graphene sheets. RSC Advances, 2014, 4, 6946.	3.6	49
263	Atomically Thin Heterostructures Based on Single-Layer Tungsten Diselenide and Graphene. Nano Letters, 2014, 14, 6936-6941.	9.1	132
264	Observing Grain Boundaries in CVD-Grown Monolayer Transition Metal Dichalcogenides. ACS Nano, 2014, 8, 11401-11408.	14.6	113
265	Direct conversion of multilayer molybdenum trioxide to nanorods as multifunctional electrodes in lithium-ion batteries. Nanoscale, 2014, 6, 5484-5490.	5.6	55
266	Novel functional devices of transition metal dichalcogenide monolayers. , 2014, , .		0
267	Enhanced Electrocatalytic Activity of MoS _{<i>x</i>} on TCNQ-Treated Electrode for Hydrogen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2014, 6, 17679-17685.	8.0	78
268	Two-dimensional materials for electronic applications. MRS Bulletin, 2014, 39, 711-718.	3.5	104
269	Monolayer MoSe ₂ Grown by Chemical Vapor Deposition for Fast Photodetection. ACS Nano, 2014, 8, 8582-8590.	14.6	515
270	Controlled mechanical cleavage of bulk niobium diselenide to nanoscaled sheet, rod, and particle structures for Pt-free dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 11382-11390.	10.3	45

#	Article	IF	CITATIONS
271	Dirac fermion relaxation and energy loss rate near the Fermi surface in monolayer and multilayer graphene. Nanoscale, 2014, 6, 8575-8578.	5.6	12
272	Spectroscopic Signatures for Interlayer Coupling in MoS ₂ –WSe ₂ van der Waals Stacking. ACS Nano, 2014, 8, 9649-9656.	14.6	288
273	Role of Metal Contacts in High-Performance Phototransistors Based on WSe ₂ Monolayers. ACS Nano, 2014, 8, 8653-8661.	14.6	380
274	Hot carriers in epitaxial graphene sheets with and without hydrogen intercalation: role of substrate coupling. Nanoscale, 2014, 6, 10562-10568.	5.6	4
275	Monolayer MoS ₂ Heterojunction Solar Cells. ACS Nano, 2014, 8, 8317-8322.	14.6	1,081
276	Direct Imaging of Band Profile in Single Layer MoS ₂ on Graphite: Quasiparticle Energy Gap, Metallic Edge States, and Edge Band Bending. Nano Letters, 2014, 14, 2443-2447.	9.1	402
277	Polymerâ€Free Patterning of Graphene at Subâ€10â€nm Scale by Lowâ€Energy Repetitive Electron Beam. Small, 2014, 10, 4778-4784.	10.0	14
278	Flexible and stretchable thin-film transistors based on molybdenum disulphide. Physical Chemistry Chemical Physics, 2014, 16, 14996.	2.8	56
279	Resonant Tunneling through Discrete Quantum States in Stacked Atomic-Layered MoS2. Nano Letters, 2014, 14, 2381-2386.	9.1	40
280	Optical properties of nitrogen-doped graphene thin films probed by spectroscopic ellipsometry. Thin Solid Films, 2014, 571, 675-679.	1.8	14
281	Flipping nanoscale ripples of free-standing graphene using a scanning tunneling microscope tip. Carbon, 2014, 77, 236-243.	10.3	22
282	Controllable Synthesis of Band-Gap-Tunable and Monolayer Transition-Metal Dichalcogenide Alloys. Frontiers in Energy Research, 2014, 2, .	2.3	84
283	Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures. Scientific Reports, 2014, 4, 3826.	3.3	771
284	Novel Field-Effect Schottky Barrier Transistors Based on Graphene-MoS2 Heterojunctions. Scientific Reports, 2014, 4, 5951.	3.3	134
285	Fluorinated Graphene as High Performance Dielectric Materials and the Applications for Graphene Nanoelectronics. Scientific Reports, 2014, 4, 5893.	3.3	147
286	Growth of copper on diatom silica by electroless deposition technique. Materials Science-Poland, 2013, 31, 226-231.	1.0	2
287	Nitrogen-Doped Graphene Sheets Grown by Chemical Vapor Deposition: Synthesis and Influence of Nitrogen Impurities on Carrier Transport. ACS Nano, 2013, 7, 6522-6532.	14.6	264
288	Exceptional Tunability of Band Energy in a Compressively Strained Trilayer MoS ₂ Sheet. ACS Nano, 2013, 7, 7126-7131.	14.6	550

#	Article	IF	Citations
289	Fabrication of stretchable MoS2 thin-film transistors using elastic ion-gel gate dielectrics. Applied Physics Letters, 2013, 103, .	3.3	96
290	Efficient Heat Dissipation of Photonic Crystal Microcavity by Monolayer Graphene. ACS Nano, 2013, 7, 10818-10824.	14.6	29
291	Comparative study on MoS2 and WS2 for electrocatalytic water splitting. International Journal of Hydrogen Energy, 2013, 38, 12302-12309.	7.1	193
292	Plasma electrolysis allows the facile and efficient production of graphite oxide from recycled graphite. RSC Advances, 2013, 3, 17402.	3.6	14
293	Label-free detection of DNA hybridization using transistors based on CVD grown graphene. Biosensors and Bioelectronics, 2013, 41, 103-109.	10.1	185
294	A flexible hydrophilic-modified graphene microprobe for neural and cardiac recording. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 600-604.	3.3	86
295	Synthesis and Transfer of Single-Layer Transition Metal Disulfides on Diverse Surfaces. Nano Letters, 2013, 13, 1852-1857.	9.1	612
296	The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry, 2013, 5, 263-275.	13.6	8,051
297	Flexible transparent electrodes made of electrochemically exfoliated graphene sheets from low-cost graphite pieces. Displays, 2013, 34, 315-319.	3.7	56
298	Labelâ€Free Electrical Detection of DNA Hybridization on Graphene using Hall Effect Measurements: Revisiting the Sensing Mechanism. Advanced Functional Materials, 2013, 23, 2301-2307.	14.9	114
299	Simultaneous functionalization and reduction of graphene oxide with diatom silica. Journal of Materials Science, 2013, 48, 3415-3421.	3.7	13
300	Seeing Twoâ€Dimensional Sheets on Arbitrary Substrates by Fluorescence Quenching Microscopy. Small, 2013, 9, 3253-3258.	10.0	11
301	Few-Layer MoS ₂ with High Broadband Photogain and Fast Optical Switching for Use in Harsh Environments. ACS Nano, 2013, 7, 3905-3911.	14.6	584
302	Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nature Communications, 2013, 4, 1687.	12.8	481
303	Highly Efficient Electrocatalytic Hydrogen Production by MoS <i>_×</i> Grown on Grapheneâ€Protected 3D Ni Foams. Advanced Materials, 2013, 25, 756-760.	21.0	693
304	Highly Efficient Electrocatalytic Hydrogen Production by MoS <i>>_×</i> Grown on Grapheneâ€Protected 3D Ni Foams (Adv. Mater. 5/2013). Advanced Materials, 2013, 25, 755-755.	21.0	8
305	Label-free detection of alanine aminotransferase using a graphene field-effect biosensor. Sensors and Actuators B: Chemical, 2013, 182, 396-400.	7.8	25
306	Ultra-low-edge-defect graphene nanoribbons patterned by neutral beam. Carbon, 2013, 61, 229-235.	10.3	33

#	Article	IF	CITATIONS
307	Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals. Scientific Reports, 2013, 3, 1839.	3.3	380
308	Highâ€Gain Phototransistors Based on a CVD MoS ₂ Monolayer. Advanced Materials, 2013, 25, 3456-3461.	21.0	891
309	Molecular adsorption induces the transformation of rhombohedral- to Bernal-stacking order in trilayer graphene. Nature Communications, 2013, 4, 2074.	12.8	34
310	High quantity and quality few-layers transition metal disulfide nanosheets from wet-milling exfoliation. RSC Advances, 2013, 3, 13193.	3.6	76
311	Chapter 3. Photoelectrical Responses of Carbon Nanotube–Polymer Composites. RSC Nanoscience and Nanotechnology, 2013, , 51-71.	0.2	0
312	Self-assembly of hierarchical MoSx/CNT nanocomposites (2 <x<3): 2013,="" 2169.<="" 3,="" anode="" batteries.="" for="" high="" ion="" lithium="" materials="" performance="" reports,="" scientific="" td="" towards=""><td>3.3</td><td>290</td></x<3):>	3.3	290
313	Charged impurity-induced scatterings in chemical vapor deposited graphene. Journal of Applied Physics, 2013, 114, 233703.	2.5	16
314	Charge Dynamics and Electronic Structures of Monolayer MoS ₂ Films Grown by Chemical Vapor Deposition. Applied Physics Express, 2013, 6, 125801.	2.4	73
315	Ultrafast dynamics of hot electrons and phonons in chemical vapor deposited graphene. Journal of Applied Physics, 2013, 113, 133511.	2.5	20
316	Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber. Optics Express, 2012, 20, 2460.	3.4	174
317	Graphene-GaAs/AlxGa1â^'xAs heterostructure dual-function field-effect transistor. Applied Physics Letters, 2012, 101, .	3.3	19
318	Terahertz optical properties of multilayer graphene: Experimental observation of strong dependence on stacking arrangements and misorientation angles. Physical Review B, 2012, 86, .	3.2	38
319	Extreme sensitivity of graphene photoconductivity to environmental gases. Nature Communications, 2012, 3, 1228.	12.8	120
320	Layer-by-Layer Graphene/TCNQ Stacked Films as Conducting Anodes for Organic Solar Cells. ACS Nano, 2012, 6, 5031-5039.	14.6	199
321	Charge dynamics and electronic structures of monolayer graphene with molecular doping. Applied Physics Letters, 2012, 101, 111907.	3.3	9
322	Growth selectivity of hexagonal-boron nitride layers on Ni with various crystal orientations. RSC Advances, 2012, 2, 111-115.	3.6	72
323	Integrated Circuits Based on Bilayer MoS ₂ Transistors. Nano Letters, 2012, 12, 4674-4680.	9.1	1,526
324	Band Gap Tuning of Graphene by Adsorption of Aromatic Molecules. Journal of Physical Chemistry C, 2012, 116, 13788-13794.	3.1	85

#	Article	IF	Citations
325	Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale, 2012, 4, 6637.	5.6	621
326	Decoupling of CVD graphene by controlled oxidation of recrystallized Cu. RSC Advances, 2012, 2, 3008.	3.6	82
327	Analysis of flavonoids by graphene-based surface-assisted laser desorption/ionization time-of-flight mass spectrometry. Analyst, The, 2012, 137, 5809.	3.5	44
328	Highly Flexible MoS ₂ Thin-Film Transistors with Ion Gel Dielectrics. Nano Letters, 2012, 12, 4013-4017.	9.1	746
329	A facile approach to nanoarchitectured three-dimensional graphene-based Li–Mn–O composite as high-power cathodes for Li-ion batteries. Beilstein Journal of Nanotechnology, 2012, 3, 513-523.	2.8	28
330	Electrical Probing of Submicroliter Liquid Using Graphene Strip Transistors Built on a Nanopipette. Small, 2012, 8, 43-46.	10.0	38
331	Converting Graphene Oxide Monolayers into Boron Carbonitride Nanosheets by Substitutional Doping. Small, 2012, 8, 1384-1391.	10.0	101
332	Graphene-Based High-Efficiency Surface-Enhanced Raman Scattering-Active Platform for Sensitive and Multiplex DNA Detection. Analytical Chemistry, 2012, 84, 4622-4627.	6.5	180
333	van der Waals Epitaxy of MoS ₂ Layers Using Graphene As Growth Templates. Nano Letters, 2012, 12, 2784-2791.	9.1	888
334	Synthesis of Largeâ€Area MoS ₂ Atomic Layers with Chemical Vapor Deposition. Advanced Materials, 2012, 24, 2320-2325.	21.0	2,956
335	Nitrogenâ€Doped Carbon Nanotubeâ€Based Bilayer Thin Film as Transparent Counter Electrode for Dyeâ€Sensitized Solar Cells (DSSCs). Chemistry - an Asian Journal, 2012, 7, 541-545.	3.3	44
336	Efficient reduction of graphene oxide catalyzed by copper. Physical Chemistry Chemical Physics, 2012, 14, 3083.	2.8	12
337	Growth of Large-Area and Highly Crystalline MoS ₂ Thin Layers on Insulating Substrates. Nano Letters, 2012, 12, 1538-1544.	9.1	1,749
338	The electrical properties of graphene modified by bromophenyl groups derived from a diazonium compound. Carbon, 2012, 50, 1517-1522.	10.3	45
339	Power Factor Enhancement for Few-Layered Graphene Films by Molecular Attachments. Journal of Physical Chemistry C, 2011, 115, 1780-1785.	3.1	38
340	Flexible Electrochromic Devices Based on Optoelectronically Active Polynorbornene Layer and Ultratransparent Graphene Electrodes. Macromolecules, 2011, 44, 9550-9555.	4.8	46
341	Transfer printing of graphene strip from the graphene grown on copper wires. Nanotechnology, 2011, 22, 185309.	2.6	28
342	Characteristics of a sensitive micro-Hall probe fabricated on chemical vapor deposited graphene over the temperature range from liquid-helium to room temperature. Applied Physics Letters, 2011, 99, .	3.3	45

#	Article	IF	Citations
343	Mobility Enhancement in Carbon Nanotube Transistors by Screening Charge Impurity with Silica Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 6975-6979.	3.1	15
344	Sorting of Single-Walled Carbon Nanotubes Based on Metallicity by Selective Precipitation with Polyvinylpyrrolidone. Journal of Physical Chemistry C, 2011, 115, 5199-5206.	3.1	14
345	Chemically modified graphene: flame retardant or fuel for combustion?. Journal of Materials Chemistry, 2011, 21, 3277-3279.	6.7	70
346	Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition. Nano Letters, 2011, 11, 3612-3616.	9.1	302
347	Enhanced Thermopower of Graphene Films with Oxygen Plasma Treatment. ACS Nano, 2011, 5, 2749-2755.	14.6	181
348	Opening an Electrical Band Gap of Bilayer Graphene with Molecular Doping. ACS Nano, 2011, 5, 7517-7524.	14.6	222
349	Graphene-based biosensors for detection of bacteria and their metabolic activities. Journal of Materials Chemistry, 2011, 21, 12358.	6.7	343
350	High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation. ACS Nano, 2011, 5, 2332-2339.	14.6	896
351	Observation of Phonon Anomaly at the Armchair Edge of Single-Layer Graphene in Air. ACS Nano, 2011, 5, 3347-3353.	14.6	13
352	Degradable Conjugated Polymers: Synthesis and Applications in Enrichment of Semiconducting Singleâ€Walled Carbon Nanotubes. Advanced Functional Materials, 2011, 21, 1643-1651.	14.9	66
353	Low-Cost and Ultra-Strong p-Type Doping of Carbon Nanotube Films by a Piranha Mixture. European Journal of Inorganic Chemistry, 2011, 2011, 4182-4186.	2.0	11
354	Growth of large-sized graphene thin-films by liquid precursor-based chemical vapor deposition under atmospheric pressure. Carbon, 2011, 49, 3672-3678.	10.3	158
355	One-step growth of graphene–carbon nanotube hybrid materials by chemical vapor deposition. Carbon, 2011, 49, 2944-2949.	10.3	182
356	Origin of hysteresis in the transfer characteristic of carbon nanotube field effect transistor. Journal Physics D: Applied Physics, 2011, 44, 285301.	2.8	29
357	Graphitic carbon film formation under Ni templates by radio-frequency sputtering for transparent electrode applications. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, .	1.2	3
358	Scalable nanoimprint patterning of thin graphitic oxide sheets and <i>in situ</i> reduction. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 011023.	1.2	6
359	Solutionâ€Processable Carbon Nanotubes for Semiconducting Thinâ€Film Transistor Devices. Advanced Materials, 2010, 22, 1278-1282.	21.0	50
360	Electrical Detection of DNA Hybridization with Singleâ€Base Specificity Using Transistors Based on CVDâ€Grown Graphene Sheets. Advanced Materials, 2010, 22, 1649-1653.	21.0	516

#	Article	IF	Citations
361	Ultrasensitive Detection of DNA Molecules with High On/Off Singleâ€Walled Carbon Nanotube Network. Advanced Materials, 2010, 22, 4867-4871.	21.0	42
362	Integrating carbon nanotubes and lipid bilayer for biosensing. Biosensors and Bioelectronics, 2010, 25, 1834-1837.	10.1	46
363	Cellular behavior of human mesenchymal stem cells cultured on single-walled carbon nanotube film. Carbon, 2010, 48, 1095-1104.	10.3	94
364	Enrichment of (8,4) Singleâ€Walled Carbon Nanotubes Through Coextraction with Heparin. Small, 2010, 6, 110-118.	10.0	27
365	Diameter―and Metallicityâ€ S elective Enrichment of Singleâ€Walled Carbon Nanotubes Using Polymethacrylates with Pendant Aromatic Functional Groups. Small, 2010, 6, 1311-1320.	10.0	14
366	The screening of charged impurities in bilayer graphene. New Journal of Physics, 2010, 12, 103037.	2.9	13
367	Synthesis of Few-Layer Hexagonal Boron Nitride Thin Film by Chemical Vapor Deposition. Nano Letters, 2010, 10, 4134-4139.	9.1	1,058
368	Label-free electrical detection of DNA hybridization using carbon nanotubes and graphene. Nano Reviews, 2010, 1, 5354.	3.7	33
369	Selective Small-Diameter Metallic Single-Walled Carbon Nanotube Removal by Mere Standing with Anthraquinone and Application to a Field-Effect Transistor. Journal of Physical Chemistry C, 2010, 114, 21035-21041.	3.1	13
370	Selective Synthesis of (9,8) Single Walled Carbon Nanotubes on Cobalt Incorporated TUD-1 Catalysts. Journal of the American Chemical Society, 2010, 132, 16747-16749.	13.7	119
371	Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties. Physical Chemistry Chemical Physics, 2010, 12, 2164.	2.8	176
372	Work Function Engineering of Graphene Electrode <i>via</i> Chemical Doping. ACS Nano, 2010, 4, 2689-2694.	14.6	501
373	Direct electrochemistry-based hydrogen peroxide biosensor formed from single-layer graphene nanoplatelet–enzyme composite film. Talanta, 2010, 82, 1344-1348.	5.5	90
374	Nanoelectronic biosensors based on CVD grown graphene. Nanoscale, 2010, 2, 1485.	5.6	408
375	Enhancing the conductivity of transparent graphene films via doping. Nanotechnology, 2010, 21, 285205.	2.6	321
376	Highly Efficient Restoration of Graphitic Structure in Graphene Oxide Using Alcohol Vapors. ACS Nano, 2010, 4, 5285-5292.	14.6	242
377	Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber. Applied Physics Letters, 2010, 96, .	3.3	234
378	Aggregation-Dependent Photoluminescence Sidebands in Single-Walled Carbon Nanotube. Journal of Physical Chemistry C, 2010, 114, 6704-6711.	3.1	12

#	Article	IF	Citations
379	Effective doping of single-layer graphene from underlying <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>SiO</mml:mtext></mml:mrow><mml:mn> Physical Review B, 2009, 79, .</mml:mn></mml:msub></mml:mrow></mml:math>	2 <i>∛</i> mml:m	n>
380	<i>IN SITU</i> FORMATION OF COBALT NANOCLUSTERS IN SOL–GEL SILICA FILMS FOR SINGLE-WALLED CARBON NANOTUBE GROWTH. Nano, 2009, 04, 99-106.	1.0	5
381	Nanotopographic Carbon Nanotube Thinâ€Film Substrate Freezes Lateral Motion of Secretory Vesicles. Advanced Materials, 2009, 21, 790-793.	21.0	24
382	Interfacing Glycosylated Carbonâ€Nanotubeâ€Network Devices with Living Cells to Detect Dynamic Secretion of Biomolecules. Angewandte Chemie - International Edition, 2009, 48, 2723-2726.	13.8	148
383	Label-free detection of ATP release from living astrocytes with high temporal resolution using carbon nanotube network. Biosensors and Bioelectronics, 2009, 24, 2716-2720.	10.1	62
384	Effect of different catalyst supports on the (n,m) selective growth of single-walled carbon nanotube from Co–Mo catalyst. Journal of Materials Science, 2009, 44, 3285-3295.	3.7	60
385	Doping Singleâ€Layer Graphene with Aromatic Molecules. Small, 2009, 5, 1422-1426.	10.0	537
386	Photoelectrical Response in Singleâ€Layer Graphene Transistors. Small, 2009, 5, 2005-2011.	10.0	141
387	Using oxidation to increase the electrical conductivity of carbon nanotube electrodes. Carbon, 2009, 47, 1867-1870.	10.3	152
388	Energy Transfer from Photo-Excited Fluorene Polymers to Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2009, 113, 14946-14952.	3.1	54
389	Species-Dependent Energy Transfer of Surfactant-Dispersed Semiconducting Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2009, 113, 20061-20065.	3.1	15
390	Study of Charge Diffusion at the Carbon Nanotubeâ [^] SiO ₂ Interface by Electrostatic Force Microscopy. Journal of Physical Chemistry C, 2009, 113, 15476-15479.	3.1	5
391	Illumination-Enhanced Hysteresis of Transistors Based on Carbon Nanotube Networks. Journal of Physical Chemistry C, 2009, 113, 4745-4747.	3.1	7
392	Symmetry Breaking of Graphene Monolayers by Molecular Decoration. Physical Review Letters, 2009, 102, 135501.	7.8	224
393	Solution-processable semiconducting thin-film transistors using single-walled carbon nanotubes chemically modified by organic radical initiators. Chemical Communications, 2009, , 7182.	4.1	33
394	<pre><mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>G</mml:mi></mml:math>-band Raman double resonance in twisted bilayer graphene: Evidence of band splitting and folding. Physical Review B, 2009, 80, .</pre>	3.2	116
395	Electrical and Spectroscopic Characterizations of Ultra-Large Reduced Graphene Oxide Monolayers. Chemistry of Materials, 2009, 21, 5674-5680.	6.7	476
396	Electrical Detection of Femtomolar DNA via Goldâ∈Nanoparticle Enhancement in Carbonâ∈Nanotubeâ∈Network Fieldâ∈Effect Transistors. Advanced Materials, 2008, 20, 2389-2393.	21.0	96

#	Article	IF	CITATIONS
397	Synthesis and characterization of one-dimensional CdSe by a novel reverse micelle assisted hydrothermal method. Journal of Colloid and Interface Science, 2008, 320, 491-500.	9.4	58
398	Work function engineering of electrodes via electropolymerization of ethylenedioxythiophenes and its derivatives. Organic Electronics, 2008, 9, 859-863.	2.6	30
399	Label-Free Electronic Detection of DNA Using Simple Double-Walled Carbon Nanotube Resistors. Journal of Physical Chemistry C, 2008, 112, 9891-9895.	3.1	37
400	Effect of Centrifugation on the Purity of Single-Walled Carbon Nanotubes from MCM-41 Containing Cobalt. Journal of Physical Chemistry C, 2008, 112, 17567-17575.	3.1	26
401	Near-field Raman imaging using optically trapped dielectric microsphere. Optics Express, 2008, 16, 7976.	3.4	52
402	Differentiation of Gas Molecules Using Flexible and All-Carbon Nanotube Devices. Journal of Physical Chemistry C, 2008, 112, 650-653.	3.1	85
403	Photoresponse in Self-Assembled Films of Carbon Nanotubes. Journal of Physical Chemistry C, 2008, 112, 13004-13009.	3.1	24
404	Photoconductivity from Carbon Nanotube Transistors Activated by Photosensitive Polymers. Journal of Physical Chemistry C, 2008, 112, 18201-18206.	3.1	17
405	Toward High-Performance Solution-Processed Carbon Nanotube Network Transistors by Removing Nanotube Bundles. Journal of Physical Chemistry C, 2008, 112, 12089-12091.	3.1	64
406	Assessment of (n,m) Selectively Enriched Small Diameter Single-Walled Carbon Nanotubes by Density Differentiation from Cobalt-Incorporated MCM-41 for Macroelectronics. Chemistry of Materials, 2008, 20, 7417-7424.	6.7	17
407	Selective Enrichment of (6,5) and (8,3) Single-Walled Carbon Nanotubes via Cosurfactant Extraction from Narrow (<i>n</i> , <i>m</i>) Distribution Samples. Journal of Physical Chemistry B, 2008, 112, 2771-2774.	2.6	57
408	Tunning electrical characteristics for networked carbon nanotube field-effect transistors using thiolated molecules. , 2008, , .		0
409	Interaction between fluorene-based polymers and carbon nanotubes/carbon nanotube field-effect transistors., 2008,,.		0
410	Effects of substrates on photocurrents from photosensitive polymer coated carbon nanotube networks. Applied Physics Letters, 2008, 92, .	3.3	9
411	N-type behavior of ferroelectric-gate carbon nanotube network transistor. Applied Physics Letters, 2008, 93, 082103.	3.3	11
412	Charge injection at carbon nanotube-SiO2 interface. Applied Physics Letters, 2008, 93, 093509.	3.3	23
413	Tuning of electrical characteristics in networked carbon nanotube field-effect transistors using thiolated molecules. Applied Physics Letters, 2007, 91, 103515.	3.3	23
414	Magneto-optical studies of single-wall carbon nanotubes. Physical Review B, 2007, 76, .	3.2	22

#	Article	IF	Citations
415	Heme-Enabled Electrical Detection of Carbon Monoxide at Room Temperature Using Networked Carbon Nanotube Field-Effect Transistors. Chemistry of Materials, 2007, 19, 6059-6061.	6.7	16
416	Pressure-Induced Single-Walled Carbon Nanotube (<i>n,m</i>) Selectivity on Coâ [^] Mo Catalysts. Journal of Physical Chemistry C, 2007, 111, 14612-14616.	3.1	72
417	Poly(3,3‴-didodecylquarterthiophene) field effect transistors with single-walled carbon nanotube based source and drain electrodes. Applied Physics Letters, 2007, 91, 223512.	3.3	26
418	(n,m) Selectivity of Single-Walled Carbon Nanotubes by Different Carbon Precursors on Coâ^'Mo Catalysts. Journal of the American Chemical Society, 2007, 129, 9014-9019.	13.7	184
419	DNA Sensing by Field-Effect Transistors Based on Networks of Carbon Nanotubes. Journal of the American Chemical Society, 2007, 129, 14427-14432.	13.7	144
420	Electrical detection of nitric oxide using single-walled carbon nanotube network devices. Carbon, 2007, 45, 1911-1914.	10.3	46
421	Effect of different carbon sources on the growth of single-walled carbon nanotube from MCM-41 containing nickel. Carbon, 2007, 45, 2217-2228.	10.3	23
422	Toward the Extraction of Single Species of Single-Walled Carbon Nanotubes Using Fluorene-Based Polymers. Nano Letters, 2007, 7, 3013-3017.	9.1	314
423	Electrical detection of hybridization and threading intercalation of deoxyribonucleic acid using carbon nanotube network field-effect transistors. Applied Physics Letters, 2006, 89, 232104.	3.3	50
424	The effects of nitrogen and boron doping on the optical emission and diameters of single-walled carbon nanotubes. Carbon, 2006, 44, 2752-2757.	10.3	53
425	Crystal-encapsulation-induced band-structure change in single-walled carbon nanotubes: Photoluminescence and Raman spectra. Physical Review B, 2006, 74, .	3.2	33
426	Magnetic separation of Fe catalyst from single-walled carbon nanotubes in an aqueous surfactant solution. Carbon, 2005, 43, 1151-1155.	10.3	27
427	Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes. Nature Materials, 2005, 4, 481-485.	27.5	245
428	Chirality-dependent boron-mediated growth of nitrogen-doped single-walled carbon nanotubes. Physical Review B, 2005, 72, .	3.2	33
429	Comparative study of photoluminescence of single-walled carbon nanotubes wrapped with sodium dodecyl sulfate, surfactin and polyvinylpyrrolidone. Nanotechnology, 2005, 16, S202-S205.	2.6	49
430	Bandgap-selective chemical doping of semiconducting single-walled carbon nanotubes. Nanotechnology, 2004, 15, 1844-1847.	2.6	15
431	Chirality Assignment of Single-Walled Carbon Nanotubes with Strain. Physical Review Letters, 2004, 93, 156104.	7.8	59
432	Mid-infrared electroluminescence from coupled quantum dots and wells. Journal of Applied Physics, 2004, 96, 2725-2730.	2.5	0

#	Article	IF	CITATIONS
433	TDDB Reliability Improvement of Cu Damascene with a Bilayer-Structured α-SiC:H Dielectric Barrier. Journal of the Electrochemical Society, 2004, 151, G89.	2.9	14
434	Physical and Barrier Properties of Amorphous Silicon-Oxycarbide Deposited by PECVD from Octamethylcyclotetrasiloxane. Journal of the Electrochemical Society, 2004, 151, G612.	2.9	24
435	MAGNETO-PHOTOLUMINESCENCE OF CHIRALITY-CHARACTERIZED SINGLE-WALLED CARBON NANOTUBES. International Journal of Modern Physics B, 2004, 18, 3509-3512.	2.0	10
436	Properties of narrow gap quantum dots and wells in the InAs/InSb/GaSb systems. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 20, 204-210.	2.7	13
437	Mid-infrared luminescence from coupled quantum dots and wells. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 341-344.	2.7	3
438	Comparative studies on acid and thermal based selective purification of HiPCO produced single-walled carbon nanotubes. Chemical Physics Letters, 2004, 386, 239-243.	2.6	95
439	Effects of O2- and N2-Plasma Treatments on Copper Surface. Japanese Journal of Applied Physics, 2004, 43, 7415-7418.	1.5	17
440	Leakage mechanism in Cu damascene structure with methylsilane-doped low-K CVD oxide as intermetal dielectric. IEEE Electron Device Letters, 2001, 22, 263-265.	3.9	12
441	Phase behaviours of diphenylsiloxane oligomers. Polymer, 1998, 39, 689-695.	3.8	13
442	Formation of Segregation Morphology in Crystalline/Amorphous Polymer Blends:Â Molecular Weight Effect. Macromolecules, 1998, 31, 2255-2264.	4.8	123
443	Synthesis and Characterization of New Soluble Polyimides from 3,3â€~,4,4â€~-Benzhydrol Tetracarboxylic Dianhydride and Various Diamines. Chemistry of Materials, 1998, 10, 734-739.	6.7	113
444	Bulk Crystallization Behavior of Poly($\hat{l}\mu$ -caprolactone) with a Wide Range of Molecular Weight. Polymer Journal, 1997, 29, 889-893.	2.7	20
445	Spherulitic Crystallization Behavior of Poly(ε-caprolactone) with a Wide Range of Molecular Weight. Macromolecules, 1997, 30, 1718-1722.	4.8	102
446	Electropolymerization of pyrrole and 4-(3-Pyrrolyl)butane-sulfonate on Pt substrate: An in situ EQCM study. Thin Solid Films, 1997, 301, 175-182.	1.8	17
447	Synthesis and properties of novel aromatic polyimides derived from bis (p-aminophenoxy) methylphenylsilane. Journal of Applied Polymer Science, 1997, 63, 369-376.	2.6	8
448	Synthesis of Transition Metal Dichalcogenides. , 0, , 344-358.		0
449	Selective Conversion of Carbon Dioxide to Formate with High Current Densities. Journal of Molecular and Engineering Materials, 0, , 2150001.	1.8	0
450	Performance Limits and Potential of Multilayer Graphene–Tungsten Diselenide Heterostructures. Advanced Electronic Materials, 0, , 2100355.	5.1	2

#	Article	IF	CITATIONS
451	Epitaxial growth of a 2D transition metal dichalcogenide lateral heterojunction. SPIE Newsroom, 0, , .	0.1	0