Natalie C J Strynadka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4339198/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assembly, structure, function and regulation of type III secretion systems. Nature Reviews Microbiology, 2017, 15, 323-337.	28.6	456
2	Crystal structure of enteropathogenic Escherichia coli intimin–receptor complex. Nature, 2000, 405, 1073-1077.	27.8	302
3	Crystal structure of a bacterial signal peptidase in complex with a β-lactam inhibitor. Nature, 1998, 396, 186-190.	27.8	291
4	Structural Insight into the Transglycosylation Step of Bacterial Cell-Wall Biosynthesis. Science, 2007, 315, 1402-1405.	12.6	290
5	A conserved structural motif mediates formation of the periplasmic rings in the type III secretion system. Nature Structural and Molecular Biology, 2009, 16, 468-476.	8.2	170
6	Structural characterization of the molecular platform for type III secretion system assembly. Nature, 2005, 435, 702-707.	27.8	169
7	Crystallographic structure of wild-type SARS-CoV-2 main protease acyl-enzyme intermediate with physiological C-terminal autoprocessing site. Nature Communications, 2020, 11, 5877.	12.8	141
8	Enteropathogenic Escherichia coli translocated intimin receptor, Tir, requires a specific chaperone for stable secretion. Molecular Microbiology, 2002, 33, 1162-1175.	2.5	133
9	Near-atomic-resolution cryo-EM analysis of the Salmonella T3S injectisome basal body. Nature, 2016, 540, 597-601.	27.8	127
10	Structural analysis of the essential self-cleaving type III secretion proteins EscU and SpaS. Nature, 2008, 453, 124-127.	27.8	124
11	Structural analysis of a prototypical ATPase from the type III secretion system. Nature Structural and Molecular Biology, 2007, 14, 131-137.	8.2	123
12	Assembly and structure of the T3SS. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1649-1663.	4.1	114
13	The Structure of UDP-N-Acetylglucosamine 2-Epimerase Reveals Homology to Phosphoglycosyl Transferases,. Biochemistry, 2000, 39, 14993-15001.	2.5	108
14	Cryo-EM analysis of the T3S injectisome reveals the structure of the needle and open secretin. Nature Communications, 2018, 9, 3840.	12.8	106
15	The First Structure of UDP-Glucose Dehydrogenase Reveals the Catalytic Residues Necessary for the Two-fold Oxidation [,] . Biochemistry, 2000, 39, 7012-7023.	2.5	100
16	Structure of EspB from the ESX-1 Type VII Secretion System and Insights into its Export Mechanism. Structure, 2015, 23, 571-583.	3.3	85
17	Antagonism screen for inhibitors of bacterial cell wall biogenesis uncovers an inhibitor of undecaprenyl diphosphate synthase. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11048-11053.	7.1	83
18	Molecular Mechanism of Avibactam-Mediated β-Lactamase Inhibition. ACS Infectious Diseases, 2015, 1, 175-184.	3.8	80

#	Article	IF	CITATIONS
19	A Refined Model of the Prototypical Salmonella SPI-1 T3SS Basal Body Reveals the Molecular Basis for Its Assembly. PLoS Pathogens, 2013, 9, e1003307.	4.7	76
20	One ring to rule them all: Current trends in combating bacterial resistance to the βâ€lactams. Protein Science, 2016, 25, 787-803.	7.6	72
21	Structure of human ST8SiaIII sialyltransferase provides insight into cell-surface polysialylation. Nature Structural and Molecular Biology, 2015, 22, 627-635.	8.2	62
22	T3S injectisome needle complex structures in four distinct states reveal the basis of membrane coupling and assembly. Nature Microbiology, 2019, 4, 2010-2019.	13.3	58
23	Cryo-EM structure of the homohexameric T3SS ATPase-central stalk complex reveals rotary ATPase-like asymmetry. Nature Communications, 2019, 10, 626.	12.8	58
24	Structural and Kinetic Characterization of Diazabicyclooctanes as Dual Inhibitors of Both Serine-β-Lactamases and Penicillin-Binding Proteins. ACS Chemical Biology, 2016, 11, 864-868.	3.4	52
25	Common protein architecture and binding sites in proteases utilizing a Ser/Lys dyad mechanism. Protein Science, 1999, 8, 2533-2536.	7.6	45
26	Identification of Dynamic Structural Motifs Involved in Peptidoglycan Glycosyltransfer. Journal of Molecular Biology, 2008, 383, 167-177.	4.2	44
27	High-Level Resistance of Staphylococcus aureus to β-Lactam Antibiotics Mediated by Penicillin-Binding Protein 4 (PBP4). Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	44
28	The Modular Structure of the Inner-Membrane Ring Component PrgK Facilitates Assembly of the Type III Secretion System Basal Body. Structure, 2015, 23, 161-172.	3.3	43
29	Structural Analysis of a Specialized Type III Secretion System Peptidoglycan-cleaving Enzyme. Journal of Biological Chemistry, 2015, 290, 10406-10417.	3.4	43
30	Crystal structure of an intramembranal phosphatase central to bacterial cell-wall peptidoglycan biosynthesis and lipid recycling. Nature Communications, 2018, 9, 1159.	12.8	43
31	Structural Insights into Inhibition of Escherichia coli Penicillin-binding Protein 1B. Journal of Biological Chemistry, 2017, 292, 979-993.	3.4	42
32	Computationally designed peptide macrocycle inhibitors of New Delhi metallo-β-lactamase 1. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	41
33	The Structure ofl-Ribulose-5-Phosphate 4-Epimerase: An Aldolase-like Platform for Epimerizationâ€,‡. Biochemistry, 2001, 40, 14763-14771.	2.5	38
34	Interactions of the Transmembrane Polymeric Rings of the Salmonella enterica Serovar Typhimurium Type III Secretion System. MBio, 2010, 1, .	4.1	37
35	Fortifying the wall: synthesis, regulation and degradation of bacterial peptidoglycan. Current Opinion in Structural Biology, 2013, 23, 695-703.	5.7	37
36	Automated discovery of noncovalent inhibitors of SARS-CoV-2 main protease by consensus Deep Docking of 40 billion small molecules. Chemical Science, 2021, 12, 15960-15974.	7.4	36

#	Article	IF	CITATIONS
37	Effect of Divalent Metal Cations on the Dimerization of OXA-10 and -14 Class D β-Lactamases from Pseudomonas aeruginosa. Biochemistry, 2001, 40, 9412-9420.	2.5	33
38	Structural insight into YcbB-mediated beta-lactam resistance in Escherichia coli. Nature Communications, 2019, 10, 1849.	12.8	29
39	lpdAB, a virulence factor in <i>Mycobacterium tuberculosis</i> , is a cholesterol ring-cleaving hydrolase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3378-E3387.	7.1	28
40	Structural and Kinetic Analysis of Substrate Binding to the Sialyltransferase Cst-II from Campylobacter jejuni*. Journal of Biological Chemistry, 2011, 286, 35922-35932.	3.4	27
41	High-resolution Structure of the Major Periplasmic Domain from the Cell Shape-determining Filament MreC. Journal of Molecular Biology, 2007, 372, 1034-1044.	4.2	25
42	Recognition of Peptidoglycan Fragments by the Transpeptidase PBP4 From Staphylococcus aureus. Frontiers in Microbiology, 2018, 9, 3223.	3.5	23
43	Crystallographic analysis of Staphylococcus aureus LcpA, the primary wall teichoic acid ligase. Journal of Biological Chemistry, 2020, 295, 2629-2639.	3.4	23
44	A Slippery Scaffold: Synthesis and Recycling of the Bacterial Cell Wall Carrier Lipid. Journal of Molecular Biology, 2020, 432, 4964-4982.	4.2	23
45	PBP4 activity and its overexpression are necessary for PBP4-mediated high-level β-lactam resistance. Journal of Antimicrobial Chemotherapy, 2018, 73, 1177-1180.	3.0	19
46	Cryo-EM analysis of the SctV cytosolic domain from the enteropathogenic E. coli T3SS injectisome. Journal of Structural Biology, 2020, 212, 107660.	2.8	19
47	Insights into Heptosyltransferase I Catalysis and Inhibition through the Structure of Its Ternary Complex. Structure, 2018, 26, 1399-1407.e5.	3.3	18
48	On the road to structure-based development of anti-virulence therapeutics targeting the type III secretion system injectisome. MedChemComm, 2019, 10, 1273-1289.	3.4	18
49	Structural Insights into the Lipoprotein Outer Membrane Regulator of Penicillin-binding Protein 1B. Journal of Biological Chemistry, 2014, 289, 19245-19253.	3.4	17
50	Structural Insights into Bacteriophage GIL01 gp7 Inhibition of Host LexA Repressor. Structure, 2019, 27, 1094-1102.e4.	3.3	17
51	Assay for drug discovery: Synthesis and testing of nitrocefin analogues for use as β-lactamase substrates. Analytical Biochemistry, 2015, 486, 75-77.	2.4	15
52	SPOR Proteins Are Required for Functionality of Class A Penicillin-Binding Proteins in Escherichia coli. MBio, 2020, 11, .	4.1	15
53	X-ray crystallographic structure of a bacterial polysialyltransferase provides insight into the biosynthesis of capsular polysialic acid. Scientific Reports, 2017, 7, 5842.	3.3	13
54	Structural and biochemical characterization of SpoIIIAF, a component of a sporulation-essential channel in Bacillus subtilis. Journal of Structural Biology, 2018, 204, 1-8.	2.8	12

#	Article	IF	CITATIONS
55	The Salmonella Type III Secretion System Virulence Effector Forms a New Hexameric Chaperone Assembly for Export of Effector/Chaperone Complexes. Journal of Bacteriology, 2015, 197, 672-675.	2.2	11
56	Structural characterization of SpoIIIAB sporulation-essential protein in Bacillus subtilis. Journal of Structural Biology, 2018, 202, 105-112.	2.8	11
57	Structural analysis of SepL, an enteropathogenic <i>Escherichia coli</i> type III secretion-system gatekeeper protein. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 1300-1308.	0.8	10
58	A Hybrid Secretion System Facilitates Bacterial Sporulation: A Structural Perspective. Microbiology Spectrum, 2019, 7, .	3.0	10
59	CryoEM structure of the antibacterial target PBP1b at 3.3 à resolution. Nature Communications, 2021, 12, 2775.	12.8	10
60	Structural insight into the <i>Staphylococcus aureus</i> ATP-driven exporter of virulent peptide toxins. Science Advances, 2020, 6, .	10.3	9
61	Structure of the Peptidoglycan Synthase Activator LpoP in Pseudomonas aeruginosa. Structure, 2020, 28, 643-650.e5.	3.3	9
62	Characterization of the Pilotin-Secretin Complex from the Salmonella enterica Type III Secretion System Using Hybrid Structural Methods. Structure, 2021, 29, 125-138.e5.	3.3	9
63	The active DNA-PK holoenzyme occupies a tensed state in a staggered synaptic complex. Structure, 2021, 29, 467-478.e6.	3.3	9
64	Structural analysis of avibactam-mediated activation of the bla and mec divergons in methicillin-resistant Staphylococcus aureus. Journal of Biological Chemistry, 2020, 295, 10870-10884.	3.4	7
65	Aligning the Symmetry of the Type III Secretion System Needle Complex. Journal of Chemical Information and Modeling, 2020, 60, 2430-2435.	5.4	7
66	Cryo-EM structure of the EspA filament from enteropathogenic Escherichia coli: Revealing the mechanism of effector translocation in the T3SS. Structure, 2021, 29, 479-487.e4.	3.3	7
67	Structural Basis for Binding of Fluorescent CMP-Neu5Ac Mimetics to Enzymes of the Human ST8Sia Family. ACS Chemical Biology, 2018, 13, 2320-2328.	3.4	6
68	Structural and Cellular Insights into the <scp>l</scp> , <scp>d</scp> -Transpeptidase YcbB as a Therapeutic Target in Citrobacter rodentium, <i>Salmonella</i> Typhimurium, and <i>Salmonella</i> Typhi Infections. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	5
69	PBP4-mediated β-lactam resistance among clinical strains of <i>Staphylococcus aureus</i> . Journal of Antimicrobial Chemotherapy, 2021, 76, 2268-2272.	3.0	5
70	Characterization of the two conformations adopted by the T3SS innerâ€membrane protein PrgK. Protein Science, 2018, 27, 1680-1691.	7.6	4
71	The Impact of Second Coordination Sphere Methionine-Aromatic Interactions in Copper Proteins. Inorganic Chemistry, 2022, 61, 5563-5571.	4.0	4
72	Structural Insights into the Inhibition of Undecaprenyl Pyrophosphate Synthase from Gram-Positive Bacteria. Journal of Medicinal Chemistry, 2021, 64, 13540-13550.	6.4	2

#	Article	IF	CITATIONS
73	Crystal structure of the <i>Propionibacterium acnes</i> surface sialidase, a drug target for <i>P. acnes</i> -associated diseases. Glycobiology, 2022, 32, 162-170.	2.5	2
74	The hinge region of the Israeli acute paralysis virus internal ribosome entry site directs ribosomal positioning, translational activity and virus infection. Journal of Virology, 2022, , JVI0133021.	3.4	2
75	Crystallographic analysis of Tarl and TarJ, a cytidylyltransferase and reductase pair for CDP-ribitol synthesis in Staphylococcus aureus wall teichoic acid biogenesis. Journal of Structural Biology, 2021, 213, 107733.	2.8	1
76	Hybrid structural methods to probe atomic features of the Type III Secretion Injectisome of Pathogenic Bacteria. Microscopy and Microanalysis, 2021, 27, 826-827.	0.4	0
77	Host Receptors of Bacterial Origin. , 0, , 49-68.		0