List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4339180/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantum Conductance in Memristive Devices: Fundamentals, Developments, and Applications. Advanced Materials, 2022, 34, e2201248.	21.0	31
2	Impact of moisture absorption on the resistive switching characteristics of a polyethylene oxide-based atomic switch. Journal of Materials Chemistry C, 2021, 9, 11198-11206.	5.5	6
3	Significant roles of the polymer matrix in the resistive switching behavior of polymer-based atomic switches. Journal Physics D: Applied Physics, 2019, 52, 445301.	2.8	15
4	Tunable Magnetism of Organometallic Nanoclusters by Graphene Oxide On-Surface Chemistry. Scientific Reports, 2019, 9, 14509.	3.3	6
5	Morphological Change of Molecular Assemblies through On-Surface Chemical Reaction. Journal of Physical Chemistry C, 2019, 123, 29679-29685.	3.1	1
6	Reversible manipulation of lattice defects in single-crystal SnO2 microrod by applying mechanical stress and voltage. Journal of Applied Physics, 2019, 125, .	2.5	1
7	Nanoarchitectonics for Controlling the Number of Dopant Atoms in Solid Electrolyte Nanodots. Advanced Materials, 2018, 30, 1703261.	21.0	59
8	Oxygen vacancy drift controlled three-terminal ReRAM with a reduction in operating gate bias and gate leakage current. Solid State Ionics, 2018, 328, 30-34.	2.7	3
9	Ionic decision-maker created as novel, solid-state devices. Science Advances, 2018, 4, eaau2057.	10.3	28
10	Thermally stable resistive switching of a polyvinyl alcohol-based atomic switch. Journal of Materials Chemistry C, 2018, 6, 6460-6464.	5.5	26
11	Self-Sensitization and Photo-Polymerization of Diacetylene Molecules Self-Assembled on a Hexagonal-Boron Nitride Nanosheet. Polymers, 2018, 10, 206.	4.5	5
12	Highly Reproducible and Regulated Conductance Quantization in a Polymerâ€Based Atomic Switch. Advanced Functional Materials, 2017, 27, 1605104.	14.9	66
13	Operating mechanism and resistive switching characteristics of two- and three-terminal atomic switches using a thin metal oxide layer. Journal of Electroceramics, 2017, 39, 143-156.	2.0	24
14	Current progress of solid state ionics on information and communication device technology. , 2017, , .		1
15	Ultrahigh-density data storage into thin films of fullerene molecules. Japanese Journal of Applied Physics, 2016, 55, 1102B4.	1.5	9
16	The Way to Nanoarchitectonics and the Way of Nanoarchitectonics. Advanced Materials, 2016, 28, 989-992.	21.0	242
17	Kinetic factors determining conducting filament formation in solid polymer electrolyte based planar devices. Nanoscale, 2016, 8, 13976-13984.	5.6	42
18	Nanoionic devices enabling a multitude of new features. Nanoscale, 2016, 8, 13873-13879.	5.6	24

#	Article	IF	CITATIONS
19	Nanoionic devices: Interface nanoarchitechtonics for physical property tuning and enhancement. Japanese Journal of Applied Physics, 2016, 55, 1102A4.	1.5	17
20	Multiple-probe scanning probe microscopes for nanoarchitectonic materials science. Japanese Journal of Applied Physics, 2016, 55, 1102A7.	1.5	8
21	Self-assembled diacetylene molecular wire polymerization on an insulating hexagonal boron nitride (0001) surface. Nanotechnology, 2016, 27, 395303.	2.6	16
22	Facile fabrication of silk protein sericin-mediated hierarchical hydroxyapatite-based bio-hybrid architectures: excellent adsorption of toxic heavy metals and hazardous dye from wastewater. RSC Advances, 2016, 6, 86607-86616.	3.6	39
23	Nanoarchitectonics. Japanese Journal of Applied Physics, 2016, 55, 1102A6.	1.5	56
24	Self-assembling diacetylene molecules on atomically flat insulators. Physical Chemistry Chemical Physics, 2016, 18, 31600-31605.	2.8	8
25	Nanoarchitectonic atomic switch networks for unconventional computing. Japanese Journal of Applied Physics, 2016, 55, 1102B2.	1.5	47
26	Identification and roles of nonstoichiometric oxygen in amorphous Ta2O5 thin films deposited by electron beam and sputtering processes. Applied Surface Science, 2016, 385, 426-435.	6.1	27
27	Mechanism for Conducting Filament Growth in Selfâ€Assembled Polymer Thin Films for Redoxâ€Based Atomic Switches. Advanced Materials, 2016, 28, 640-648.	21.0	128
28	<i>In Situ</i> Tuning of Magnetization and Magnetoresistance in Fe ₃ O ₄ Thin Film Achieved with All-Solid-State Redox Device. ACS Nano, 2016, 10, 1655-1661.	14.6	80
29	Controlled Fabrication of Silk Protein Sericin Mediated Hierarchical Hybrid Flowers and Their Excellent Adsorption Capability of Heavy Metal Ions of Pb(II), Cd(II) and Hg(II). ACS Applied Materials & Interfaces, 2016, 8, 2380-2392.	8.0	65
30	Commentary: Nanoarchitectonics— Think about NANO again. APL Materials, 2015, 3, 061001.	5.1	35
31	Topographic and Electronic Properties of 3,4,9,10-Perylene Tetra Carboxylic Dianhydride (PTCDA) on Indium Tin Oxide (ITO) Surface. Advanced Materials Research, 2015, 1112, 110-115.	0.3	0
32	Redox Reactions at Cu,Ag/Ta ₂ O ₅ Interfaces and the Effects of Ta ₂ O ₅ Film Density on the Forming Process in Atomic Switch Structures. Advanced Functional Materials, 2015, 25, 6374-6381.	14.9	148
33	Ultraâ€Low Voltage and Ultraâ€Low Power Consumption Nonvolatile Operation of a Threeâ€Terminal Atomic Switch. Advanced Materials, 2015, 27, 6029-6033.	21.0	15
34	Infrared Aluminum Metamaterial Perfect Absorbers for Plasmonâ€Enhanced Infrared Spectroscopy. Advanced Functional Materials, 2015, 25, 6637-6643.	14.9	129
35	Nanoarchitectonics: a new materials horizon for nanotechnology. Materials Horizons, 2015, 2, 406-413.	12.2	270
36	Moiré Nanosphere Lithography. ACS Nano, 2015, 9, 6031-6040.	14.6	91

#	Article	IF	CITATIONS
37	Morphic atomic switch networks for beyond-Moore computing architectures. , 2015, , .		0
38	Plasmon-mediated photocatalytic activity of wet-chemically prepared ZnO nanowire arrays. Physical Chemistry Chemical Physics, 2015, 17, 7395-7403.	2.8	29
39	Dynamic moderation of an electric field using a SiO ₂ switching layer in TaO <i>_x</i> â€based ReRAM. Physica Status Solidi - Rapid Research Letters, 2015, 9, 166-170.	2.4	9
40	<i>In Situ</i> and Nonvolatile Photoluminescence Tuning and Nanodomain Writing Demonstrated by All-Solid-State Devices Based on Graphene Oxide. ACS Nano, 2015, 9, 2102-2110.	14.6	36
41	Tunable morphology from 2D to 3D in the formation of hierarchical architectures from a self-assembling dipeptide: thermal-induced morphological transition to 1D nanostructures. Journal of Materials Science, 2015, 50, 3139-3148.	3.7	7
42	Effect of Ionic Conductivity on Response Speed of SrTiO ₃ -Based All-Solid-State Electric-Double-Layer Transistor. ACS Applied Materials & Interfaces, 2015, 7, 12254-12260.	8.0	37
43	Position detection and observation of a conducting filament hidden under a top electrode in a Ta ₂ O ₅ -based atomic switch. Nanotechnology, 2015, 26, 145702.	2.6	19
44	Effects of temperature and ambient pressure on the resistive switching behaviour of polymer-based atomic switches. Journal of Materials Chemistry C, 2015, 3, 5715-5720.	5.5	38
45	Nanoarchitectonics + future leaders = bright success in materials science and technology. Science and Technology of Advanced Materials, 2015, 16, 010302.	6.1	2
46	Ultrahighâ€Gain Single SnO ₂ Microrod Photoconductor on Flexible Substrate with Fast Recovery Speed. Advanced Functional Materials, 2015, 25, 3157-3163.	14.9	84
47	Modulation of superconducting critical temperature in niobium film by using all-solid-state electric-double-layer transistor. Applied Physics Letters, 2015, 107, .	3.3	26
48	Synaptic plasticity and memristive behavior operated by atomic switches. , 2014, , .		3
49	Micro x-ray photoemission and Raman spectroscopic studies on bandgap tuning of graphene oxide achieved by solid state ionics device. Applied Physics Letters, 2014, 105, 183101.	3.3	23
50	Nanojunction between Fullerene and One-Dimensional Conductive Polymer on Solid Surfaces. ACS Nano, 2014, 8, 12259-12264.	14.6	25
51	Graphene: In Situ and Non-Volatile Bandgap Tuning of Multilayer Graphene Oxide in an All-Solid-State Electric Double-Layer Transistor (Adv. Mater. 7/2014). Advanced Materials, 2014, 26, 1143-1143.	21.0	2
52	Volatile and nonvolatile selective operation of a two-terminal gap-type atomic switch. , 2014, , .		0
53	In Situ and Nonâ€Volatile Bandgap Tuning of Multilayer Graphene Oxide in an Allâ€Solidâ€State Electric Doubleâ€Layer Transistor. Advanced Materials, 2014, 26, 1087-1091.	21.0	80
54	Benchtop Fabrication of Memristive Atomic Switch Networks. Journal of Nanoscience and Nanotechnology, 2014, 14, 2792-2798.	0.9	7

#	Article	IF	CITATIONS
55	Generic Relevance of Counter Charges for Cation-Based Nanoscale Resistive Switching Memories. ACS Nano, 2013, 7, 6396-6402.	14.6	216
56	Morphological Transitions from Dendrites to Nanowires in the Electroless Deposition of Silver. Crystal Growth and Design, 2013, 13, 465-469.	3.0	46
57	Ordered Monomolecular Layers as a Template for the Regular Arrangement of Gold Nanoparticles. Langmuir, 2013, 29, 7334-7343.	3.5	8
58	Double-Side-Coated Nanomechanical Membrane-Type Surface Stress Sensor (MSS) for One-Chip–One-Channel Setup. Langmuir, 2013, 29, 7551-7556.	3.5	19
59	A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing. Nanotechnology, 2013, 24, 384004.	2.6	178
60	Quantized Conductance and Neuromorphic Behavior of a Gapless-Type Ag-Ta2O5 Atomic Switch. Materials Research Society Symposia Proceedings, 2013, 1562, 1.	0.1	5
61	Influence of Atmosphere on Photo-Assisted Atomic Switch Operations. Key Engineering Materials, 2013, 596, 116-120.	0.4	1
62	Nonvolatile three-terminal operation based on oxygen vacancy drift in a Pt/Ta ₂ O _{5â^'x} /Pt, Pt structure. Applied Physics Letters, 2013, 102, 233508.	3.3	12
63	All-solid-state electric-double-layer transistor based on oxide ion migration in Gd-doped CeO2 on SrTiO3 single crystal. Applied Physics Letters, 2013, 103, .	3.3	47
64	Interconnects with single conjugated polymers. , 2013, , .		0
65	Synaptic plasticity and memory functions achieved in a WO _{3â^'<i>x</i>} -based nanoionics device by using the principle of atomic switch operation. Nanotechnology, 2013, 24, 384003.	2.6	117
66	Two Dimensional Array of Piezoresistive Nanomechanical Membrane-Type Surface Stress Sensor (MSS) with Improved Sensitivity. Sensors, 2012, 12, 15873-15887.	3.8	66
67	Impacts of Temperature and Moisture on the Resistive Switching Characteristics of a Cu-Ta2O5-Based Atomic Switch. Materials Research Society Symposia Proceedings, 2012, 1430, 25.	0.1	1
68	Oxygen migration process in the interfaces during bipolar resistance switching behavior of WO <i>3â^x</i> -based nanoionics devices. Applied Physics Letters, 2012, 100, .	3.3	46
69	Flexible Polymer Atomic Switches using Ink-Jet Printing Technique. Materials Research Society Symposia Proceedings, 2012, 1430, 106.	0.1	1
70	Controlled chain polymerisation and chemical soldering for single-molecule electronics. Nanoscale, 2012, 4, 3013.	5.6	68
71	Multilayer Silicene Nanoribbons. Nano Letters, 2012, 12, 5500-5503.	9.1	151
72	On-Demand Nanodevice with Electrical and Neuromorphic Multifunction Realized by Local Ion Migration. ACS Nano, 2012, 6, 9515-9521.	14.6	186

#	Article	IF	CITATIONS
73	Strain Sensors: Enhancing the Humidity Sensitivity of Ga2O3/SnO2Core/Shell Microribbon by Applying Mechanical Strain and Its Application as a Flexible Strain Sensor (Small 23/2012). Small, 2012, 8, 3598-3598.	10.0	0
74	Selective Adsorption of Thiol Molecules at Sulfur Vacancies on MoS ₂ (0001), Followed by Vacancy Repair via S–C Dissociation. Journal of Physical Chemistry C, 2012, 116, 22411-22416.	3.1	133
75	Controlling Semiconducting and Insulating States of SnO ₂ Reversibly by Stress and Voltage. ACS Nano, 2012, 6, 7209-7215.	14.6	16
76	Biomimetics: Controlling the Synaptic Plasticity of a Cu2S Gap-Type Atomic Switch (Adv. Funct. Mater.) Tj ETQq0	0.0 rgBT /(14.9	Dyerlock 10
77	Enhancing the Humidity Sensitivity of Ga ₂ O ₃ /SnO ₂ Core/Shell Microribbon by Applying Mechanical Strain and Its Application as a Flexible Strain Sensor. Small, 2012, 8, 3599-3604.	10.0	25
78	Conductance quantization and synaptic behavior in a Ta ₂ O ₅ -based atomic switch. Nanotechnology, 2012, 23, 435705.	2.6	157
79	One-step fabrication of β-Ga2O3–amorphous-SnO2 core–shell microribbons and their thermally switchable humidity sensing properties. Journal of Materials Chemistry, 2012, 22, 12882.	6.7	32
80	Size Effect on the Structure and Optical Properties in Nanocrystalline SrTiO ₃ . E-Journal of Surface Science and Nanotechnology, 2012, 10, 406-410.	0.4	5
81	Forming nanomaterials as layered functional structures toward materials nanoarchitectonics. NPG Asia Materials, 2012, 4, e17-e17.	7.9	366
82	Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces. Nature Materials, 2012, 11, 530-535.	27.5	208
83	Controlling the Synaptic Plasticity of a Cu ₂ S Gapâ€₹ype Atomic Switch. Advanced Functional Materials, 2012, 22, 3606-3613.	14.9	160
84	Effects of Moisture on the Switching Characteristics of Oxideâ€Based, Gaplessâ€Type Atomic Switches. Advanced Functional Materials, 2012, 22, 70-77.	14.9	247
85	Atomic Switch: Atom/Ion Movement Controlled Devices for Beyond Vonâ€Neumann Computers. Advanced Materials, 2012, 24, 252-267.	21.0	338
86	Emergent Criticality in Complex Turing Bâ€Type Atomic Switch Networks. Advanced Materials, 2012, 24, 286-293.	21.0	182
87	Nanoarchitectonics: Pioneering a New Paradigm for Nanotechnology in Materials Development. Advanced Materials, 2012, 24, 150-151.	21.0	95
88	Development and Application of Multipleâ€Probe Scanning Probe Microscopes. Advanced Materials, 2012, 24, 1675-1692.	21.0	56
89	Unorganized Machines: Emergent Criticality in Complex Turing Bâ€Type Atomic Switch Networks (Adv.) Tj ETQq1	1.0.78431 21.0	l4rgBT /Ov€
90	Sensory and short-term memory formations observed in a Ag2S gap-type atomic switch. Applied Physics Letters, 2011, 99, .	3.3	63

#	Article	IF	CITATIONS
91	Rate-Determining Factors in the Chain Polymerization of Molecules Initiated by Local Single-Molecule Excitation. ACS Nano, 2011, 5, 2779-2786.	14.6	35
92	Molecular-Scale Size Tuning of Covalently Bound Assembly of C60 Molecules. ACS Nano, 2011, 5, 7830-7837.	14.6	21
93	Chemical Wiring and Soldering toward All-Molecule Electronic Circuitry. Journal of the American Chemical Society, 2011, 133, 8227-8233. Macroscopic Superconducting Current through a Silicon Surface Reconstruction with Indium	13.7	93
94	Adatoms: <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>Si</mml:mi><mml:mo stretchy="false">(<mml:mn>11</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mtext mathyariant="normal">a^~<mml:mo< td=""><td></td><td></td></mml:mo<></mml:mtext </mml:mo </mml:math>		

121

#	Article	IF	CITATIONS
109	Nonvolatile Crossbar Switch Using \$hbox{TiO}_{x}/ hbox{TaSiO}_{y}\$ Solid Electrolyte. IEEE Transactions on Electron Devices, 2010, 57, 1987-1995.	3.0	36
110	Molecular Scale Control of Unbound and Bound C ₆₀ for Topochemical Ultradense Data Storage in an Ultrathin C ₆₀ Film. Advanced Materials, 2010, 22, 1622-1625.	21.0	61
111	Learning Abilities Achieved by a Single Solid‣tate Atomic Switch. Advanced Materials, 2010, 22, 1831-1834.	21.0	274
112	Photoassisted Formation of an Atomic Switch. Small, 2010, 6, 1745-1748.	10.0	33
113	ZnO-Based Ultraviolet Photodetectors. Sensors, 2010, 10, 8604-8634.	3.8	576
114	Rate-Limiting Processes Determining the Switching Time in a Ag ₂ S Atomic Switch. Journal of Physical Chemistry Letters, 2010, 1, 604-608.	4.6	99
115	Structural characterization of amorphous Ta2O5 and SiO2–Ta2O5 used as solid electrolyte for nonvolatile switches. Applied Physics Letters, 2010, 97, .	3.3	16
116	Giant Improvement of the Performance of ZnO Nanowire Photodetectors by Au Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 19835-19839.	3.1	319
117	Nonvolatile triode switch using electrochemical reaction in copper sulfide. Applied Physics Letters, 2010, 96, 252104.	3.3	28
118	Nanoionics Switching Devices: "Atomic Switches― MRS Bulletin, 2009, 34, 929-934.	3.5	55
119	First-Principles Study on Electric and Electronic Properties of P-Introduced Si Monatomic Chains. Journal of Computational and Theoretical Nanoscience, 2009, 6, 2635-2639.	0.4	0
120	Metal Nanowire Formation by Solid-Electrochemical Reaction and Its Device Application. Journal of the Vacuum Society of Japan, 2009, 52, 340-346.	0.3	1
121	Nanoscale elemental identification by synchrotronâ€radiationâ€based scanning tunneling microscopy. Surface and Interface Analysis, 2008, 40, 1033-1036.	1.8	12
122	Optically monitored wetâ€chemical preparation of SEIRA active Au nanostructures. Surface and Interface Analysis, 2008, 40, 1681-1683.	1.8	10
123	Reversibility ontrolled Single Molecular Level Chemical Reaction in a C ₆₀ Monolayer via Ionization Induced by Scanning Transmission Microscopy. Small, 2008, 4, 538-541.	10.0	35
124	A solid electrolyte nanometer switch. Electrical Engineering in Japan (English Translation of Denki) Tj ETQq0 0 0 r	gBT /Over	lock 10 Tf 50
125_	Inelastic scattering in electron transport from a metal tip through a nanoscale metal cluster into a	1.9	2

¹²⁶Diffusivity of Cu Ions in Solid Electrolyte and Its Effect on the Performance of Nanometer-Scale
Switch. IEEE Transactions on Electron Devices, 2008, 55, 3283-3287.3.0

#	ARTICLE	IF	CITATIONS
127	Effect of sulfurization conditions on structural and electrical properties of copper sulfide films. Journal of Applied Physics, 2008, 103, .	2.5	50
128	Atomic force microscopy and theoretical investigation of the lifted-up conformation of polydiacetylene on a graphite substrate. Soft Matter, 2008, 4, 1041.	2.7	36
129	Structural studies of copper sulfide films: effect of ambient atmosphere. Science and Technology of Advanced Materials, 2008, 9, 035011.	6.1	83
130	The excitation of one-dimensional plasmons in Si and Au–Si complex atom wires. Nanotechnology, 2008, 19, 355204.	2.6	10
131	Nanostencil-Fabricated Electrodes for Electron Transport Measurements of Atomically Thin Nanowires in Ultrahigh Vacuum. Japanese Journal of Applied Physics, 2008, 47, 1797-1799.	1.5	11
132	Low resistivity of Pt silicide nanowires measured using double-scanning-probe tunneling microscope. Applied Physics Letters, 2008, 92, 203114.	3.3	14
133	Editorial Nanosensors for Defense and Security. IEEE Sensors Journal, 2008, 8, 641-646.	4.7	1
134	走査ãfžãf«ãfãf—ãfãf¼ãf-馕微éţã,'使ã£ãŸãfŠãfŽãf⁻ã,¤f¤f¼ã®é>»æ°—è¼,é€ç‰¹æ€§è∽æ,¬. Journ	al o fathe V	ac u um Socie
135	Three-Terminal Nanometer Metal Switches Utilizing Solid Electrolytes. IEEJ Transactions on Electronics, Information and Systems, 2008, 128, 890-895.	0.2	0
136	Precisely Controlled Fabrication of a Highly Sensitive Au Sensor Film for Surface Enhanced Spectroscopy. Japanese Journal of Applied Physics, 2007, 46, L1222-L1224.	1.5	8
137	Substrate Dependent Low-Temperature Growth of Thin Ag Films: Study on Si(111)–In Surfaces. Japanese Journal of Applied Physics, 2007, 46, 5975-5980.	1.5	6
138	Electronic transport in Ta2O5 resistive switch. Applied Physics Letters, 2007, 91, .	3.3	213
139	In situ Surface-Enhanced Infrared Absorption Spectroscopy for the Analysis of the Adsorption and Desorption Process of Au Nanoparticles on the SiO2/Si Surface. Langmuir, 2007, 23, 6119-6125.	3.5	47
140	Anomalous phase transition and ionic conductivity of Agl nanowire grown using porous alumina template. Journal of Applied Physics, 2007, 102, 124308.	2.5	23
141	Resistance switching of an individual Ag ₂ S/Ag nanowire heterostructure. Nanotechnology, 2007, 18, 485202.	2.6	89
142	Chain Polymerization of Diacetylene Compound Multilayer Films on the Topmost Surface Initiated by a Scanning Tunneling Microscope Tip. Langmuir, 2007, 23, 5247-5250.	3.5	40
143	Stable molecular orientations of a C60 dimer in a photoinduced dimer row. Carbon, 2007, 45, 1261-1266.	10.3	10

27.5 4,518

#	Article	IF	CITATIONS
145	First-principles study on electronic responses of a C60 molecule to external electric fields. Chemical Physics, 2007, 342, 135-140.	1.9	5
146	Control of local ion transport to create unique functional nanodevices based on ionic conductors. Science and Technology of Advanced Materials, 2007, 8, 536-542.	6.1	31
147	Adsorption and Desorption of Au Nanoparticles Monitored by Infrared Spectroscopy. IEEJ Transactions on Electronics, Information and Systems, 2007, 127, 2171-2174.	0.2	Ο
148	Effect of sulfurization conditions and post-deposition annealing treatment on structural and electrical properties of silver sulfide films. Journal of Applied Physics, 2006, 99, 103501.	2.5	52
149	Formation of Metastable Silver Nanowires of Hexagonal Structure and Their Structural Transformation under Electron Beam Irradiation. Japanese Journal of Applied Physics, 2006, 45, 6046-6048.	1.5	27
150	Development of a scanning tunneling microscope forin situexperiments with a synchrotron radiation hard-X-ray microbeam. Journal of Synchrotron Radiation, 2006, 13, 216-220.	2.4	45
151	Control of conduction of iodine-doped poly(3-octylthiophene) thin films by double-tip scanning tunneling microscopy. Chemical Physics Letters, 2006, 419, 250-253.	2.6	2
152	Template synthesis of M/M2S (M=Ag, Cu) hetero-nanowires by electrochemical technique. Solid State Ionics, 2006, 177, 2527-2531.	2.7	17
153	Tunneling-current-induced light emission from individual carbon nanotubes. Surface Science, 2006, 600, L15-L19.	1.9	16
154	Fabrication of nanostructures by selective growth of C60 and Si on Si(111) substrate. Surface Science, 2006, 600, 2810-2816.	1.9	13
155	Scanning Tunneling Microscopy Combined with Hard X-ray Microbeam of High Brilliance from Synchrotron Radiation Source. Japanese Journal of Applied Physics, 2006, 45, 1913-1916.	1.5	8
156	Scanning Tunneling Microscope Study of a Local Electronic State Surrounding Mn Nanoclusters on Graphite. Japanese Journal of Applied Physics, 2006, 45, L469-L471.	1.5	2
157	Polaron Injection into One-Dimensional Polydiacetylene Nanowire. Japanese Journal of Applied Physics, 2006, 45, 2049-2052.	1.5	13
158	Application of Simple Mechanical Polishing to Fabrication of Nanogap Flat Electrodes. Japanese Journal of Applied Physics, 2006, 45, L145-L147.	1.5	18
159	Effect of Ion Diffusion on Switching Voltage of Solid-Electrolyte Nanometer Switch. Japanese Journal of Applied Physics, 2006, 45, 3666-3668.	1.5	60
160	Switching Property of Atomic Switch Controlled by Solid Electrochemical Reaction. Japanese Journal of Applied Physics, 2006, 45, L364-L366.	1.5	35
161	Tunneling-Current-Induced Light Emission from Copper Phthalocyanine Thin Films. E-Journal of Surface Science and Nanotechnology, 2006, 4, 559-562.	0.4	6
162	Atomic Switch-Nano Device using the Transfer of Atoms(Ions) Hyomen Kagaku, 2006, 27, 232-238.	0.0	3

#	Article	IF	CITATIONS
163	Solid Electrolyte Nanometer Switch. IEEJ Transactions on Electronics, Information and Systems, 2006, 126, 714-719.	0.2	0
164	Significant increase in conductivity of polydiacetylene thin film induced by iodine doping. Surface Science, 2005, 591, L273-L279.	1.9	35
165	Structural Study of Initial Growth of Nickel on Yttria-Stabilized Zirconia by Coaxial Impact-Collision Ion Scattering Spectroscopy. Japanese Journal of Applied Physics, 2005, 44, 2630-2633.	1.5	0
166	Ionic-Electronic Conductor Nanostructures: Template-Confined Growth and Nonlinear Electrical Transport. Small, 2005, 1, 971-975.	10.0	62
167	Structure of Atomically Smoothed LiNbO3(0001) Surface. Japanese Journal of Applied Physics, 2004, 43, 2057-2060.	1.5	18
168	Epitaxial growth of WOxnanorod array on W(001). Science and Technology of Advanced Materials, 2004, 5, 647-649.	6.1	23
169	The electron transport properties of photo- and electron-beam-irradiated C60 films. Journal of Physics and Chemistry of Solids, 2004, 65, 343-348.	4.0	34
170	Conductivity Measurement of Polydiacetylene Thin Films by Double-Tip Scanning Tunneling Microscopy. Journal of Physical Chemistry B, 2004, 108, 16353-16356.	2.6	61
171	Creation of conjugated polymer nanowires through controlled chain polymerization. E-Journal of Surface Science and Nanotechnology, 2004, 2, 99-105.	0.4	6
172	Structural and electrical properties of an electron-beam-irradiated C60 film. Applied Physics Letters, 2003, 82, 595-597.	3.3	115
173	Structural Analysis of Bismuth Nanowire by X-Ray Standing Wave Method. Japanese Journal of Applied Physics, 2003, 42, 2408-2411.	1.5	13
174	Scanning Tunneling Microscopy Observation of Langmuir–Blodgett Diacetylene Compound Films Deposited by Schaefer's Method. Japanese Journal of Applied Physics, 2002, 41, 2187-2188.	1.5	3
175	Sudden Suppression of Electron-Transmission Peaks in Finite-Biased Nanowires. Japanese Journal of Applied Physics, 2002, 41, 7491-7495.	1.5	4
176	Studies on the nucleation, dynamics and structure of the Si(111)–-Ag surface using surface second-harmonic generation. Surface Science, 2002, 517, 65-74.	1.9	8
177	Light creation and propagation in the narrow space between a nanoscale Ag cluster and a tungsten tip. Surface Science, 2001, 495, L834-L838.	1.9	1
178	Nanometer SNS junctions and their application to SQUIDs. Physica C: Superconductivity and Its Applications, 2001, 352, 186-190.	1.2	4
179	Nanoscale control of chain polymerization. Nature, 2001, 409, 683-684.	27.8	433
180	Magnetic-Field-Induced Second-Harmonic Generation on Si(111)-7×7. Japanese Journal of Applied Physics, 2001, 40, L1119-L1122.	1.5	10

#	Article	IF	CITATIONS
181	Study of the Si(111) "5× 5―Cu Surface Structure by X-Ray Diffraction and Scanning Tunneling Microscopy. Japanese Journal of Applied Physics, 2001, 40, L695-L697.	1.5	8
182	Valence band photoemission, band bending, and ionization energy of GaAs(100) treated in alcoholic sulfide solution. Journal of Applied Physics, 2000, 87, 289-294.	2.5	18
183	Three Distinct Terraces on a β-(ET)2I3 Surface Studied by Scanning Tunneling Microscopy. Japanese Journal of Applied Physics, 1999, 38, L464-L466.	1.5	5
184	Force Microscopy Study of SrTiO3(001) Surfaces with Single Atomic-Layer Steps. Japanese Journal of Applied Physics, 1999, 38, 3946-3948.	1.5	20
185	Measurement of partial pressures in extremely high vacuum region using a modified residual gas analyzer. Review of Scientific Instruments, 1999, 70, 1880-1884.	1.3	4
186	Thermally enhanced second-harmonic generation fromSi(111)â^'7×7and "1×1― Physical Review B, 1999, 12305-12308.	59 3.2	6
187	Strong linear polarization in scanning tunneling microscopy-induced luminescence from porous silicon. Applied Physics Letters, 1999, 74, 3842-3844.	3.3	10
188	Stability of Surface Steps on .BETAET2I3 Surfaces and Removal of Molecules by an STM Tip Shinku/Journal of the Vacuum Society of Japan, 1999, 42, 245-248.	0.2	0
189	Hydrogen-terminated Si Surfaces. STM Induced Light Emission from Nano Structures Comprising Si Dangling Bonds Hyomen Kagaku, 1999, 20, 716-726.	0.0	Ο
190	Luminescence from the transition metal iron induced with a scanning tunneling microscope. Surface Science, 1998, 415, L1032-L1036.	1.9	4
191	Intensity and polarization switching behaviors of light emission induced with a scanning tunneling microscope. Applied Physics Letters, 1998, 73, 2269-2271.	3.3	6
192	Atomic Diffusion and Electronic Structures of Ce/Ni(110) and Ce/Cu(110) Systems. Journal of the Physical Society of Japan, 1998, 67, 264-271.	1.6	2
193	Nanoscale Semiconductor Processes Using STM and AFM Lithographies. The Present and Future of Nano-Lithography Using Scanning Probes. How to Measure the Properties of Nano-Lithographed Structures Hyomen Kagaku, 1998, 19, 698-707.	0.0	7
194	Nanoscale Semiconductor Processes Using STM and AFM Lithographies. Formation of Silicon Dangling Bonds Using STM Lithography and Its Decoration Hyomen Kagaku, 1998, 19, 708-715.	0.0	1
195	Site-Independent Adsorption of Hydrogen Atoms Deposited from a Scanning Tunneling Microscope Tip onto a Si(111)- 7× 7 Surface. Japanese Journal of Applied Physics, 1997, 36, L1343-L1346.	1.5	7
196	Optical Parametric Amplification using the Phase Matching Retracing Behavior inMgO:LiNbO3for Generation of Intense Widely Tunable Mid-infrared Pulses. Japanese Journal of Applied Physics, 1997, 36, 3510-3514.	1.5	15
197	Tip-induced Electron Occupation of an Unoccupied Surface State in Scanning Tunneling Microscopy Imaging of a GaAs(110) Surface with Ag Clusters. Japanese Journal of Applied Physics, 1997, 36, L1336-L1339.	1.5	10
198	Analysis of Adsorption Sites of Benzene Molecules on the Pd(110) Surface Through Calculations of STM Images. Journal of Physical Chemistry B, 1997, 101, 4620-4622.	2.6	7

#	Article	IF	CITATIONS
199	Analysis of STM Images after Atom Extractions from the Si(111) 7 × 7 Unit Cell through a Cluster Model. Journal of Physical Chemistry B, 1997, 101, 9570-9573.	2.6	3
200	Spin-polarized electron tunneling detected using a scanning tunneling microscope. Surface Science, 1997, 386, 311-314.	1.9	8
201	Periodic Structure of a Single Sheet of a Clothlike Macromolecule(Atomic Cloth) Studied by Scanning Tunneling Microscopy. Angewandte Chemie International Edition in English, 1997, 36, 2755-2757.	4.4	64
202	Electronic conduction above 4 K of slightly reduced oxygen-deficient rutileTiO2â^'x. Physical Review B, 1996, 54, 7945-7956.	3.2	198
203	Influence of growth conditions on subsequent submonolayer oxide decomposition on Si(111). Physical Review B, 1996, 54, 10890-10895.	3.2	14
204	Role of Diffusion in Atomic Manipulation on Silicon by Scanning Tunneling Microscope. Japanese Journal of Applied Physics, 1995, 34, 3373-3375.	1.5	3
205	Surface temperature of pulsed-laser-irradiated Si(111)-7 × 7 measured by second-harmonic generation. Surface Science, 1995, 323, L293-L297.	1.9	11
206	Erratum to "surface temperature of pulsed-laser-irridiated Si(111)-7 × 7 measured by second-harmonic generation―[Surface science 323 (1995) L293]. Surface Science, 1995, 329, L611.	1.9	0
207	Technology and Science of Single-Atom Manipulation Hyomen Kagaku, 1995, 16, 312-319.	0.0	0
208	Difference in Binding Energy among Si Adatoms on the Si(111)7*7 Surface: STM Experiments and Theoretical Calculations Hyomen Kagaku, 1995, 16, 766-771.	0.0	0
209	Fundamentals and Present Aspects of Ion Beam Technology IV. Ion Beam Analysis. Radioisotopes, 1995, 44, 412-428.	0.2	1
210	Bond Length Relaxation in Ultrathin InAs andInPO.4As0.6Layers on InP(001). Japanese Journal of Applied Physics, 1994, 33, 5631-5635.	1.5	24
211	Structural Correlation among Different Phases in the Initial Stage of Epitaxial Growth of Au on Si(111). Japanese Journal of Applied Physics, 1994, 33, 3688-3695.	1.5	30
212	Scanning Tunneling Microscope Fabrication of Atomic-Scale Memory on a Silicon Surface. Japanese Journal of Applied Physics, 1994, 33, L190-L193.	1.5	16
213	Local structure of CuInSe2thin film studied by extended xâ€ray absorption fine structure. Journal of Applied Physics, 1994, 76, 7864-7869.	2.5	12
214	The sound of one atom hopping: Atomic manipulation on silicon surfaces by STM. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1994, 70, 711-720.	0.6	9
215	Summary Abstract. Shinku/Journal of the Vacuum Society of Japan, 1994, 37, 781-796.	0.2	3
216	Interaction of low-velocity rare-gas ions with a solid surface. Surface Science, 1993, 283, 46-51.	1.9	3

#	Article	IF	CITATIONS
217	The Absolute Coverage of K on the Si(111)-3×1-K Surface. Japanese Journal of Applied Physics, 1993, 32, L1263-L1265.	1.5	45
218	Single Electron Tunneling Observed in a 2D Tunnel Junction Array at Room Temperature. Japanese Journal of Applied Physics, 1993, 32, 532-535.	1.5	7
219	Single-Electron-Charging Effect Controlled by the Distance between a Substrate and a Liquid-Crystal Molecule. Japanese Journal of Applied Physics, 1993, 32, 1480-1483.	1.5	11
220	Molecular Orbital Theory of Field Evaporation. Japanese Journal of Applied Physics, 1993, 32, 3257-3260.	1.5	16
221	First Principles Study of the Effect of Tip Shape on Scanning Tunneling Microscopy Images. Japanese Journal of Applied Physics, 1993, 32, 2911-2913.	1.5	13
222	Tip-Sample Interactions in the Scanning Tunneling Microscope for Atomic-Scale Structure Fabrication. Japanese Journal of Applied Physics, 1993, 32, 1470-1477.	1.5	53
223	Site-specific measurement of adatom binding energy differences by atom extraction with the STM. Physical Review Letters, 1993, 70, 2040-2043.	7.8	147
224	Detection of Single Atom Extraction and Deposition Events during Nanolithographic Processing of Silicon with a Scanning Tunneling Microscope Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1993, 69, 101-106.	3.8	2
225	Local Structure of CuInSe2Thin Film Studied by EXAFS. Japanese Journal of Applied Physics, 1993, 32, 570.	1.5	2
226	Real-Time Monitoring and Control of Epitaxial Film Growth by Coaxial Impact-Collision Ion Scattering Spectroscopy(CAICISS) Hyomen Kagaku, 1993, 14, 423-428.	0.0	1
227	Fabrication of Atomic-Scale Structures on Si(111)-7×7 Using a Scanning Tunneling Microscope (STM). Japanese Journal of Applied Physics, 1992, 31, 4501-4503.	1.5	45
228	Study of the Si(111)\$sqrt{3}imessqrt{3}\$-Sb Structure by X-Ray Diffraction. Japanese Journal of Applied Physics, 1992, 31, L426-L428.	1.5	21
229	Achievement of XHV without any baking of vacuum system Shinku/Journal of the Vacuum Society of Japan, 1991, 34, 56-61.	0.2	4
230	Structure Analysis of the CaF2/Si(111) Interface in Its Initial Stage of Formation by Coaxial Impact-Collision Ion Scattering Spectroscopy (CAICISS). Progress of Theoretical Physics Supplement, 1991, 106, 315-320.	0.1	10
231	Outgassing property of stainless steel chamber treated with electropolishing and electro chemical buffing Shinku/Journal of the Vacuum Society of Japan, 1991, 34, 51-55.	0.2	5
232	Growth of single crystals of Bi-Sr-Ca-Cu-O. Journal of Crystal Growth, 1990, 100, 661-667.	1.5	42
233	Large Vessels of High-TcBi-Pb-Sr-Ca-Cu-O Superconductor for Magnetic Shield. Japanese Journal of Applied Physics, 1990, 29, L1435-L1438.	1.5	29
234	Scattering cross sections for ions colliding sequentially with two target atoms. Surface Science, 1990, 225, 355-366.	1.9	89

#	Article	IF	CITATIONS
235	Evaluation of structural quality of a silicon carbide (6Hâ€SiC) single crystal grown by a vapor transport method by Rutherford backscattering spectroscopy. Journal of Applied Physics, 1989, 65, 1790-1792.	2.5	6
236	Magnetic Shield of High-TcOxide Superconductors at 77 K. Japanese Journal of Applied Physics, 1989, 28, L813-L815.	1.5	30
237	Preparation and Structure of Sr0.60Ca0.40CuO2Single Crystals. Japanese Journal of Applied Physics, 1989, 28, L1442-L1445.	1.5	9
238	Titanium Carbide Single-Crystal Tips for High-Resolution Scanning Tunneling Microscopy (STM). Japanese Journal of Applied Physics, 1989, 28, L885-L887.	1.5	8
239	A novel method for real-time structural monitoring of molecular beam epitaxy(MBE) processes Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1989, 65, 137-141.	3.8	2
240	STM observation of surface atomic images using a TiC single crystal tip Shinku/Journal of the Vacuum Society of Japan, 1988, 31, 382-385.	0.2	1
241	Quantitative Surface Atomic Structure Analysis by Low-Energy Ion Scattering Spectroscopy (ISS). Japanese Journal of Applied Physics, 1985, 24, 1249-1262.	1.5	102
242	Titanium Oxycarbide on TiC (100) Surface. Japanese Journal of Applied Physics, 1983, 22, 930-933.	1.5	16
243	Low-Energy Ion Scattering. Shinku/Journal of the Vacuum Society of Japan, 1983, 26, 136-146.	0.2	2
244	Interaction Potential between He+and Ti in a keV Range as Revealed by a Specialized Technique in Ion Scattering Spectroscopy. Japanese Journal of Applied Physics, 1982, 21, L670-L672.	1.5	69
245	Quantitative Surface Atomic Geometry and Two-Dimensional Surface Electron Distribution Analysis by a New Technique in Low-Energy Ion Scattering. Japanese Journal of Applied Physics, 1981, 20, L829-L832.	1.5	282
246	Oxygen adsorption on the LaB6(100) surface studied by UPS and LEED. Surface Science, 1980, 92, 191-200.	1.9	28
247	X-Ray Spectroscopic Studies of SmB6. Japanese Journal of Applied Physics, 1978, 17, 161.	1.5	8
248	Optical Properties of ZnO Nanowires Decorated with Au Nanoparticles. Key Engineering Materials, 0, 547, 7-10.	0.4	8