List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4339180/publications.pdf Version: 2024-02-01

	24978	13727
17,472	57	129
citations	h-index	g-index
252	252	14899
docs citations	times ranked	citing authors
	citations 252	17,472 57 citations h-index 252 252

#	Article	IF	CITATIONS
1	Nanoionics-based resistive switching memories. Nature Materials, 2007, 6, 833-840.	13.3	4,518
2	Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nature Materials, 2011, 10, 591-595.	13.3	1,480
3	ZnO-Based Ultraviolet Photodetectors. Sensors, 2010, 10, 8604-8634.	2.1	576
4	Nanoscale control of chain polymerization. Nature, 2001, 409, 683-684.	13.7	433
5	Forming nanomaterials as layered functional structures toward materials nanoarchitectonics. NPG Asia Materials, 2012, 4, e17-e17.	3.8	366
6	Atomic Switch: Atom/Ion Movement Controlled Devices for Beyond Vonâ€Neumann Computers. Advanced Materials, 2012, 24, 252-267.	11.1	338
7	Giant Improvement of the Performance of ZnO Nanowire Photodetectors by Au Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 19835-19839.	1.5	319
8	Quantitative Surface Atomic Geometry and Two-Dimensional Surface Electron Distribution Analysis by a New Technique in Low-Energy Ion Scattering. Japanese Journal of Applied Physics, 1981, 20, L829-L832.	0.8	282
9	Learning Abilities Achieved by a Single Solidâ€State Atomic Switch. Advanced Materials, 2010, 22, 1831-1834.	11.1	274
10	Nanoarchitectonics: a new materials horizon for nanotechnology. Materials Horizons, 2015, 2, 406-413.	6.4	270
11	Effects of Moisture on the Switching Characteristics of Oxideâ€Based, Gaplessâ€Type Atomic Switches. Advanced Functional Materials, 2012, 22, 70-77.	7.8	247
12	The Way to Nanoarchitectonics and the Way of Nanoarchitectonics. Advanced Materials, 2016, 28, 989-992.	11.1	242
13	Generic Relevance of Counter Charges for Cation-Based Nanoscale Resistive Switching Memories. ACS Nano, 2013, 7, 6396-6402.	7.3	216
14	Electronic transport in Ta2O5 resistive switch. Applied Physics Letters, 2007, 91, .	1.5	213
15	Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces. Nature Materials, 2012, 11, 530-535.	13.3	208
16	Electronic conduction above 4 K of slightly reduced oxygen-deficient rutileTiO2â^'x. Physical Review B, 1996, 54, 7945-7956.	1.1	198
17	On-Demand Nanodevice with Electrical and Neuromorphic Multifunction Realized by Local Ion Migration. ACS Nano, 2012, 6, 9515-9521.	7.3	186
18	Emergent Criticality in Complex Turing Bâ€īype Atomic Switch Networks. Advanced Materials, 2012, 24, 286-293.	11.1	182

#	Article	IF	CITATIONS
19	A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing. Nanotechnology, 2013, 24, 384004. Macroscopic Superconducting Current through a Silicon Surface Reconstruction with Indium	1.3	178
20	Macroscopic Superconducting Current through a Silicon Surface Reconstruction with Indium Adatoms: <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>Si</mml:mi><mml:mo stretchy="false">(<mml:mn>111</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mtext mathyariant="normal">â^'<mml:mo< td=""><td></td><td></td></mml:mo<></mml:mtext </mml:mo </mml:math>		

#	Article	IF	CITATIONS
37	Moiré Nanosphere Lithography. ACS Nano, 2015, 9, 6031-6040.	7.3	91
38	Scattering cross sections for ions colliding sequentially with two target atoms. Surface Science, 1990, 225, 355-366.	0.8	89
39	Resistance switching of an individual Ag ₂ S/Ag nanowire heterostructure. Nanotechnology, 2007, 18, 485202.	1.3	89
40	Surface-enhanced ATR-IR spectroscopy with interface-grown plasmonic gold-island films near the percolation threshold. Physical Chemistry Chemical Physics, 2011, 13, 4935.	1.3	86
41	Ultrahighâ€Gain Single SnO ₂ Microrod Photoconductor on Flexible Substrate with Fast Recovery Speed. Advanced Functional Materials, 2015, 25, 3157-3163.	7.8	84
42	Structural studies of copper sulfide films: effect of ambient atmosphere. Science and Technology of Advanced Materials, 2008, 9, 035011.	2.8	83
43	In Situ and Nonâ€Volatile Bandgap Tuning of Multilayer Graphene Oxide in an Allâ€Solidâ€State Electric Doubleâ€Layer Transistor. Advanced Materials, 2014, 26, 1087-1091.	11.1	80
44	<i>In Situ</i> Tuning of Magnetization and Magnetoresistance in Fe ₃ O ₄ Thin Film Achieved with All-Solid-State Redox Device. ACS Nano, 2016, 10, 1655-1661.	7.3	80
45	Temperature effects on the switching kinetics of a Cu–Ta ₂ O ₅ -based atomic switch. Nanotechnology, 2011, 22, 254013.	1.3	75
46	Switching kinetics of a Cu ₂ S-based gap-type atomic switch. Nanotechnology, 2011, 22, 235201.	1.3	73
47	Interaction Potential between He+and Ti in a keV Range as Revealed by a Specialized Technique in Ion Scattering Spectroscopy. Japanese Journal of Applied Physics, 1982, 21, L670-L672.	0.8	69
48	Controlled chain polymerisation and chemical soldering for single-molecule electronics. Nanoscale, 2012, 4, 3013.	2.8	68
49	Two Dimensional Array of Piezoresistive Nanomechanical Membrane-Type Surface Stress Sensor (MSS) with Improved Sensitivity. Sensors, 2012, 12, 15873-15887.	2.1	66
50	Highly Reproducible and Regulated Conductance Quantization in a Polymerâ€Based Atomic Switch. Advanced Functional Materials, 2017, 27, 1605104.	7.8	66
51	Controlled Fabrication of Silk Protein Sericin Mediated Hierarchical Hybrid Flowers and Their Excellent Adsorption Capability of Heavy Metal Ions of Pb(II), Cd(II) and Hg(II). ACS Applied Materials & Interfaces, 2016, 8, 2380-2392.	4.0	65
52	Periodic Structure of a Single Sheet of a Clothlike Macromolecule(Atomic Cloth) Studied by Scanning Tunneling Microscopy. Angewandte Chemie International Edition in English, 1997, 36, 2755-2757.	4.4	64
53	Sensory and short-term memory formations observed in a Ag2S gap-type atomic switch. Applied Physics Letters, 2011, 99, .	1.5	63
54	Ionic-Electronic Conductor Nanostructures: Template-Confined Growth and Nonlinear Electrical Transport. Small, 2005, 1, 971-975.	5.2	62

#	Article	IF	CITATIONS
55	Conductivity Measurement of Polydiacetylene Thin Films by Double-Tip Scanning Tunneling Microscopy. Journal of Physical Chemistry B, 2004, 108, 16353-16356.	1.2	61
56	Molecular Scale Control of Unbound and Bound C ₆₀ for Topochemical Ultradense Data Storage in an Ultrathin C ₆₀ Film. Advanced Materials, 2010, 22, 1622-1625.	11.1	61
57	Effect of Ion Diffusion on Switching Voltage of Solid-Electrolyte Nanometer Switch. Japanese Journal of Applied Physics, 2006, 45, 3666-3668.	0.8	60
58	Nanoarchitectonics for Controlling the Number of Dopant Atoms in Solid Electrolyte Nanodots. Advanced Materials, 2018, 30, 1703261.	11.1	59
59	Development and Application of Multipleâ€Probe Scanning Probe Microscopes. Advanced Materials, 2012, 24, 1675-1692.	11.1	56
60	Nanoarchitectonics. Japanese Journal of Applied Physics, 2016, 55, 1102A6.	0.8	56
61	Nanoionics Switching Devices: "Atomic Switches― MRS Bulletin, 2009, 34, 929-934.	1.7	55
62	Tip-Sample Interactions in the Scanning Tunneling Microscope for Atomic-Scale Structure Fabrication. Japanese Journal of Applied Physics, 1993, 32, 1470-1477.	0.8	53
63	Effect of sulfurization conditions and post-deposition annealing treatment on structural and electrical properties of silver sulfide films. Journal of Applied Physics, 2006, 99, 103501.	1.1	52
64	Effect of sulfurization conditions on structural and electrical properties of copper sulfide films. Journal of Applied Physics, 2008, 103, .	1.1	50
65	In situ Surface-Enhanced Infrared Absorption Spectroscopy for the Analysis of the Adsorption and Desorption Process of Au Nanoparticles on the SiO2/Si Surface. Langmuir, 2007, 23, 6119-6125.	1.6	47
66	All-solid-state electric-double-layer transistor based on oxide ion migration in Gd-doped CeO2 on SrTiO3 single crystal. Applied Physics Letters, 2013, 103, .	1.5	47
67	Nanoarchitectonic atomic switch networks for unconventional computing. Japanese Journal of Applied Physics, 2016, 55, 1102B2.	0.8	47
68	Oxygen migration process in the interfaces during bipolar resistance switching behavior of WO <i>3â^'x</i> -based nanoionics devices. Applied Physics Letters, 2012, 100, .	1.5	46
69	Morphological Transitions from Dendrites to Nanowires in the Electroless Deposition of Silver. Crystal Growth and Design, 2013, 13, 465-469.	1.4	46
70	Fabrication of Atomic-Scale Structures on Si(111)-7×7 Using a Scanning Tunneling Microscope (STM). Japanese Journal of Applied Physics, 1992, 31, 4501-4503.	0.8	45
71	The Absolute Coverage of K on the Si(111)-3×1-K Surface. Japanese Journal of Applied Physics, 1993, 32, L1263-L1265.	0.8	45
72	Development of a scanning tunneling microscope forin situexperiments with a synchrotron radiation hard-X-ray microbeam. Journal of Synchrotron Radiation, 2006, 13, 216-220.	1.0	45

#	Article	IF	CITATIONS
73	Memristive operations demonstrated by gap-type atomic switches. Applied Physics A: Materials Science and Processing, 2011, 102, 811-815.	1.1	43
74	Growth of single crystals of Bi-Sr-Ca-Cu-O. Journal of Crystal Growth, 1990, 100, 661-667.	0.7	42
75	Kinetic factors determining conducting filament formation in solid polymer electrolyte based planar devices. Nanoscale, 2016, 8, 13976-13984.	2.8	42
76	Chain Polymerization of Diacetylene Compound Multilayer Films on the Topmost Surface Initiated by a Scanning Tunneling Microscope Tip. Langmuir, 2007, 23, 5247-5250.	1.6	40
77	Pinecone-shaped ZnO nanostructures: Growth, optical and gas sensor properties Sensors and Actuators B: Chemical, 2011, 157, 98-102.	4.0	39
78	Atomic switches: atomic-movement-controlled nanodevices for new types of computing. Science and Technology of Advanced Materials, 2011, 12, 013003.	2.8	39
79	Facile fabrication of silk protein sericin-mediated hierarchical hydroxyapatite-based bio-hybrid architectures: excellent adsorption of toxic heavy metals and hazardous dye from wastewater. RSC Advances, 2016, 6, 86607-86616.	1.7	39
80	Effects of temperature and ambient pressure on the resistive switching behaviour of polymer-based atomic switches. Journal of Materials Chemistry C, 2015, 3, 5715-5720.	2.7	38
81	Effect of Ionic Conductivity on Response Speed of SrTiO ₃ -Based All-Solid-State Electric-Double-Layer Transistor. ACS Applied Materials & Interfaces, 2015, 7, 12254-12260.	4.0	37
82	Atomic force microscopy and theoretical investigation of the lifted-up conformation of polydiacetylene on a graphite substrate. Soft Matter, 2008, 4, 1041.	1.2	36
83	Nonvolatile Crossbar Switch Using \$hbox{TiO}_{x}/ hbox{TaSiO}_{y}\$ Solid Electrolyte. IEEE Transactions on Electron Devices, 2010, 57, 1987-1995.	1.6	36
84	<i>In Situ</i> and Nonvolatile Photoluminescence Tuning and Nanodomain Writing Demonstrated by All-Solid-State Devices Based on Graphene Oxide. ACS Nano, 2015, 9, 2102-2110.	7.3	36
85	Significant increase in conductivity of polydiacetylene thin film induced by iodine doping. Surface Science, 2005, 591, L273-L279.	0.8	35
86	Switching Property of Atomic Switch Controlled by Solid Electrochemical Reaction. Japanese Journal of Applied Physics, 2006, 45, L364-L366.	0.8	35
87	Reversibility ontrolled Single Molecular Level Chemical Reaction in a C ₆₀ Monolayer via Ionization Induced by Scanning Transmission Microscopy. Small, 2008, 4, 538-541.	5.2	35
88	Rate-Determining Factors in the Chain Polymerization of Molecules Initiated by Local Single-Molecule Excitation. ACS Nano, 2011, 5, 2779-2786.	7.3	35
89	Commentary: Nanoarchitectonics— Think about NANO again. APL Materials, 2015, 3, 061001.	2.2	35
90	The electron transport properties of photo- and electron-beam-irradiated C60 films. Journal of Physics and Chemistry of Solids, 2004, 65, 343-348.	1.9	34

#	Article	IF	CITATIONS
91	Photoassisted Formation of an Atomic Switch. Small, 2010, 6, 1745-1748.	5.2	33
92	One-step fabrication of β-Ga2O3–amorphous-SnO2 core–shell microribbons and their thermally switchable humidity sensing properties. Journal of Materials Chemistry, 2012, 22, 12882.	6.7	32
93	Control of local ion transport to create unique functional nanodevices based on ionic conductors. Science and Technology of Advanced Materials, 2007, 8, 536-542.	2.8	31
94	Quantum Conductance in Memristive Devices: Fundamentals, Developments, and Applications. Advanced Materials, 2022, 34, e2201248.	11.1	31
95	Magnetic Shield of High-TcOxide Superconductors at 77 K. Japanese Journal of Applied Physics, 1989, 28, L813-L815.	0.8	30
96	Structural Correlation among Different Phases in the Initial Stage of Epitaxial Growth of Au on Si(111). Japanese Journal of Applied Physics, 1994, 33, 3688-3695.	0.8	30
97	Large Vessels of High-TcBi-Pb-Sr-Ca-Cu-O Superconductor for Magnetic Shield. Japanese Journal of Applied Physics, 1990, 29, L1435-L1438.	0.8	29
98	Plasmon-mediated photocatalytic activity of wet-chemically prepared ZnO nanowire arrays. Physical Chemistry Chemical Physics, 2015, 17, 7395-7403.	1.3	29
99	Oxygen adsorption on the LaB6(100) surface studied by UPS and LEED. Surface Science, 1980, 92, 191-200.	0.8	28
100	Nonvolatile triode switch using electrochemical reaction in copper sulfide. Applied Physics Letters, 2010, 96, 252104.	1.5	28
101	Ionic decision-maker created as novel, solid-state devices. Science Advances, 2018, 4, eaau2057.	4.7	28
102	Formation of Metastable Silver Nanowires of Hexagonal Structure and Their Structural Transformation under Electron Beam Irradiation. Japanese Journal of Applied Physics, 2006, 45, 6046-6048.	0.8	27
103	Identification and roles of nonstoichiometric oxygen in amorphous Ta2O5 thin films deposited by electron beam and sputtering processes. Applied Surface Science, 2016, 385, 426-435.	3.1	27
104	Modulation of superconducting critical temperature in niobium film by using all-solid-state electric-double-layer transistor. Applied Physics Letters, 2015, 107, .	1.5	26
105	Thermally stable resistive switching of a polyvinyl alcohol-based atomic switch. Journal of Materials Chemistry C, 2018, 6, 6460-6464.	2.7	26
106	Enhancing the Humidity Sensitivity of Ga ₂ O ₃ /SnO ₂ Core/Shell Microribbon by Applying Mechanical Strain and Its Application as a Flexible Strain Sensor. Small, 2012, 8, 3599-3604.	5.2	25
107	Nanojunction between Fullerene and One-Dimensional Conductive Polymer on Solid Surfaces. ACS Nano, 2014, 8, 12259-12264.	7.3	25
108	Bond Length Relaxation in Ultrathin InAs andInP0.4As0.6Layers on InP(001). Japanese Journal of Applied Physics, 1994, 33, 5631-5635.	0.8	24

#	Article	IF	CITATIONS
109	Nanoionic devices enabling a multitude of new features. Nanoscale, 2016, 8, 13873-13879.	2.8	24
110	Operating mechanism and resistive switching characteristics of two- and three-terminal atomic switches using a thin metal oxide layer. Journal of Electroceramics, 2017, 39, 143-156.	0.8	24
111	Epitaxial growth of WOxnanorod array on W(001). Science and Technology of Advanced Materials, 2004, 5, 647-649.	2.8	23
112	Anomalous phase transition and ionic conductivity of AgI nanowire grown using porous alumina template. Journal of Applied Physics, 2007, 102, 124308.	1.1	23
113	Micro x-ray photoemission and Raman spectroscopic studies on bandgap tuning of graphene oxide achieved by solid state ionics device. Applied Physics Letters, 2014, 105, 183101.	1.5	23
114	Study of the Si(111)\$sqrt{3}imessqrt{3}\$-Sb Structure by X-Ray Diffraction. Japanese Journal of Applied Physics, 1992, 31, L426-L428.	0.8	21
115	Molecular-Scale Size Tuning of Covalently Bound Assembly of C60 Molecules. ACS Nano, 2011, 5, 7830-7837.	7.3	21
116	Force Microscopy Study of SrTiO3(001) Surfaces with Single Atomic-Layer Steps. Japanese Journal of Applied Physics, 1999, 38, 3946-3948.	0.8	20
117	A quadruple-scanning-probe force microscope for electrical property measurements of microscopic materials. Nanotechnology, 2011, 22, 285205.	1.3	20
118	Double-Side-Coated Nanomechanical Membrane-Type Surface Stress Sensor (MSS) for One-Chip–One-Channel Setup. Langmuir, 2013, 29, 7551-7556.	1.6	19
119	Position detection and observation of a conducting filament hidden under a top electrode in a Ta ₂ O ₅ -based atomic switch. Nanotechnology, 2015, 26, 145702.	1.3	19
120	Valence band photoemission, band bending, and ionization energy of GaAs(100) treated in alcoholic sulfide solution. Journal of Applied Physics, 2000, 87, 289-294.	1.1	18
121	Structure of Atomically Smoothed LiNbO3(0001) Surface. Japanese Journal of Applied Physics, 2004, 43, 2057-2060.	0.8	18
122	Application of Simple Mechanical Polishing to Fabrication of Nanogap Flat Electrodes. Japanese Journal of Applied Physics, 2006, 45, L145-L147.	0.8	18
123	Template synthesis of M/M2S (M=Ag, Cu) hetero-nanowires by electrochemical technique. Solid State Ionics, 2006, 177, 2527-2531.	1.3	17
124	Nanoionic devices: Interface nanoarchitechtonics for physical property tuning and enhancement. Japanese Journal of Applied Physics, 2016, 55, 1102A4.	0.8	17
125	Titanium Oxycarbide on TiC (100) Surface. Japanese Journal of Applied Physics, 1983, 22, 930-933.	0.8	16
126	Molecular Orbital Theory of Field Evaporation. Japanese Journal of Applied Physics, 1993, 32, 3257-3260.	0.8	16

#	Article	IF	CITATIONS
127	Scanning Tunneling Microscope Fabrication of Atomic-Scale Memory on a Silicon Surface. Japanese Journal of Applied Physics, 1994, 33, L190-L193.	0.8	16
128	Tunneling-current-induced light emission from individual carbon nanotubes. Surface Science, 2006, 600, L15-L19.	0.8	16
129	Structural characterization of amorphous Ta2O5 and SiO2–Ta2O5 used as solid electrolyte for nonvolatile switches. Applied Physics Letters, 2010, 97, .	1.5	16
130	Nanoscale Control of Reversible Chemical Reaction Between Fullerene C ₆₀ Molecules Using Scanning Tunneling Microscope. Journal of Nanoscience and Nanotechnology, 2011, 11, 2829-2835.	0.9	16
131	Scanning tunneling microscopy and spectroscopy of electron-irradiated thin films of C60 molecules. Carbon, 2011, 49, 1829-1833.	5.4	16
132	Controlling Semiconducting and Insulating States of SnO ₂ Reversibly by Stress and Voltage. ACS Nano, 2012, 6, 7209-7215.	7.3	16
133	Self-assembled diacetylene molecular wire polymerization on an insulating hexagonal boron nitride (0001) surface. Nanotechnology, 2016, 27, 395303.	1.3	16
134	Optical Parametric Amplification using the Phase Matching Retracing Behavior inMgO:LiNbO3for Generation of Intense Widely Tunable Mid-infrared Pulses. Japanese Journal of Applied Physics, 1997, 36, 3510-3514.	0.8	15
135	Ultraâ€Low Voltage and Ultraâ€Low Power Consumption Nonvolatile Operation of a Threeâ€Terminal Atomic Switch. Advanced Materials, 2015, 27, 6029-6033.	11.1	15
136	Significant roles of the polymer matrix in the resistive switching behavior of polymer-based atomic switches. Journal Physics D: Applied Physics, 2019, 52, 445301.	1.3	15
137	Influence of growth conditions on subsequent submonolayer oxide decomposition on Si(111). Physical Review B, 1996, 54, 10890-10895.	1.1	14
138	Low resistivity of Pt silicide nanowires measured using double-scanning-probe tunneling microscope. Applied Physics Letters, 2008, 92, 203114.	1.5	14
139	Theoretical investigation of kinetics of a Cu2S-based gap-type atomic switch. Applied Physics Letters, 2011, 98, 233501.	1.5	14
140	First Principles Study of the Effect of Tip Shape on Scanning Tunneling Microscopy Images. Japanese Journal of Applied Physics, 1993, 32, 2911-2913.	0.8	13
141	Structural Analysis of Bismuth Nanowire by X-Ray Standing Wave Method. Japanese Journal of Applied Physics, 2003, 42, 2408-2411.	0.8	13
142	Fabrication of nanostructures by selective growth of C60 and Si on Si(111) substrate. Surface Science, 2006, 600, 2810-2816.	0.8	13
143	Polaron Injection into One-Dimensional Polydiacetylene Nanowire. Japanese Journal of Applied Physics, 2006, 45, 2049-2052.	0.8	13
144	Local structure of CuInSe2thin film studied by extended xâ€ray absorption fine structure. Journal of Applied Physics, 1994, 76, 7864-7869.	1.1	12

#	Article	IF	CITATIONS
145	Nanoscale elemental identification by synchrotronâ€radiationâ€based scanning tunneling microscopy. Surface and Interface Analysis, 2008, 40, 1033-1036.	0.8	12
146	Nonvolatile three-terminal operation based on oxygen vacancy drift in a Pt/Ta ₂ O _{5â^'x} /Pt, Pt structure. Applied Physics Letters, 2013, 102, 233508.	1.5	12
147	Single-Electron-Charging Effect Controlled by the Distance between a Substrate and a Liquid-Crystal Molecule. Japanese Journal of Applied Physics, 1993, 32, 1480-1483.	0.8	11
148	Surface temperature of pulsed-laser-irradiated Si(111)-7 × 7 measured by second-harmonic generation. Surface Science, 1995, 323, L293-L297.	0.8	11
149	Nanostencil-Fabricated Electrodes for Electron Transport Measurements of Atomically Thin Nanowires in Ultrahigh Vacuum. Japanese Journal of Applied Physics, 2008, 47, 1797-1799.	0.8	11
150	Tip-induced Electron Occupation of an Unoccupied Surface State in Scanning Tunneling Microscopy Imaging of a GaAs(110) Surface with Ag Clusters. Japanese Journal of Applied Physics, 1997, 36, L1336-L1339.	0.8	10
151	Strong linear polarization in scanning tunneling microscopy-induced luminescence from porous silicon. Applied Physics Letters, 1999, 74, 3842-3844.	1.5	10
152	Magnetic-Field-Induced Second-Harmonic Generation on Si(111)-7×7. Japanese Journal of Applied Physics, 2001, 40, L1119-L1122.	0.8	10
153	Stable molecular orientations of a C60 dimer in a photoinduced dimer row. Carbon, 2007, 45, 1261-1266.	5.4	10
154	Optically monitored wetâ€chemical preparation of SEIRA active Au nanostructures. Surface and Interface Analysis, 2008, 40, 1681-1683.	0.8	10
155	The excitation of one-dimensional plasmons in Si and Au–Si complex atom wires. Nanotechnology, 2008, 19, 355204.	1.3	10
156	Structure Analysis of the CaF2/Si(111) Interface in Its Initial Stage of Formation by Coaxial Impact-Collision Ion Scattering Spectroscopy (CAICISS). Progress of Theoretical Physics Supplement, 1991, 106, 315-320.	0.2	10
157	Preparation and Structure of Sr0.60Ca0.40CuO2Single Crystals. Japanese Journal of Applied Physics, 1989, 28, L1442-L1445.	0.8	9
158	The sound of one atom hopping: Atomic manipulation on silicon surfaces by STM. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1994, 70, 711-720.	0.6	9
159	Dynamic moderation of an electric field using a SiO ₂ switching layer in TaO <i>_x</i> â€based ReRAM. Physica Status Solidi - Rapid Research Letters, 2015, 9, 166-170.	1.2	9
160	Ultrahigh-density data storage into thin films of fullerene molecules. Japanese Journal of Applied Physics, 2016, 55, 1102B4.	0.8	9
161	Titanium Carbide Single-Crystal Tips for High-Resolution Scanning Tunneling Microscopy (STM). Japanese Journal of Applied Physics, 1989, 28, L885-L887.	0.8	8
162	Spin-polarized electron tunneling detected using a scanning tunneling microscope. Surface Science, 1997. 386. 311-314.	0.8	8

#	Article	IF	CITATIONS
163	Study of the Si(111) "5× 5―Cu Surface Structure by X-Ray Diffraction and Scanning Tunneling Microscopy. Japanese Journal of Applied Physics, 2001, 40, L695-L697.	0.8	8
164	Studies on the nucleation, dynamics and structure of the Si(111)–-Ag surface using surface second-harmonic generation. Surface Science, 2002, 517, 65-74.	0.8	8
165	Scanning Tunneling Microscopy Combined with Hard X-ray Microbeam of High Brilliance from Synchrotron Radiation Source. Japanese Journal of Applied Physics, 2006, 45, 1913-1916.	0.8	8
166	Precisely Controlled Fabrication of a Highly Sensitive Au Sensor Film for Surface Enhanced Spectroscopy. Japanese Journal of Applied Physics, 2007, 46, L1222-L1224.	0.8	8
167	Optical Properties of ZnO Nanowires Decorated with Au Nanoparticles. Key Engineering Materials, 0, 547, 7-10.	0.4	8
168	Ordered Monomolecular Layers as a Template for the Regular Arrangement of Gold Nanoparticles. Langmuir, 2013, 29, 7334-7343.	1.6	8
169	Multiple-probe scanning probe microscopes for nanoarchitectonic materials science. Japanese Journal of Applied Physics, 2016, 55, 1102A7.	0.8	8
170	Self-assembling diacetylene molecules on atomically flat insulators. Physical Chemistry Chemical Physics, 2016, 18, 31600-31605.	1.3	8
171	X-Ray Spectroscopic Studies of SmB6. Japanese Journal of Applied Physics, 1978, 17, 161.	0.8	8
172	Atomic switches: atomic-movement-controlled nanodevices for new types of computing. Science and Technology of Advanced Materials, 2011, 12, 013003.	2.8	8
173	Single Electron Tunneling Observed in a 2D Tunnel Junction Array at Room Temperature. Japanese Journal of Applied Physics, 1993, 32, 532-535.	0.8	7
174	Site-Independent Adsorption of Hydrogen Atoms Deposited from a Scanning Tunneling Microscope Tip onto a Si(111)- 7× 7 Surface. Japanese Journal of Applied Physics, 1997, 36, L1343-L1346.	0.8	7
175	Analysis of Adsorption Sites of Benzene Molecules on the Pd(110) Surface Through Calculations of STM Images. Journal of Physical Chemistry B, 1997, 101, 4620-4622.	1.2	7
176	Nanoscale Semiconductor Processes Using STM and AFM Lithographies. The Present and Future of Nano-Lithography Using Scanning Probes. How to Measure the Properties of Nano-Lithographed Structures Hyomen Kagaku, 1998, 19, 698-707.	0.0	7
177	Benchtop Fabrication of Memristive Atomic Switch Networks. Journal of Nanoscience and Nanotechnology, 2014, 14, 2792-2798.	0.9	7
178	Tunable morphology from 2D to 3D in the formation of hierarchical architectures from a self-assembling dipeptide: thermal-induced morphological transition to 1D nanostructures. Journal of Materials Science, 2015, 50, 3139-3148.	1.7	7
179	Evaluation of structural quality of a silicon carbide (6Hâ€ 6 iC) single crystal grown by a vapor transport method by Rutherford backscattering spectroscopy. Journal of Applied Physics, 1989, 65, 1790-1792.	1.1	6
180	Intensity and polarization switching behaviors of light emission induced with a scanning tunneling microscope. Applied Physics Letters, 1998, 73, 2269-2271.	1.5	6

#	Article	IF	CITATIONS
181	Thermally enhanced second-harmonic generation fromSi(111)â^'7×7and "1×1― Physical Review B, 1999, 12305-12308.	59 1.1	6
182	Substrate Dependent Low-Temperature Growth of Thin Ag Films: Study on Si(111)–In Surfaces. Japanese Journal of Applied Physics, 2007, 46, 5975-5980.	0.8	6
183	Tunable Magnetism of Organometallic Nanoclusters by Graphene Oxide On-Surface Chemistry. Scientific Reports, 2019, 9, 14509.	1.6	6
184	Impact of moisture absorption on the resistive switching characteristics of a polyethylene oxide-based atomic switch. Journal of Materials Chemistry C, 2021, 9, 11198-11206.	2.7	6
185	Creation of conjugated polymer nanowires through controlled chain polymerization. E-Journal of Surface Science and Nanotechnology, 2004, 2, 99-105.	0.1	6
186	Tunneling-Current-Induced Light Emission from Copper Phthalocyanine Thin Films. E-Journal of Surface Science and Nanotechnology, 2006, 4, 559-562.	0.1	6
187	Three Distinct Terraces on a β-(ET)2I3 Surface Studied by Scanning Tunneling Microscopy. Japanese Journal of Applied Physics, 1999, 38, L464-L466.	0.8	5
188	First-principles study on electronic responses of a C60 molecule to external electric fields. Chemical Physics, 2007, 342, 135-140.	0.9	5
189	Size Effect on the Structure and Optical Properties in Nanocrystalline SrTiO ₃ . E-Journal of Surface Science and Nanotechnology, 2012, 10, 406-410.	0.1	5
190	Quantized Conductance and Neuromorphic Behavior of a Gapless-Type Ag-Ta2O5 Atomic Switch. Materials Research Society Symposia Proceedings, 2013, 1562, 1.	0.1	5
191	Self-Sensitization and Photo-Polymerization of Diacetylene Molecules Self-Assembled on a Hexagonal-Boron Nitride Nanosheet. Polymers, 2018, 10, 206.	2.0	5
192	Outgassing property of stainless steel chamber treated with electropolishing and electro chemical buffing Shinku/Journal of the Vacuum Society of Japan, 1991, 34, 51-55.	0.2	5
193	Achievement of XHV without any baking of vacuum system Shinku/Journal of the Vacuum Society of Japan, 1991, 34, 56-61.	0.2	4
194	Luminescence from the transition metal iron induced with a scanning tunneling microscope. Surface Science, 1998, 415, L1032-L1036.	0.8	4
195	Measurement of partial pressures in extremely high vacuum region using a modified residual gas analyzer. Review of Scientific Instruments, 1999, 70, 1880-1884.	0.6	4
196	Nanometer SNS junctions and their application to SQUIDs. Physica C: Superconductivity and Its Applications, 2001, 352, 186-190.	0.6	4
197	Sudden Suppression of Electron-Transmission Peaks in Finite-Biased Nanowires. Japanese Journal of Applied Physics, 2002, 41, 7491-7495.	0.8	4
198	Direct Observation of X-ray Induced Atomic Motion Using Scanning Tunneling Microscope Combined with Synchrotron Radiation. Journal of Nanoscience and Nanotechnology, 2011, 11, 2873-2881.	0.9	4

#	Article	IF	CITATIONS
199	Interaction of low-velocity rare-gas ions with a solid surface. Surface Science, 1993, 283, 46-51.	0.8	3
200	Role of Diffusion in Atomic Manipulation on Silicon by Scanning Tunneling Microscope. Japanese Journal of Applied Physics, 1995, 34, 3373-3375.	0.8	3
201	Analysis of STM Images after Atom Extractions from the Si(111) 7 × 7 Unit Cell through a Cluster Model. Journal of Physical Chemistry B, 1997, 101, 9570-9573.	1.2	3
202	Scanning Tunneling Microscopy Observation of Langmuir–Blodgett Diacetylene Compound Films Deposited by Schaefer's Method. Japanese Journal of Applied Physics, 2002, 41, 2187-2188.	0.8	3
203	Synaptic plasticity and memristive behavior operated by atomic switches. , 2014, , .		3
204	Oxygen vacancy drift controlled three-terminal ReRAM with a reduction in operating gate bias and gate leakage current. Solid State Ionics, 2018, 328, 30-34.	1.3	3
205	Atomic Switch-Nano Device using the Transfer of Atoms(Ions) Hyomen Kagaku, 2006, 27, 232-238.	0.0	3
206	Summary Abstract. Shinku/Journal of the Vacuum Society of Japan, 1994, 37, 781-796.	0.2	3
207	A novel method for real-time structural monitoring of molecular beam epitaxy(MBE) processes Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1989, 65, 137-141.	1.6	2
208	Detection of Single Atom Extraction and Deposition Events during Nanolithographic Processing of Silicon with a Scanning Tunneling Microscope Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1993, 69, 101-106.	1.6	2
209	Atomic Diffusion and Electronic Structures of Ce/Ni(110) and Ce/Cu(110) Systems. Journal of the Physical Society of Japan, 1998, 67, 264-271.	0.7	2
210	Control of conduction of iodine-doped poly(3-octylthiophene) thin films by double-tip scanning tunneling microscopy. Chemical Physics Letters, 2006, 419, 250-253.	1.2	2
211	Scanning Tunneling Microscope Study of a Local Electronic State Surrounding Mn Nanoclusters on Graphite. Japanese Journal of Applied Physics, 2006, 45, L469-L471.	0.8	2
212	A solid electrolyte nanometer switch. Electrical Engineering in Japan (English Translation of Denki) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 50
213	Inelastic scattering in electron transport from a metal tip through a nanoscale metal cluster into a GaAs substrate. Surface Science, 2008, 602, L45-L48.	0.8	2
214	Graphene: In Situ and Non-Volatile Bandgap Tuning of Multilayer Graphene Oxide in an All-Solid-State Electric Double-Layer Transistor (Adv. Mater. 7/2014). Advanced Materials, 2014, 26, 1143-1143.	11.1	2
215	Nanoarchitectonics + future leaders = bright success in materials science and technology. Science and Technology of Advanced Materials, 2015, 16, 010302.	2.8	2
216	Local Structure of CuInSe2Thin Film Studied by EXAFS. Japanese Journal of Applied Physics, 1993, 32, 570.	0.8	2

#	Article	IF	CITATIONS
217	Low-Energy Ion Scattering. Shinku/Journal of the Vacuum Society of Japan, 1983, 26, 136-146.	0.2	2
218	Light creation and propagation in the narrow space between a nanoscale Ag cluster and a tungsten tip. Surface Science, 2001, 495, L834-L838.	0.8	1
219	Editorial Nanosensors for Defense and Security. IEEE Sensors Journal, 2008, 8, 641-646.	2.4	1
220	Impacts of Temperature and Moisture on the Resistive Switching Characteristics of a Cu-Ta2O5-Based Atomic Switch. Materials Research Society Symposia Proceedings, 2012, 1430, 25.	0.1	1
221	Flexible Polymer Atomic Switches using Ink-Jet Printing Technique. Materials Research Society Symposia Proceedings, 2012, 1430, 106.	0.1	1
222	Biomimetics: Controlling the Synaptic Plasticity of a Cu2S Gap-Type Atomic Switch (Adv. Funct. Mater.) Tj ETQqC	0.0 rgBT 7.8	/Oyerlock 10
223	Influence of Atmosphere on Photo-Assisted Atomic Switch Operations. Key Engineering Materials, 2013, 596, 116-120.	0.4	1
224	Current progress of solid state ionics on information and communication device technology. , 2017, , .		1
225	Morphological Change of Molecular Assemblies through On-Surface Chemical Reaction. Journal of Physical Chemistry C, 2019, 123, 29679-29685.	1.5	1
226	Reversible manipulation of lattice defects in single-crystal SnO2 microrod by applying mechanical stress and voltage. Journal of Applied Physics, 2019, 125, .	1.1	1
227	Metal Nanowire Formation by Solid-Electrochemical Reaction and Its Device Application. Journal of the Vacuum Society of Japan, 2009, 52, 340-346.	0.3	1
228	STM observation of surface atomic images using a TiC single crystal tip Shinku/Journal of the Vacuum Society of Japan, 1988, 31, 382-385.	0.2	1
229	Real-Time Monitoring and Control of Epitaxial Film Growth by Coaxial Impact-Collision Ion Scattering Spectroscopy(CAICISS) Hyomen Kagaku, 1993, 14, 423-428.	0.0	1
230	Fundamentals and Present Aspects of Ion Beam Technology IV. Ion Beam Analysis. Radioisotopes, 1995, 44, 412-428.	0.1	1
231	Nanoscale Semiconductor Processes Using STM and AFM Lithographies. Formation of Silicon Dangling Bonds Using STM Lithography and Its Decoration Hyomen Kagaku, 1998, 19, 708-715.	0.0	1
232	Erratum to "surface temperature of pulsed-laser-irridiated Si(111)-7 × 7 measured by second-harmonic generation―[Surface science 323 (1995) L293]. Surface Science, 1995, 329, L611.	0.8	0
233	Structural Study of Initial Growth of Nickel on Yttria-Stabilized Zirconia by Coaxial Impact-Collision Ion Scattering Spectroscopy. Japanese Journal of Applied Physics, 2005, 44, 2630-2633.	0.8	0

234 走査āfžāf«āfāf—āfāf¼āf—éj•å¾®éţā,'使ã£ãŸāfŠāfŽãf¯ã,ãfãf¼ã®é›»æ°—è¼,é€ç‰¹æ€§è¨æ,¬. Journal ofathe Vacoum Societ

#	Article	IF	CITATIONS
235	First-Principles Study on Electric and Electronic Properties of P-Introduced Si Monatomic Chains. Journal of Computational and Theoretical Nanoscience, 2009, 6, 2635-2639.	0.4	0
236	Strain Sensors: Enhancing the Humidity Sensitivity of Ga2O3/SnO2Core/Shell Microribbon by Applying Mechanical Strain and Its Application as a Flexible Strain Sensor (Small 23/2012). Small, 2012, 8, 3598-3598.	5.2	0
237	Unorganized Machines: Emergent Criticality in Complex Turing Bâ€∓ype Atomic Switch Networks (Adv.) Tj ETQq1	1,0.7843 11.1	l4rgBT /Ove
238	Interconnects with single conjugated polymers. , 2013, , .		0
239	Volatile and nonvolatile selective operation of a two-terminal gap-type atomic switch. , 2014, , .		0
240	Topographic and Electronic Properties of 3,4,9,10-Perylene Tetra Carboxylic Dianhydride (PTCDA) on Indium Tin Oxide (ITO) Surface. Advanced Materials Research, 2015, 1112, 110-115.	0.3	0
241	Morphic atomic switch networks for beyond-Moore computing architectures. , 2015, , .		0
242	Solid Electrolyte Nanometer Switch. IEEJ Transactions on Electronics, Information and Systems, 2006, 126, 714-719.	0.1	0
243	Adsorption and Desorption of Au Nanoparticles Monitored by Infrared Spectroscopy. IEEJ Transactions on Electronics, Information and Systems, 2007, 127, 2171-2174.	0.1	0
244	Three-Terminal Nanometer Metal Switches Utilizing Solid Electrolytes. IEEJ Transactions on Electronics, Information and Systems, 2008, 128, 890-895.	0.1	0
245	Technology and Science of Single-Atom Manipulation Hyomen Kagaku, 1995, 16, 312-319.	0.0	0
246	Difference in Binding Energy among Si Adatoms on the Si(111)7*7 Surface: STM Experiments and Theoretical Calculations Hyomen Kagaku, 1995, 16, 766-771.	0.0	0
247	Stability of Surface Steps on .BETAET2I3 Surfaces and Removal of Molecules by an STM Tip Shinku/Journal of the Vacuum Society of Japan, 1999, 42, 245-248.	0.2	0
248	Hydrogen-terminated Si Surfaces. STM Induced Light Emission from Nano Structures Comprising Si Dangling Bonds Hyomen Kagaku, 1999, 20, 716-726.	0.0	0