
Sabina Berretta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4338650/publications.pdf Version: 2024-02-01

SARINA REDDETTA

#	Article	IF	CITATIONS
1	A bidirectional competitive interaction between circHomer1 and Homer1b within the orbitofrontal cortex regulates reversal learning. Cell Reports, 2022, 38, 110282.	6.4	17
2	Post-traumatic stress disorder: clinical and translational neuroscience from cells to circuits. Nature Reviews Neurology, 2022, 18, 273-288.	10.1	111
3	Molecular signature of extracellular matrix pathology in schizophrenia. European Journal of Neuroscience, 2021, 53, 3960-3987.	2.6	42
4	Distribution of agitation and related symptoms among hospitalized patients using a scalable natural language processing method. General Hospital Psychiatry, 2021, 68, 46-51.	2.4	8
5	MicroRNA regulation of persistent stress-enhanced memory. Molecular Psychiatry, 2020, 25, 965-976.	7.9	27
6	Stratifying risk for dementia onset using largeâ€scale electronic health record data: A retrospective cohort study. Alzheimer's and Dementia, 2020, 16, 531-540.	0.8	28
7	Innovations present in the primate interneuron repertoire. Nature, 2020, 586, 262-269.	27.8	206
8	Tau PTM Profiles Identify Patient Heterogeneity and Stages of Alzheimer's Disease. Cell, 2020, 183, 1699-1713.e13.	28.9	354
9	Circadian Rhythms of Perineuronal Net Composition. ENeuro, 2020, 7, ENEURO.0034-19.2020.	1.9	38
10	IL-37 is increased in brains of children with autism spectrum disorder and inhibits human microglia stimulated by neurotensin. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21659-21665.	7.1	38
11	Neurotoxic astrocytes express the d-serine synthesizing enzyme, serine racemase, in Alzheimer's disease. Neurobiology of Disease, 2019, 130, 104511.	4.4	49
12	3.3 CIRCADIAN EXPRESSION OF STRESS AND ANXIETY MOLECULAR FACTORS IN THE HUMAN AMYGDALA: ABNORMALITIES IN SCHIZOPHRENIA AND BIPOLAR DISORDER. Schizophrenia Bulletin, 2019, 45, S90-S90.	4.3	0
13	Assessment of Striatal Dopamine Transporter Binding in Individuals With Major Depressive Disorder. JAMA Psychiatry, 2019, 76, 854.	11.0	61
14	The tetrapartite synapse: a key concept in the pathophysiology of schizophrenia. European Psychiatry, 2018, 50, 60-69.	0.2	53
15	The thalamic reticular nucleus in schizophrenia and bipolar disorder: role of parvalbumin-expressing neuron networks and oxidative stress. Molecular Psychiatry, 2018, 23, 2057-2065.	7.9	116
16	10.3 GLIA-EXTRACELLULAR MATRIX INTERACTIONS IN THE PATHOPHYSIOLOGY OF SCHIZOPHRENIA AND BIPOLAR DISORDER. Schizophrenia Bulletin, 2018, 44, S16-S16.	4.3	0
17	F42. CHONDROTIN-6 SULFATE CLUSTERS: ASSOCIATION OF SYNAPTIC DOMAINS AND REGULATION OF SYNAPTIC PLASTICITY DURING FEAR LEARNING. Schizophrenia Bulletin, 2018, 44, S235-S235.	4.3	0
18	10. THE MOLECULAR MECHANISMS OF SCHIZOPHRENIA FROM GLIAL CELLS PERSPECTIVE. Schizophrenia Bulletin, 2018, 44, S14-S15.	4.3	0

SABINA BERRETTA

#	Article	IF	CITATIONS
19	What can we learn about brain donors? Use of clinical information in human postmortem brain research. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 150, 181-196.	1.8	8
20	15. The Tetrapartite Synapse in Schizophrenia: Role of the Extracellular Matrix and Glial Cell in PSD Pathology. Biological Psychiatry, 2018, 83, S6.	1.3	1
21	Decreased Numbers of Somatostatin-Expressing Neurons in the Amygdala of Subjects With Bipolar Disorder or Schizophrenia: Relationship to Circadian Rhythms. Biological Psychiatry, 2017, 81, 536-547.	1.3	48
22	Claustral Delusions. Claustrum, 2016, 1, 31426.	0.1	6
23	In Sickness and in Health: Perineuronal Nets and Synaptic Plasticity in Psychiatric Disorders. Neural Plasticity, 2016, 2016, 1-23.	2.2	95
24	Extracellular matrix protein expression is brain region dependent. Journal of Comparative Neurology, 2016, 524, 1309-1336.	1.6	100
25	Limited predictability of postmortem human brain tissue quality by <scp>RNA</scp> integrity numbers. Journal of Neurochemistry, 2016, 138, 53-59.	3.9	36
26	Casting a Wide Net: Role of Perineuronal Nets in Neural Plasticity. Journal of Neuroscience, 2016, 36, 11459-11468.	3.6	323
27	Extracellular matrix protein expression is brain region dependent. Journal of Comparative Neurology, 2016, 524, Spc1.	1.6	2
28	Losing the sugar coating: Potential impact of perineuronal net abnormalities on interneurons in schizophrenia. Schizophrenia Research, 2015, 167, 18-27.	2.0	127
29	Aggrecan and chondroitin-6-sulfate abnormalities in schizophrenia and bipolar disorder: a postmortem study on the amygdala. Translational Psychiatry, 2015, 5, e496-e496.	4.8	116
30	Translational potential of olfactory mucosa for the study of neuropsychiatric illness. Translational Psychiatry, 2015, 5, e527-e527.	4.8	56
31	Searching human brain for mechanisms of psychiatric disorders. Implications for studies on schizophrenia. Schizophrenia Research, 2015, 167, 91-97.	2.0	14
32	Reduced Dopamine Transporter Expression in the Amygdala of Subjects Diagnosed With Schizophrenia. Schizophrenia Bulletin, 2014, 40, 984-991.	4.3	29
33	Proteoglycan abnormalities in olfactory epithelium tissue from subjects diagnosed with schizophrenia. Schizophrenia Research, 2013, 150, 366-372.	2.0	42
34	Developmental Pattern of Perineuronal Nets in the Human Prefrontal Cortex and Their Deficit in Schizophrenia. Biological Psychiatry, 2013, 74, 427-435.	1.3	229
35	Extracellular matrix abnormalities in schizophrenia. Neuropharmacology, 2012, 62, 1584-1597.	4.1	159
36	Hippocampal interneurons are abnormal in schizophrenia. Schizophrenia Research, 2011, 131, 165-173.	2.0	245

#	Article	IF	CITATIONS
37	Bipolar disorder type 1 and schizophrenia are accompanied by decreased density of parvalbumin- and somatostatin-positive interneurons in the parahippocampal region. Acta Neuropathologica, 2011, 122, 615-626.	7.7	110
38	Hippocampal Interneurons in Bipolar Disorder. Archives of General Psychiatry, 2010, 68, 340.	12.3	95
39	Extracellular Matrix-Clial Abnormalities in the Amygdala and Entorhinal Cortex of Subjects Diagnosed With Schizophrenia. Archives of General Psychiatry, 2010, 67, 155.	12.3	246
40	A rodent model of schizophrenia derived from postmortem studies. Behavioural Brain Research, 2009, 204, 363-368.	2.2	16
41	The amygdala modulates neuronal activation in the hippocampus in response to spatial novelty. Hippocampus, 2008, 18, 169-181.	1.9	40
42	Total number, distribution, and phenotype of cells expressing chondroitin sulfate proteoglycans in the normal human amygdala. Brain Research, 2008, 1207, 84-95.	2.2	29
43	Parvalbumin Neurons in the Entorhinal Cortex of Subjects Diagnosed With Bipolar Disorder or Schizophrenia. Biological Psychiatry, 2007, 61, 640-652.	1.3	72
44	Neuron Numbers and Volume of the Amygdala in Subjects Diagnosed with Bipolar Disorder or Schizophrenia. Biological Psychiatry, 2007, 62, 884-893.	1.3	97
45	A rat model for neural circuitry abnormalities in schizophrenia. Nature Protocols, 2006, 1, 833-839.	12.0	13
46	Subpopulations of neurons expressing parvalbumin in the human amygdala. Journal of Comparative Neurology, 2006, 496, 706-722.	1.6	41
47	Cortico-amygdala circuits: Role in the conditioned stress response. Stress, 2005, 8, 221-232.	1.8	42
48	Infralimbic cortex activation increases c-fos expression in intercalated neurons of the amygdala. Neuroscience, 2005, 132, 943-953.	2.3	197
49	Acute amygdalar activation induces an upregulation of multiple monoamine G protein coupled pathways in rat hippocampus. Molecular Psychiatry, 2004, 9, 932-945.	7.9	22
50	Longâ€ŧerm effects of amygdala GABA receptor blockade on specific subpopulations of hippocampal interneurons. Hippocampus, 2004, 14, 876-894.	1.9	60
51	DNA Fragmentation Decreased in Schizophrenia but Not Bipolar Disorder. Archives of General Psychiatry, 2003, 60, 359.	12.3	76
52	Local Release of GABAergic Inhibition in the Medial Prefrontal Cortex Induces Immediateâ€Early Genes in Selective Neuronal Subpopulations in the Amygdala. Annals of the New York Academy of Sciences, 2003, 985, 505-507.	3.8	2
53	Defining the Role of Specific Limbic Circuitry in the Pathophysiology of Schizophrenia and Bipolar Disorder. Neurobiological Foundation of Aberrant Behaviors, 2002, , 211-233.	0.2	0
54	Amygdalar activation alters the hippocampal GABA system: ?Partial? modelling for postmortem changes in schizophrenia. Journal of Comparative Neurology, 2001, 431, 129-138.	1.6	90

SABINA BERRETTA

#	Article	IF	CITATIONS
55	GABAergic Interneurons Implications for Understanding Schizophrenia and Bipolar Disorder. Neuropsychopharmacology, 2001, 25, 1-27.	5.4	972
56	Amygdaloâ€Entorhinal Inputs to the Hippocampal Formation in Relation to Schizophrenia. Annals of the New York Academy of Sciences, 2000, 911, 293-304.	3.8	69
57	Cortically driven Fos induction in the striatum is amplified by local dopamine D2-class receptor blockade. European Journal of Neuroscience, 1999, 11, 4309-4319.	2.6	27
58	Local Release of GABAergic Inhibition in the Motor Cortex Induces Immediate-Early Gene Expression in Indirect Pathway Neurons of the Striatum. Journal of Neuroscience, 1997, 17, 4752-4763.	3.6	151
59	Cerebellar influences on accessory oculomotor nuclei of the rat: A neuroanatomical, immunohistochemical, and electrophysiological study. Journal of Comparative Neurology, 1993, 338, 50-66.	1.6	23
60	Dopamine and glutamate agonists stimulate neuron-specific expression of Fos-like protein in the striatum. Journal of Neurophysiology, 1992, 68, 767-777.	1.8	236
61	Origin of cuneate projections to the anterior and posterior lobes of the rat cerebellum. Brain Research, 1991, 556, 297-302.	2.2	16
62	The cerebellopontine system: an electrophysiological study in the rat. Brain Research, 1991, 568, 178-184.	2.2	8
63	Origin of spinal projections to the anterior and posterior lobes of the rat cerebellum. Journal of Comparative Neurology, 1991, 305, 273-281.	1.6	45
64	Projections from the intracerebellar nuclei to the ventral midbrain tegmentum in the rat. Neuroscience, 1989, 29, 109-119.	2.3	43
65	Interleukin 2 modifies the bioelectric activity of some neurosecretory nuclei in the rat hypothalamus. Brain Research, 1988, 462, 10-14.	2.2	66
66	Altered time course of changes in the hippocampal concentration of excitatory and inhibitory amino acids during kainate-induced epilepsy. European Journal of Pharmacology, 1984, 103, 133-137.	3.5	6
67	Chondroitin Sulphate Proteoglycan Axonal Coats in the Human Mediodorsal Thalamic Nucleus. Frontiers in Integrative Neuroscience, 0, 16, .	2.1	2