
Monica M Grady

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4337557/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR). Astrobiology, 2022, 22, S-112-S-164.	3.0	7
2	Final Report of the Mars Sample Return Science Planning Group 2 (MSPG2). Astrobiology, 2022, 22, S-5-S-26.	3.0	15
3	Rationale and Proposed Design for a Mars Sample Return (MSR) Science Program. Astrobiology, 2022, 22, S-27-S-56.	3.0	14
4	The Scientific Importance of Returning Airfall Dust as a Part of Mars Sample Return (MSR). Astrobiology, 2022, 22, S-176-S-185.	3.0	5
5	Science and Curation Considerations for the Design of a Mars Sample Return (MSR) Sample Receiving Facility (SRF). Astrobiology, 2022, 22, S-217-S-237.	3.0	7
6	Preliminary Planning for Mars Sample Return (MSR) Curation Activities in a Sample Receiving Facility (SRF). Astrobiology, 2022, 22, S-57-S-80.	3.0	16
7	COSPAR Sample Safety Assessment Framework (SSAF). Astrobiology, 2022, 22, S-186-S-216.	3.0	7
8	A roadmap for a European extraterrestrial sample curation facility – the EURO CARES project. , 2021, , 249-268.		8
9	Carbonate assemblages in Cold Bokkeveld CM chondrite reveal complex parent body evolution. Meteoritics and Planetary Science, 2021, 56, 723-741.	1.6	2
10	Time-Sensitive Aspects of Mars Sample Return (MSR) Science. Astrobiology, 2021, , .	3.0	10
11	Mid-infrared reflectance spectroscopy of carbonaceous chondrites and Calcium–Aluminum-rich inclusions. Planetary and Space Science, 2020, 193, 105078.	1.7	4
12	Exploring Mars with Returned Samples. Space Science Reviews, 2020, 216, 1.	8.1	15
13	Alteration minerals, fluids, and gases on early Mars: Predictions from 1â€D flow geochemical modeling of mineral assemblages in meteorite <scp>ALH</scp> 84001. Meteoritics and Planetary Science, 2016, 51, 2154-2174.	1.6	28
14	Fall, recovery, and characterization of the Novato L6 chondrite breccia. Meteoritics and Planetary Science, 2014, 49, 1388-1425.	1.6	59
15	Dust from collisions: A way to probe the composition of exo-planets?. Icarus, 2014, 239, 1-14.	2.5	15
16	Analysis of a prehistoric Egyptian iron bead with implications for the use and perception of meteorite iron in ancient Egypt. Meteoritics and Planetary Science, 2013, 48, 997-1006.	1.6	34
17	Sample return missions to minor bodies. Astronomy and Geophysics, 2013, 54, 3.28-3.32.	0.2	3
18	Stable isotope analysis of carbon and nitrogen in angrites. Meteoritics and Planetary Science, 2013, 48, 1590-1606.	1.6	12

MONICA M GRADY

#	Article	IF	CITATIONS
19	Radar-Enabled Recovery of the Sutter's Mill Meteorite, a Carbonaceous Chondrite Regolith Breccia. Science, 2012, 338, 1583-1587.	12.6	191
20	Chondrules born in plasma? Simulation of gas–grain interaction using plasma arcs with applications to chondrule and cosmic spherule formation. Meteoritics and Planetary Science, 2012, 47, 2269-2280.	1.6	4
21	Mid-infrared spectra of differentiated meteorites (achondrites): Comparison with astronomical observations of dust in protoplanetary and debris disks. Icarus, 2012, 219, 48-56.	2.5	10
22	Laihunite in planetary materials: An FTIR and TEM study of oxidized synthetic and meteoritic Fe-rich olivine. Journal of Mineralogical and Petrological Sciences, 2012, 107, 157-166.	0.9	4
23	Reviewing UK space exploration. Space Policy, 2010, 26, 113-116.	1.5	1
24	Sulfur isotopic composition of Feâ€Ni sulfide grains in CI and CM carbonaceous chondrites. Meteoritics and Planetary Science, 2010, 45, 885-898.	1.6	27
25	ESSC-ESF Position Paper—Science-Driven Scenario for Space Exploration: Report from the European Space Sciences Committee (ESSC). Astrobiology, 2009, 9, 23-41.	3.0	13
26	Astronomy by microscope. Astronomy and Geophysics, 2009, 50, 4.21-4.26.	0.2	1
27	Dating martian climate change. Icarus, 2009, 203, 376-389.	2.5	22
28	Comet 81P/Wild 2 Under a Microscope. Science, 2006, 314, 1711-1716.	12.6	848
29	Infrared Spectroscopy of Comet 81P/Wild 2 Samples Returned by Stardust. Science, 2006, 314, 1728-1731.	12.6	163
30	The history of research on meteorites from Mars. Geological Society Special Publication, 2006, 256, 405-416.	1.3	4
31	Carbon isotopic gradients in the Martian crust: implications for past or present life on Mars. , 2006, , .		0
32	FT–IR microspectroscopy of extraterrestrial dust grains: Comparison of measurement techniques. Planetary and Space Science, 2006, 54, 599-611.	1.7	15
33	The carbon cycle on early Earth—and on Mars?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 1703-1713.	4.0	27
34	UV-Vis spectroscopy of stardust. International Journal of Astrobiology, 2006, 5, 287-293.	1.6	1
35	WatSen: searching for clues for water (and life) on Mars. International Journal of Astrobiology, 2006, 5, 211-219.	1.6	3
36	A history of the meteorite collection at the Natural History Museum, London. Geological Society Special Publication, 2006, 256, 153-162.	1.3	4

MONICA M GRADY

#	Article	IF	CITATIONS
37	Commission 22: Meteors, Meteorites & Interplanetary Dust. Proceedings of the International Astronomical Union, 2005, 1, 167-170.	0.0	1
38	The Meteoritical Bulletin, No. 89, 2005 September. Meteoritics and Planetary Science, 2005, 40, A201-A263.	1.6	73
39	Biologically–induced elemental variations in Antarctic sandstones: a potential test for Martian micro-organisms. International Journal of Astrobiology, 2004, 3, 97-106.	1.6	19
40	Elemental and Isotopic Abundances of Carbon and Nitrogen in Meteorites. Space Science Reviews, 2003, 106, 231-248.	8.1	73
41	The physical constraints on extraterrestrial life. , 2003, , 397-414.		0
42	Elemental and Isotopic Abundances of Carbon and Nitrogen in Meteorites. Space Sciences Series of ISSI, 2003, , 231-248.	0.0	7
43	The nature and significance of meteoritic matter. COSPAR Colloquia Series, 2002, 15, 379-391.	0.2	0
44	The Fall, Recovery, Orbit, and Composition of the Tagish Lake Meteorite: A New Type of Carbonaceous Chondrite. Science, 2000, 290, 320-325.	12.6	282
45	A nitrogen and argon stable isotope study of Allan Hills 84001: Implications for the evolution of the Martian atmosphere. Meteoritics and Planetary Science, 1998, 33, 795-802.	1.6	27
46	Meteorites: their flux with time and impact effects. Geological Society Special Publication, 1998, 140, 1-5.	1.3	16
47	A carbon and nitrogen isotope study of Zagami. Journal of Geophysical Research, 1997, 102, 9165-9173.	3.3	21
48	CM chondrites exhibit the complete petrologic range from type 2 to 1. Geochimica Et Cosmochimica Acta, 1997, 61, 5099-5115.	3.9	227
49	The K (Kakangari) chondrite grouplet. Geochimica Et Cosmochimica Acta, 1996, 60, 4253-4263.	3.9	88
50	Opening a martian can of worms?. Nature, 1996, 382, 575-576.	27.8	12
51	A search for nitrates in Martian meteorites. Journal of Geophysical Research, 1995, 100, 5449.	3.3	24
52	Martians come out of the closet. Nature, 1994, 369, 356-356.	27.8	2
53	Acfer 182: search for the location of15N-enriched nitrogen in an unusual chondrite. Earth and Planetary Science Letters, 1993, 116, 165-180.	4.4	29
54	Chassigny and the nakhlites: Carbon-bearing components and their relationship to martian environmental conditions. Geochimica Et Cosmochimica Acta, 1992, 56, 817-826.	3.9	90

MONICA M GRADY

#	Article	IF	CITATIONS
55	ALH 85085: Nitrogen isotope analysis of a highly unusual primitive chondrite. Earth and Planetary Science Letters, 1990, 97, 29-40.	4.4	56
56	The formation of weathering products on the LEW 85320 ordinary chondrite: Evidence from carbon and oxygen stable isotope compositions and implications for carbonates in SNC meteorites. Meteoritics, 1989, 24, 1-7.	1.4	30
57	A preliminary investigation into the nature of carbonaceous material in ordinary chondrites. Meteoritics, 1989, 24, 147-154.	1.4	40
58	15N-enriched nitrogen in polymict ureilites and its bearing on their formation. Nature, 1988, 331, 321-323.	27.8	33
59	The carbon and oxygen isotopic composition of meteoritic carbonates. Geochimica Et Cosmochimica Acta, 1988, 52, 2855-2866.	3.9	111
60	Carbon isotope relationships in winonaites and forsterite chondrites. Geochimica Et Cosmochimica Acta, 1986, 50, 255-263.	3.9	18
61	Compositional differences in enstatite chondrites based on carbon and nitrogen stable isotope measurements. Geochimica Et Cosmochimica Acta, 1986, 50, 2799-2813.	3.9	109