## Alex H De Vries

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4337355/publications.pdf Version: 2024-02-01



ALEY H DE VDIES

| #  | Article                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The MARTINI Force Field:  Coarse Grained Model for Biomolecular Simulations. Journal of Physical Chemistry B, 2007, 111, 7812-7824.                                                           | 2.6  | 4,650     |
| 2  | Coarse Grained Model for Semiquantitative Lipid Simulations. Journal of Physical Chemistry B, 2004, 108, 750-760.                                                                             | 2.6  | 2,027     |
| 3  | Lipid Organization of the Plasma Membrane. Journal of the American Chemical Society, 2014, 136, 14554-14559.                                                                                  | 13.7 | 734       |
| 4  | Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nature Methods, 2021, 18, 382-388.                                                                            | 19.0 | 557       |
| 5  | Martini Coarse-Grained Force Field: Extension to Carbohydrates. Journal of Chemical Theory and Computation, 2009, 5, 3195-3210.                                                               | 5.3  | 363       |
| 6  | Methodological Issues in Lipid Bilayer Simulations. Journal of Physical Chemistry B, 2003, 107, 9424-9433.                                                                                    | 2.6  | 337       |
| 7  | Dry Martini, a Coarse-Grained Force Field for Lipid Membrane Simulations with Implicit Solvent.<br>Journal of Chemical Theory and Computation, 2015, 11, 260-275.                             | 5.3  | 236       |
| 8  | Martini Force Field Parameters for Glycolipids. Journal of Chemical Theory and Computation, 2013, 9, 1694-1708.                                                                               | 5.3  | 166       |
| 9  | Molecular Dynamics Simulation of the Spontaneous Formation of a Small DPPC Vesicle in Water in Atomistic Detail. Journal of the American Chemical Society, 2004, 126, 4488-4489.              | 13.7 | 164       |
| 10 | Molecular structure of the lecithin ripple phase. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5392-5396.                                      | 7.1  | 159       |
| 11 | Pitfalls of the Martini Model. Journal of Chemical Theory and Computation, 2019, 15, 5448-5460.                                                                                               | 5.3  | 159       |
| 12 | Bulk Heterojunction Morphologies with Atomistic Resolution from Coarse-Grain Solvent<br>Evaporation Simulations. Journal of the American Chemical Society, 2017, 139, 3697-3705.              | 13.7 | 133       |
| 13 | Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular<br>dynamics simulations. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1319-1330. | 2.6  | 120       |
| 14 | Transferable MARTINI Model of Poly(ethylene Oxide). Journal of Physical Chemistry B, 2018, 122, 7436-7449.                                                                                    | 2.6  | 99        |
| 15 | Ganglioside-Lipid and Ganglioside-Protein Interactions Revealed by Coarse-Grained and Atomistic<br>Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2017, 121, 3262-3275.     | 2.6  | 81        |
| 16 | Effects of bundling on the properties of the SPC water model. Theoretical Chemistry Accounts, 2010, 125, 335-344.                                                                             | 1.4  | 73        |
| 17 | Martini 3 Coarseâ€Grained Force Field: Small Molecules. Advanced Theory and Simulations, 2022, 5,                                                                                             | 2.8  | 72        |
| 18 | Tight cohesion between glycolipid membranes results from balanced water–headgroup interactions.<br>Nature Communications, 2017, 8, 14899.                                                     | 12.8 | 61        |

ALEX H DE VRIES

| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Titratable Martini model for constant pH simulations. Journal of Chemical Physics, 2020, 153, 024118.                                                                                     | 3.0  | 57        |
| 20 | Adaptive Resolution Simulation of MARTINI Solvents. Journal of Chemical Theory and Computation, 2014, 10, 2591-2598.                                                                      | 5.3  | 46        |
| 21 | Martini coarse-grained models of imidazolium-based ionic liquids: from nanostructural organization<br>to liquid–liquid extraction. Green Chemistry, 2020, 22, 7376-7386.                  | 9.0  | 45        |
| 22 | Location, Tilt, and Binding: A Molecular Dynamics Study of Voltage-Sensitive Dyes in Biomembranes.<br>Journal of Physical Chemistry B, 2009, 113, 15807-15819.                            | 2.6  | 35        |
| 23 | Capturing Choline–Aromatics Cationâ~'Ï€ Interactions in the MARTINI Force Field. Journal of Chemical Theory and Computation, 2020, 16, 2550-2560.                                         | 5.3  | 35        |
| 24 | Force-field dependence of the conformational properties of α,ω-dimethoxypolyethylene glycol.<br>Molecular Physics, 2009, 107, 1313-1321.                                                  | 1.7  | 28        |
| 25 | Resolving Donor–Acceptor Interfaces and Charge Carrier Energy Levels of Organic Semiconductors<br>with Polar Side Chains. Advanced Functional Materials, 2020, 30, 2004799.               | 14.9 | 28        |
| 26 | Investigating the Structure of Aggregates of an Amphiphilic Cyanine Dye with Molecular Dynamics<br>Simulations. Journal of Physical Chemistry B, 2013, 117, 5857-5867.                    | 2.6  | 22        |
| 27 | Dual Resolution Membrane Simulations Using Virtual Sites. Journal of Physical Chemistry B, 2020, 124, 3944-3953.                                                                          | 2.6  | 21        |
| 28 | Multiscale modeling of molecular structure and optical properties of complex supramolecular aggregates. Chemical Science, 2020, 11, 11514-11524.                                          | 7.4  | 18        |
| 29 | Nucleation Mechanisms of Self-Assembled Physisorbed Monolayers on Graphite. Journal of Physical<br>Chemistry C, 2019, 123, 17510-17520.                                                   | 3.1  | 15        |
| 30 | Structural characterization of supramolecular hollow nanotubes with atomistic simulations and SAXS. Physical Chemistry Chemical Physics, 2020, 22, 21083-21093.                           | 2.8  | 14        |
| 31 | Binding of quinazolinones to c-KIT G-quadruplex; an interplay between hydrogen bonding and π-π<br>stacking. Biophysical Chemistry, 2019, 253, 106220.                                     | 2.8  | 11        |
| 32 | Capturing Membrane Phase Separation by Dual Resolution Molecular Dynamics Simulations. Journal of<br>Chemical Theory and Computation, 2021, 17, 5876-5884.                                | 5.3  | 10        |
| 33 | Coupling Coarse-Grained to Fine-Grained Models via Hamiltonian Replica Exchange. Journal of Chemical Theory and Computation, 2020, 16, 5313-5322.                                         | 5.3  | 9         |
| 34 | Modelling structural properties of cyanine dye nanotubes at coarse-grained level. Nanoscale<br>Advances, 2022, 4, 3033-3042.                                                              | 4.6  | 5         |
| 35 | Mechanism of Ostwald Ripening in 2D Physisorbed Assemblies at Molecular Time and Length Scale by Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2018, 122, 24380-24385. | 3.1  | 4         |
| 36 | Direct and Regioselective Diâ€î±â€fucosylation on the Secondary Rim of βâ€Cyclodextrin. Chemistry - A<br>European Journal, 2019, 25, 6722-6727.                                           | 3.3  | 4         |

| #  | Article                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Cryogenic TEM imaging of artificial light harvesting complexes outside equilibrium. Scientific Reports, 2022, 12, 5552.                       | 3.3 | 4         |
| 38 | Comparing Dimerization Free Energies and Binding Modes of Small Aromatic Molecules with Different<br>Force Fields. Molecules, 2021, 26, 6069. | 3.8 | 3         |