Harini Veeraraghavan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4337118/publications.pdf

Version: 2024-02-01

94 papers 4,851 citations

147801 31 h-index 102487 66 g-index

97 all docs

97
docs citations

97 times ranked 7235 citing authors

#	Article	IF	Citations
1	Radiomic Analysis to Predict Histopathologically Confirmed Pseudoprogression in Glioblastoma Patients. Advances in Radiation Oncology, 2023, 8, 100916.	1.2	6
2	Deep Learning-Based Model for Identifying Tumors in Endoscopic Images From Patients With Locally Advanced Rectal Cancer Treated With Total Neoadjuvant Therapy. Diseases of the Colon and Rectum, 2023, 66, 383-391.	1.3	6
3	Unpaired Cross-Modality Educed Distillation (CMEDL) for Medical Image Segmentation. IEEE Transactions on Medical Imaging, 2022, 41, 1057-1068.	8.9	10
4	Prospectively-validated deep learning model for segmenting swallowing and chewing structures in CT. Physics in Medicine and Biology, 2022, 67, 024001.	3.0	13
5	Inter- and intrafraction motion assessment and accumulated dose quantification of upper gastrointestinal organs during magnetic resonance-guided ablative radiation therapy of pancreas patients. Physics and Imaging in Radiation Oncology, 2022, 21, 54-61.	2.9	21
6	Nested block selfâ€attention multiple resolution residual network for multiorgan segmentation from CT. Medical Physics, 2022, 49, 5244-5257.	3.0	8
7	Combined artificial intelligence and radiologist model for predicting rectal cancer treatment response from magnetic resonance imaging: an external validation study. Abdominal Radiology, 2022, 47, 2770-2782.	2.1	9
8	Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer. Nature Cancer, 2022, 3, 723-733.	13.2	82
9	Deep learning from small labeled datasets applied to medical image analysis. , 2021, , 279-291.		O
10	Reproducibility of radiomic features using network analysis and its application in Wasserstein k-means clustering. Journal of Medical Imaging, 2021, 8, 031904.	1.5	1
11	Deep crossâ€modality (MR T) educed distillation learning for cone beam CT lung tumor segmentation. Medical Physics, 2021, 48, 3702-3713.	3.0	9
12	Deep learning auto-segmentation and automated treatment planning for trismus risk reduction in head and neck cancer radiotherapy. Physics and Imaging in Radiation Oncology, 2021, 19, 96-101.	2.9	11
13	Automatic segmentation of brain metastases using T1 magnetic resonance and computed tomography images. Physics in Medicine and Biology, 2021, 66, 175014.	3.0	21
14	Patchâ€based generative adversarial neural network models for head and neck MRâ€only planning. Medical Physics, 2020, 47, 626-642.	3.0	67
14 15		3.0	67 35
	Medical Physics, 2020, 47, 626-642. Machine learning-based prediction of microsatellite instability and high tumor mutation burden from		
15	Medical Physics, 2020, 47, 626-642. Machine learning-based prediction of microsatellite instability and high tumor mutation burden from contrast-enhanced computed tomography in endometrial cancers. Scientific Reports, 2020, 10, 17769. Integrated Multi-Tumor Radio-Genomic Marker of Outcomes in Patients with High Serous Ovarian	3.3	35

#	Article	IF	Citations
19	Library of deep-learning image segmentation and outcomes model-implementations. Physica Medica, 2020, 73, 190-196.	0.7	15
20	A machine learning model that classifies breast cancer pathologic complete response on MRI post-neoadjuvant chemotherapy. Breast Cancer Research, 2020, 22, 57.	5.0	63
21	CT images with expert manual contours of thoracic cancer for benchmarking autoâ€segmentation accuracy. Medical Physics, 2020, 47, 3250-3255.	3.0	15
22	Integration of proteomics with CT-based qualitative and radiomic features in high-grade serous ovarian cancer patients: an exploratory analysis. European Radiology, 2020, 30, 4306-4316.	4.5	25
23	Volumetric analysis of IDH-mutant lower-grade glioma: a natural history study of tumor growth rates before and after treatment. Neuro-Oncology, 2020, 22, 1822-1830.	1.2	23
24	Clinical utility of radiomics at baseline rectal MRI to predict complete response of rectal cancer after chemoradiation therapy. Abdominal Radiology, 2020, 45, 3608-3617.	2.1	45
25	Unified Cross-Modality Feature Disentangler for Unsupervised Multi-domain MRI Abdomen Organs Segmentation. Lecture Notes in Computer Science, 2020, 12262, 347-358.	1.3	14
26	Self-derived organ attention for unpaired CT-MRI deep domain adaptation based MRI segmentation. Physics in Medicine and Biology, 2020, 65, 205001.	3.0	9
27	Multiple Resolution Residually Connected Feature Streams for Automatic Lung Tumor Segmentation From CT Images. IEEE Transactions on Medical Imaging, 2019, 38, 134-144.	8.9	176
28	Impact of image preprocessing on the scanner dependence of multi-parametric MRI radiomic features and covariate shift in multi-institutional glioblastoma datasets. Physics in Medicine and Biology, 2019, 64, 165011.	3.0	79
29	Crossâ€modality (CTâ€MRI) prior augmented deep learning for robust lung tumor segmentation from small MR datasets. Medical Physics, 2019, 46, 4392-4404.	3.0	42
30	MRI radiomic features are associated with survival in melanoma brain metastases treated with immune checkpoint inhibitors. Neuro-Oncology, 2019, 21, 1578-1586.	1.2	42
31	Dynamic multiatlas selectionâ€based consensus segmentation of head and neck structures from CT images. Medical Physics, 2019, 46, 5612-5622.	3.0	10
32	A rectal cancer organoid platform to study individual responses to chemoradiation. Nature Medicine, 2019, 25, 1607-1614.	30.7	320
33	Automated Breast Density Measurements From Chest Computed Tomography Scans. Journal of Medical Systems, 2019, 43, 242.	3.6	1
34	Reliability of tumor segmentation in glioblastoma: Impact on the robustness of MRIâ€radiomic features. Medical Physics, 2019, 46, 3582-3591.	3.0	38
35	Preoperative MRI-radiomics features improve prediction of survival in glioblastoma patients over MGMT methylation status alone. Oncotarget, 2019, 10, 660-672.	1.8	35
36	Segmenting lung tumors on longitudinal imaging studies via a patient-specific adaptive convolutional neural network. Radiotherapy and Oncology, 2019, 131, 101-107.	0.6	27

#	Article	IF	Citations
37	Radiogenomics of rectal adenocarcinoma in the era of precision medicine: A pilot study of associations between qualitative and quantitative MRI imaging features and genetic mutations. European Journal of Radiology, 2019, 113, 174-181.	2.6	38
38	Computed Tomography–Derived Radiomic Metrics Can Identify Responders to Immunotherapy in Ovarian Cancer. JCO Precision Oncology, 2019, 3, 1-13.	3.0	16
39	Deep learning-based auto-segmentation of targets and organs-at-risk for magnetic resonance imaging only planning of prostate radiotherapy. Physics and Imaging in Radiation Oncology, 2019, 12, 80-86.	2.9	82
40	Association between CT-texture-derived tumor heterogeneity, outcomes, and BRCA mutation status in patients with high-grade serous ovarian cancer. Abdominal Radiology, 2019, 44, 2040-2047.	2.1	50
41	MR Imaging of Rectal Cancer: Radiomics Analysis to Assess Treatment Response after Neoadjuvant Therapy. Radiology, 2018, 287, 833-843.	7.3	257
42	Appearance Constrained Semi-Automatic Segmentation from DCE-MRI is Reproducible and Feasible for Breast Cancer Radiomics: A Feasibility Study. Scientific Reports, 2018, 8, 4838.	3.3	26
43	Tumor-Aware, Adversarial Domain Adaptation from CT to MRI for Lung Cancer Segmentation. Lecture Notes in Computer Science, 2018, 11071, 777-785.	1.3	104
44	Autosegmentation for thoracic radiation treatment planning: A grand challenge at AAPM 2017. Medical Physics, 2018, 45, 4568-4581.	3.0	169
45	Technical Note: Extension of CERR for computational radiomics: A comprehensive MATLAB platform for reproducible radiomics research. Medical Physics, 2018, 45, 3713-3720.	3.0	114
46	Multiatlas approach with local registration goodness weighting for MRI-based electron density mapping of head and neck anatomy. Medical Physics, 2017, 44, 3706-3717.	3.0	32
47	A novel representation of inter-site tumour heterogeneity from pre-treatment computed tomography textures classifies ovarian cancers by clinical outcome. European Radiology, 2017, 27, 3991-4001.	4.5	92
48	Differentiation of Uterine Leiomyosarcoma from Atypical Leiomyoma: Diagnostic Accuracy of Qualitative MR Imaging Features and Feasibility of Texture Analysis. European Radiology, 2017, 27, 2903-2915.	4.5	128
49	Heterogeneous Tumor-Immune Microenvironments among Differentially Growing Metastases in an Ovarian Cancer Patient. Cell, 2017, 170, 927-938.e20.	28.9	368
50	Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clinical Radiology, 2017, 72, 3-10.	1.1	244
51	Abstract B09: Heterogeneous fates of metastatic lesions linked to immune escape in an ovarian cancer patient., 2017,,.		0
52	Breast cancer molecular subtype classifier that incorporates MRI features. Journal of Magnetic Resonance Imaging, 2016, 44, 122-129.	3.4	114
53	Automatic detection and tracking of longitudinal changes of multiple bone metastases from dual energy CT., 2016, 2016, 168-171.		1
54	A multiple-image-based method to evaluate the performance of deformable image registration in the pelvis. Physics in Medicine and Biology, 2016, 61, 6172-6180.	3.0	4

#	Article	IF	CITATIONS
55	MO-A-207B-01: Radiomics: Segmentation & Feature Extraction Techniques. Medical Physics, 2016, 43, 3694-3694.	3.0	0
56	TU-AB-BRA-03: Atlas-Based Algorithms with Local Registration-Goodness Weighting for MRI-Driven Electron Density Mapping. Medical Physics, 2016, 43, 3733-3733.	3.0	0
57	MO-A-207B-00: Segmentation & Feature Extraction Techniques. Medical Physics, 2016, 43, 3694-3694.	3.0	O
58	WE-H-BRC-07: Validation of a Commercial Atlas Based Auto-Segmentation Package For Automated Contour Quality Control. Medical Physics, 2016, 43, 3841-3841.	3.0	0
59	Breast cancer subtype intertumor heterogeneity: MRIâ€based features predict results of a genomic assay. Journal of Magnetic Resonance Imaging, 2015, 42, 1398-1406.	3.4	119
60	Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. European Radiology, 2015, 25, 2840-2850.	4.5	322
61	Simultaneous segmentation and iterative registration method for computing ADC with reduced artifacts from DWâ€MRI. Medical Physics, 2015, 42, 2249-2260.	3.0	10
62	Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6265-73.	7.1	322
63	SUâ€Eâ€Jâ€253: The Radiomics Toolbox in the Computational Environment for Radiological Research (CERR). Medical Physics, 2015, 42, 3324-3324.	3.0	3
64	SU-F-303-16: Multi-Atlas and Learning Based Segmentation of Head and Neck Normal Structures From Multi-Parametric MRI. Medical Physics, 2015, 42, 3541-3541.	3.0	2
65	TU-AB-BRA-09: Radiomics and Radiogenomics for Breast Cancer Using Magnetic Resonance Imaging. Medical Physics, 2015, 42, 3588-3588.	3.0	3
66	SU-E-J-95: A Novel Objective Approach to Identify Scan Outliers in Deformable Image Registration for Longitudinal Datasets. Medical Physics, 2015, 42, 3286-3286.	3.0	0
67	SUâ€Eâ€Jâ€255: Automatic Segmentation Refined, Multiple Sliceâ€Wise Voting Based Classification of Tumors From MRI. Medical Physics, 2015, 42, 3325-3325.	3.0	O
68	TUâ€Gâ€204â€02: Automatic Sclerotic Bone Metastases Detection in the Pelvic Region From Dual Energy CT. Medical Physics, 2015, 42, 3633-3633.	3.0	0
69	SUâ€Eâ€J‣13: Visualization of Scans and Metrics for Longitudinal Informatics. Medical Physics, 2015, 42, 3314-3314.	3.0	O
70	Vision 20/20: Perspectives on automated image segmentation for radiotherapy. Medical Physics, 2014, 41, 050902.	3.0	262
71	The distance discordance metric—a novel approach to quantifying spatial uncertainties in intra- and inter-patient deformable image registration. Physics in Medicine and Biology, 2014, 59, 733-746.	3.0	30
72	Faceted Visualization of Three Dimensional Neuroanatomy By Combining Ontology with Faceted Search. Neuroinformatics, 2014, 12, 245-259.	2.8	6

#	Article	IF	CITATIONS
73	Automatic Bone and Marrow Extraction from Dual Energy CT through SVM Margin-Based Multi-Material Decomposition Model Selection. Lecture Notes in Computer Science, 2014, , 149-156.	1.3	0
74	GBM Volumetry using the 3D Slicer Medical Image Computing Platform. Scientific Reports, 2013, 3, 1364.	3.3	185
75	TH-A-WAB-06: Joint Segmentation and Sequential Registration Based Approach for Computing Artifact-Free ADC Maps From Multiple DWI-MRI Sequences in Liver. Medical Physics, 2013, 40, 521-521.	3.0	3
76	TH-C-WAB-01: BEST IN PHYSICS (JOINT IMAGING-THERAPY)-Semi-Automated Probabilistic Segmentation of Head and Neck Anatomy Through Structure Specific Feature Selection From Multi-Sequence MRI. Medical Physics, 2013, 40, 536-536.	3.0	1
77	SU-E-J-64: Landmark and ROI-Enhancement-Assisted Inter-Patient Deformable Registration of 3D Bladder CT Images. Medical Physics, 2013, 40, 164-164.	3.0	1
78	Active learning guided interactions for consistent image segmentation with reduced user interactions., 2011, 2011, 1645-1648.		18
79	Learning Task Specific Web Services Compositions with Loops and Conditional Branches from Example Executions. , 2010 , , .		0
80	Learning to Recognize Video-Based Spatiotemporal Events. IEEE Transactions on Intelligent Transportation Systems, 2009, 10, 628-638.	8.0	23
81	Performance Evaluation of a Multi-Robot Search & Experiences with MinDART. Journal of Intelligent and Robotic Systems: Theory and Applications, 2008, 52, 363-387.	3.4	17
82	Learning task specific plans through sound and visually interpretable demonstrations. , 2008, , .		8
83	Learning Dynamic Event Descriptions in Image Sequences. , 2007, , .		13
84	Classifiers for driver activity monitoring. Transportation Research Part C: Emerging Technologies, 2007, 15, 51-67.	7.6	36
85	Using Robots to Raise Interest in Technology Among Underrepresented Groups. IEEE Robotics and Automation Magazine, 2007, 14, 73-81.	2.0	12
86	Communication Strategies in Multi-robot Search and Retrieval: Experiences with MinDART., 2007,, 317-326.		15
87	Robust target detection and tracking through integration of motion, color, and geometry. Computer Vision and Image Understanding, 2006, 103, 121-138.	4.7	30
88	Combining multiple tracking modalities for vehicle tracking at traffic intersections. , 2004, , .		13
89	Computer vision algorithms for intersection monitoring. IEEE Transactions on Intelligent Transportation Systems, 2003, 4, 78-89.	8.0	148
90	Real-time tracking for managing suburban intersections. , 0, , .		1

#	Article	IF	CITATIONS
91	Driver activity monitoring through supervised and unsupervised learning. , 0, , .		14
92	Switching Kalman Filter-Based Approach for Tracking and Event Detection at Traffic Intersections. , 0,		13
93	No fear: University of Minnesota Robotics Day Camp introduces local youth to hands-on technologies. , 0, , .		15
94	Adaptive geometric templates for feature matching. , 0, , .		4