## Chao Wang

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4335596/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | In vivo partial reprogramming alters age-associated molecular changes during physiological aging in mice. Nature Aging, 2022, 2, 243-253.                                                                 | 11.6 | 101       |
| 2  | InÂvivo partial cellular reprogramming enhances liver plasticity and regeneration. Cell Reports, 2022,<br>39, 110730.                                                                                     | 6.4  | 41        |
| 3  | In vivo partial reprogramming of myofibers promotes muscle regeneration by remodeling the stem cell niche. Nature Communications, 2021, 12, 3094.                                                         | 12.8 | 51        |
| 4  | Chemical combinations potentiate human pluripotent stem cell-derived 3D pancreatic progenitor clusters toward functional β cells. Nature Communications, 2021, 12, 3330.                                  | 12.8 | 21        |
| 5  | Harnessing Fiber Diameter-Dependent Effects of Myoblasts Toward Biomimetic Scaffold-Based Skeletal<br>Muscle Regeneration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 203.                   | 4.1  | 52        |
| 6  | αKLOTHO and sTGFβR2 treatment counteract the osteoarthritic phenotype developed in a rat model.<br>Protein and Cell, 2020, 11, 219-226.                                                                   | 11.0 | 12        |
| 7  | Methyltransferase-like 21c methylates and stabilizes the heat shock protein Hspa8 in type I myofibers in mice. Journal of Biological Chemistry, 2019, 294, 13718-13728.                                   | 3.4  | 22        |
| 8  | Methyltransferaseâ€like 21e inhibits 26S proteasome activity to facilitate hypertrophy of type IIb<br>myofibers. FASEB Journal, 2019, 33, 9672-9684.                                                      | 0.5  | 9         |
| 9  | Skeletal muscleâ€derived exosomes regulate endothelial cell functions via reactive oxygen<br>speciesâ€activated nuclear factorâ€₽B signalling. Experimental Physiology, 2019, 104, 1262-1273.             | 2.0  | 57        |
| 10 | Fndc5 lossâ€ofâ€function attenuates exerciseâ€induced browning of white adipose tissue in mice. FASEB<br>Journal, 2019, 33, 5876-5886.                                                                    | 0.5  | 39        |
| 11 | Transdifferentiation of Muscle Satellite Cells to Adipose Cells Using CRISPR/Cas9-Mediated Targeting of MyoD. Methods in Molecular Biology, 2019, 1889, 25-41.                                            | 0.9  | 5         |
| 12 | Shisa2 regulates the fusion of muscle progenitors. Stem Cell Research, 2018, 31, 31-41.                                                                                                                   | 0.7  | 14        |
| 13 | Ascl2 inhibits myogenesis by antagonizing the transcriptional activity of myogenic regulatory factors.<br>Development (Cambridge), 2017, 144, 235-247.                                                    | 2.5  | 27        |
| 14 | Pten is necessary for the quiescence and maintenance of adult muscle stem cells. Nature<br>Communications, 2017, 8, 14328.                                                                                | 12.8 | 86        |
| 15 | Loss of MyoD Promotes Fate Transdifferentiation of Myoblasts Into Brown Adipocytes. EBioMedicine, 2017, 16, 212-223.                                                                                      | 6.1  | 57        |
| 16 | The hypoxia-inducible factors HIF1α and HIF2α are dispensable for embryonic muscle development but<br>essential for postnatal muscle regeneration. Journal of Biological Chemistry, 2017, 292, 5981-5991. | 3.4  | 54        |
| 17 | Peripheral Neuropathy and Hindlimb Paralysis in a Mouse Model of Adipocyte-Specific Knockout of<br>Lkb1. EBioMedicine, 2017, 24, 127-136.                                                                 | 6.1  | 11        |
| 18 | Muscle Histology Characterization Using H&E Staining and Muscle Fiber Type Classification<br>Using Immunofluorescence Staining. Bio-protocol, 2017, 7, .                                                  | 0.4  | 67        |

CHAO WANG

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Characterization and expression of a novel caspase gene: Evidence of the expansion of caspases in<br>Crassostrea gigas. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology,<br>2016, 201, 37-45.               | 1.6 | 10        |
| 20 | Impaired exercise tolerance, mitochondrial biogenesis, and muscle fiber maintenance in<br>miRâ€133a–deficient mice. FASEB Journal, 2016, 30, 3745-3758.                                                                                    | 0.5 | 59        |
| 21 | Notch activation drives adipocyte dedifferentiation and tumorigenic transformation in mice. Journal of Experimental Medicine, 2016, 213, 2019-2037.                                                                                        | 8.5 | 72        |
| 22 | Conditional Loss of Pten in Myogenic Progenitors Leads to Postnatal Skeletal Muscle Hypertrophy but<br>Age-Dependent Exhaustion of Satellite Cells. Cell Reports, 2016, 17, 2340-2353.                                                     | 6.4 | 67        |
| 23 | Heterogeneous activation of a slow myosin gene in proliferating myoblasts and differentiated single myofibers. Developmental Biology, 2015, 402, 72-80.                                                                                    | 2.0 | 17        |
| 24 | Hypoxia Inhibits Myogenic Differentiation through p53 Protein-dependent Induction of Bhlhe40<br>Protein. Journal of Biological Chemistry, 2015, 290, 29707-29716.                                                                          | 3.4 | 35        |
| 25 | The role of Cu/Zn-SOD and Mn-SOD in the immune response to oxidative stress and pathogen challenge in the clam Meretrix meretrix. Fish and Shellfish Immunology, 2015, 42, 58-65.                                                          | 3.6 | 102       |
| 26 | Growth performance of the clam, Meretrix meretrix, breeding-selection populations cultured in different conditions. Acta Oceanologica Sinica, 2013, 32, 82-87.                                                                             | 1.0 | 1         |
| 27 | The role of catalase in the immune response to oxidative stress and pathogen challenge in the clam<br>Meretrix meretrix. Fish and Shellfish Immunology, 2013, 34, 91-99.                                                                   | 3.6 | 59        |
| 28 | Single nucleotide polymorphisms in i-type lysozyme gene and their correlation with vibrio-resistance<br>and growth of clam Meretrix meretrix based on the selected resistance stocks. Fish and Shellfish<br>Immunology, 2012, 33, 559-568. | 3.6 | 33        |
| 29 | Genetic diversity of the sulfotransferase-like gene and one nonsynonymous SNP associated with growth traits of clam, Meretrix meretrix. Molecular Biology Reports, 2012, 39, 1323-1331.                                                    | 2.3 | 9         |
| 30 | Identification of a fructose-1,6-bisphosphate aldolase gene and association of the single nucleotide<br>polymorphisms with growth traits in the clam Meretrix meretrix. Molecular Biology Reports, 2012, 39,<br>5017-5024.                 | 2.3 | 10        |
| 31 | Molecular characterization of a glutathione peroxidase gene and its expression in the selected<br>Vibrio-resistant population of the clam Meretrix meretrix. Fish and Shellfish Immunology, 2011, 30,<br>1294-1302.                        | 3.6 | 31        |