Shouheng Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4335449/publications.pdf

Version: 2024-02-01

3149 2940 40,243 181 92 189 citations h-index g-index papers 193 193 193 37428 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Monodisperse MFe2O4(M = Fe, Co, Mn) Nanoparticles. Journal of the American Chemical Society, 2004, 126, 273-279.	6.6	3,237
2	Size-Controlled Synthesis of Magnetite Nanoparticles. Journal of the American Chemical Society, 2002, 124, 8204-8205.	6.6	2,571
3	Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature, 2002, 420, 395-398.	13.7	1,526
4	Synthesis, Functionalization, and Biomedical Applications of Multifunctional Magnetic Nanoparticles. Advanced Materials, 2010, 22, 2729-2742.	11.1	1,260
5	Monodisperse Au Nanoparticles for Selective Electrocatalytic Reduction of CO ₂ to CO. Journal of the American Chemical Society, 2013, 135, 16833-16836.	6.6	1,192
6	Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chemical Society Reviews, 2009, 38, 2532.	18.7	1,073
7	Tuning Nanoparticle Catalysis for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2013, 52, 8526-8544.	7.2	902
8	Magnetic Core/Shell Fe3O4/Au and Fe3O4/Au/Ag Nanoparticles with Tunable Plasmonic Properties. Journal of the American Chemical Society, 2007, 129, 8698-8699.	6.6	853
9	Active and Selective Conversion of CO ₂ to CO on Ultrathin Au Nanowires. Journal of the American Chemical Society, 2014, 136, 16132-16135.	6.6	784
10	Spin-Dependent Tunneling in Self-Assembled Cobalt-Nanocrystal Superlattices. Science, 2000, 290, 1131-1134.	6.0	634
11	Oleylamine-Mediated Synthesis of Pd Nanoparticles for Catalytic Formic Acid Oxidation. Journal of the American Chemical Society, 2009, 131, 4588-4589.	6.6	629
12	FePt Nanoparticles Assembled on Graphene as Enhanced Catalyst for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2012, 134, 2492-2495.	6.6	626
13	Tuning Sn-Catalysis for Electrochemical Reduction of CO ₂ to CO via the Core/Shell Cu/SnO ₂ Structure. Journal of the American Chemical Society, 2017, 139, 4290-4293.	6.6	553
14	Synthesis of Monodisperse Pt Nanocubes and Their Enhanced Catalysis for Oxygen Reduction. Journal of the American Chemical Society, 2007, 129, 6974-6975.	6.6	530
15	Bimagnetic Core/Shell FePt/Fe3O4Nanoparticles. Nano Letters, 2004, 4, 187-190.	4.5	515
16	PET/MRI Dual-Modality Tumor Imaging Using Arginine-Glycine-Aspartic (RGD)–Conjugated Radiolabeled Iron Oxide Nanoparticles. Journal of Nuclear Medicine, 2008, 49, 1371-1379.	2.8	507
17	Oleylamine as Both Reducing Agent and Stabilizer in a Facile Synthesis of Magnetite Nanoparticles. Chemistry of Materials, 2009, 21, 1778-1780.	3.2	503
18	Organic Phase Syntheses of Magnetic Nanoparticles and Their Applications. Chemical Reviews, 2016, 116, 10473-10512.	23.0	492

#	Article	IF	Citations
19	Au–Fe ₃ O ₄ Dumbbell Nanoparticles as Dualâ€Functional Probes. Angewandte Chemie - International Edition, 2008, 47, 173-176.	7.2	490
20	Synthesis and Stabilization of Monodisperse Fe Nanoparticles. Journal of the American Chemical Society, 2006, 128, 10676-10677.	6.6	483
21	Monodisperse Nickel Nanoparticles and Their Catalysis in Hydrolytic Dehydrogenation of Ammonia Borane. Journal of the American Chemical Society, 2010, 132, 1468-1469.	6.6	477
22	Structurally Ordered FePt Nanoparticles and Their Enhanced Catalysis for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2010, 132, 4996-4997.	6.6	461
23	Monodisperse Magnetic Nanoparticles for Theranostic Applications. Accounts of Chemical Research, 2011, 44, 875-882.	7.6	452
24	Ultrathin Au Nanowires and Their Transport Properties. Journal of the American Chemical Society, 2008, 130, 8902-8903.	6.6	445
25	Porous Hollow Fe ₃ O ₄ Nanoparticles for Targeted Delivery and Controlled Release of Cisplatin. Journal of the American Chemical Society, 2009, 131, 10637-10644.	6.6	429
26	Surfactant Removal for Colloidal Nanoparticles from Solution Synthesis: The Effect on Catalytic Performance. ACS Catalysis, 2012, 2, 1358-1362.	5.5	426
27	Ni–C–N Nanosheets as Catalyst for Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2016, 138, 14546-14549.	6.6	424
28	Ultrasmall c(RGDyK)-Coated Fe ₃ O ₄ Nanoparticles and Their Specific Targeting to Integrin \hat{l} ± _v \hat{l} 2 ₃ -Rich Tumor Cells. Journal of the American Chemical Society, 2008, 130, 7542-7543.	6.6	405
29	A facile synthesis of monodisperse Au nanoparticles and their catalysis of CO oxidation. Nano Research, 2008, 1, 229-234.	5.8	398
30	Co/CoO Nanoparticles Assembled on Graphene for Electrochemical Reduction of Oxygen. Angewandte Chemie - International Edition, 2012, 51, 11770-11773.	7.2	391
31	FePt and CoPt Nanowires as Efficient Catalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2013, 52, 3465-3468.	7.2	389
32	New Approach to Fully Ordered fct-FePt Nanoparticles for Much Enhanced Electrocatalysis in Acid. Nano Letters, 2015, 15, 2468-2473.	4.5	385
33	Dumbbell-like Auâ^'Fe ₃ O ₄ Nanoparticles for Target-Specific Platin Delivery. Journal of the American Chemical Society, 2009, 131, 4216-4217.	6.6	378
34	Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today, 2018, 21, 41-54.	6.2	374
35	One-Step Synthesis of FePt Nanoparticles with Tunable Size. Journal of the American Chemical Society, 2004, 126, 8394-8395.	6.6	357
36	Syntheses, Properties, and Potential Applications of Multicomponent Magnetic Nanoparticles. Advanced Functional Materials, 2008, 18, 391-400.	7.8	355

3

#	Article	IF	Citations
37	Tuning Nanoparticle Structure and Surface Strain for Catalysis Optimization. Journal of the American Chemical Society, 2014, 136, 7734-7739.	6.6	349
38	Monodisperse AgPd Alloy Nanoparticles and Their Superior Catalysis for the Dehydrogenation of Formic Acid. Angewandte Chemie - International Edition, 2013, 52, 3681-3684.	7.2	348
39	Controlled Synthesis and Assembly of FePt Nanoparticles. Journal of Physical Chemistry B, 2003, 107, 5419-5425.	1.2	340
40	Hard-Magnet L10-CoPt Nanoparticles Advance Fuel Cell Catalysis. Joule, 2019, 3, 124-135.	11.7	326
41	Fe Stabilization by Intermetallic L1 ₀ -FePt and Pt Catalysis Enhancement in L1 ₀ -FePt/Pt Nanoparticles for Efficient Oxygen Reduction Reaction in Fuel Cells. Journal of the American Chemical Society, 2018, 140, 2926-2932.	6.6	312
42	Synthesis of FePt Nanocubes and Their Oriented Self-Assembly. Journal of the American Chemical Society, 2006, 128, 7132-7133.	6.6	302
43	Stable Cobalt Nanoparticles and Their Monolayer Array as an Efficient Electrocatalyst for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2015, 137, 7071-7074.	6.6	299
44	A General Strategy for Synthesizing FePt Nanowires and Nanorods. Angewandte Chemie - International Edition, 2007, 46, 6333-6335.	7.2	297
45	Accelerating the Translation of Nanomaterials in Biomedicine. ACS Nano, 2015, 9, 6644-6654.	7.3	279
46	A New Core/Shell NiAu/Au Nanoparticle Catalyst with Pt-like Activity for Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2015, 137, 5859-5862.	6.6	274
47	Seed-Mediated Synthesis of Core/Shell FePtM/FePt (M = Pd, Au) Nanowires and Their Electrocatalysis for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2013, 135, 13879-13884.	6.6	269
48	A General Approach to Noble Metalâ^'Metal Oxide Dumbbell Nanoparticles and Their Catalytic Application for CO Oxidation. Chemistry of Materials, 2010, 22, 3277-3282.	3.2	246
49	Composition Effects of FePt Alloy Nanoparticles on the Electro-Oxidation of Formic Acid. Langmuir, 2007, 23, 11303-11310.	1.6	243
50	A Facile Synthesis of MPd (M = Co, Cu) Nanoparticles and Their Catalysis for Formic Acid Oxidation. Nano Letters, 2012, 12, 1102-1106.	4.5	233
51	Composition-Controlled Synthesis of Bimetallic PdPt Nanoparticles and Their Electro-oxidation of Methanol. Chemistry of Materials, 2011, 23, 4199-4203.	3.2	232
52	Graphene and its composites with nanoparticles for electrochemical energy applications. Nano Today, 2014, 9, 668-683.	6.2	230
53	Tandem Dehydrogenation of Ammonia Borane and Hydrogenation of Nitro/Nitrile Compounds Catalyzed by Graphene-Supported NiPd Alloy Nanoparticles. ACS Catalysis, 2014, 4, 1777-1782.	5.5	219
54	Monodisperse gold–palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions. Nanoscale, 2013, 5, 910-912.	2.8	211

#	Article	IF	Citations
55	Functional links between Pt single crystal morphology and nanoparticles with different size and shape: the oxygen reduction reaction case. Energy and Environmental Science, 2014, 7, 4061-4069.	15.6	205
56	Intermetallic Nanoparticles: Synthetic Control and Their Enhanced Electrocatalysis. Accounts of Chemical Research, 2019, 52, 2015-2025.	7.6	200
57	Controlled assembly of Cu nanoparticles on pyridinic-N rich graphene for electrochemical reduction of CO2 to ethylene. Nano Energy, 2016, 24, 1-9.	8.2	199
58	Linking Hydrophilic Macromolecules to Monodisperse Magnetite (Fe3O4) Nanoparticles via Trichloro-s-triazine. Chemistry of Materials, 2006, 18, 5401-5403.	3.2	185
59	Structure-Induced Enhancement in Electrooxidation of Trimetallic FePtAu Nanoparticles. Journal of the American Chemical Society, 2012, 134, 5060-5063.	6.6	185
60	One-Pot Synthesis of Oleylamine Coated AuAg Alloy NPs and Their Catalysis for CO Oxidation. Chemistry of Materials, 2009, 21, 433-435.	3.2	184
61	Ni/Pd core/shell nanoparticles supported on graphene as a highly active and reusable catalyst for Suzuki-Miyaura cross-coupling reaction. Nano Research, 2013, 6, 10-18.	5.8	184
62	Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation. Journal of the American Chemical Society, 2017, 139, 8846-8854.	6.6	181
63	Stable Single-Crystalline Body Centered Cubic Fe Nanoparticles. Nano Letters, 2011, 11, 1641-1645.	4.5	174
64	Cu ₃ N Nanocubes for Selective Electrochemical Reduction of CO ₂ to Ethylene. Nano Letters, 2019, 19, 8658-8663.	4.5	173
65	Synthesis and Characterization of Multimetallic Pd/Au and Pd/Au/FePt Core/Shell Nanoparticles. Angewandte Chemie - International Edition, 2010, 49, 9368-9372.	7.2	167
66	Monodisperse Core/Shell Ni/FePt Nanoparticles and Their Conversion to Ni/Pt to Catalyze Oxygen Reduction. Journal of the American Chemical Society, 2014, 136, 15921-15924.	6.6	165
67	Core/Shell Face-Centered Tetragonal FePd/Pd Nanoparticles as an Efficient Non-Pt Catalyst for the Oxygen Reduction Reaction. ACS Nano, 2015, 9, 11014-11022.	7.3	165
68	Monodisperse magnetic nanoparticles for biomedical applications. Polymer International, 2007, 56, 821-826.	1.6	161
69	Dispersible Ferromagnetic FePt Nanoparticles. Advanced Materials, 2009, 21, 906-909.	11.1	155
70	One-pot synthesis of monodisperse iron oxide nanoparticles for potential biomedical applications. Pure and Applied Chemistry, 2006, 78, 1003-1014.	0.9	150
71	CuNi Nanoparticles Assembled on Graphene for Catalytic Methanolysis of Ammonia Borane and Hydrogenation of Nitro/Nitrile Compounds. Chemistry of Materials, 2017, 29, 1413-1418.	3.2	149
72	Rational Synthesis of Heterostructured Nanoparticles with Morphology Control. Journal of the American Chemical Society, 2010, 132, 6524-6529.	6.6	145

#	Article	IF	CITATIONS
73	Magnetotransport of magnetite nanoparticle arrays. Physical Review B, 2006, 73, .	1.1	141
74	Pd Nanoparticles Coupled to WO _{2.72} Nanorods for Enhanced Electrochemical Oxidation of Formic Acid. Nano Letters, 2017, 17, 2727-2731.	4.5	136
75	Sea urchin-like cobalt–iron phosphide as an active catalyst for oxygen evolution reaction. Nanoscale, 2016, 8, 3244-3247.	2.8	135
76	Monodisperse nickel nanoparticles supported on SiO2 as an effective catalyst for the hydrolysis of ammonia-borane. Nano Research, 2010, 3, 676-684.	5.8	132
77	Controlled Anisotropic Growth of Coâ€Feâ€P from Coâ€Feâ€O Nanoparticles. Angewandte Chemie - International Edition, 2015, 54, 9642-9645.	7.2	132
78	Surface- and Structure-Dependent Catalytic Activity of Au Nanoparticles for Oxygen Reduction Reaction. Chemistry of Materials, 2010, 22, 755-761.	3.2	131
79	Nickel–Platinum Nanoparticles as Peroxidase Mimics with a Record High Catalytic Efficiency. Journal of the American Chemical Society, 2021, 143, 2660-2664.	6.6	124
80	Monodisperse CeO ₂ Nanoparticles and Their Oxygen Storage and Release Properties. Journal of Physical Chemistry C, 2011, 115, 1740-1745.	1.5	118
81	Monolayer Assembly of Ferrimagnetic Co _{<i>x</i>} Fe _{3â€"<i>x</i>} O ₄ Nanocubes for Magnetic Recording. Nano Letters, 2014, 14, 3395-3399.	4.5	117
82	Building Nanocomposite Magnets by Coating a Hard Magnetic Core with a Soft Magnetic Shell. Angewandte Chemie - International Edition, 2014, 53, 2176-2180.	7.2	115
83	From Core/Shell Structured FePt/Fe ₃ O ₄ /MgO to Ferromagnetic FePt Nanoparticles. Chemistry of Materials, 2008, 20, 7242-7245.	3.2	108
84	Stabilizing CuPd Nanoparticles via CuPd Coupling to WO _{2.72} Nanorods in Electrochemical Oxidation of Formic Acid. Journal of the American Chemical Society, 2017, 139, 15191-15196.	6.6	106
85	Methanolysis of Ammonia Borane by CoPd Nanoparticles. ACS Catalysis, 2012, 2, 1290-1295.	5.5	102
86	Synthesis and assembly of Pd nanoparticles on graphene for enhanced electrooxidation of formic acid. Nanoscale, 2013, 5, 160-163.	2.8	99
87	Synthesis of Pt ₃ Sn Alloy Nanoparticles and Their Catalysis for Electro-Oxidation of CO and Methanol. ACS Catalysis, 2011, 1, 1719-1723.	5.5	98
88	Surfactant-Induced Postsynthetic Modulation of Pd Nanoparticle Crystallinity. Nano Letters, 2011, 11, 1614-1617.	4.5	98
89	High-Temperature Solution-Phase Syntheses of Metal-Oxide Nanocrystals. Chemistry of Materials, 2013, 25, 1293-1304.	3.2	97
90	A facile route to monodisperse MPd ($M = Co \text{ or } Cu$) alloy nanoparticles and their catalysis for electrooxidation of formic acid. Nanoscale, 2014, 6, 6970-6973.	2.8	92

#	Article	IF	Citations
91	Superparamagnetic nanoparticles as targeted probes for diagnostic and therapeutic applications. Dalton Transactions, 2009, , 5583.	1.6	91
92	Building Nanocomposite Magnets by Coating a Hard Magnetic Core with a Soft Magnetic Shell. Angewandte Chemie, 2014, 126, 2208-2212.	1.6	89
93	Synthesis of high magnetic moment CoFe nanoparticles via interfacial diffusion in core/shell structured Co/Fe nanoparticles. Nano Research, 2009, 2, 380-385.	5.8	88
94	One-Pot Synthesis of Urchin-like FePd–Fe3O4 and Their Conversion into Exchange-Coupled L10–FePd–Fe Nanocomposite Magnets. Nano Letters, 2013, 13, 4975-4979.	4.5	87
95	A Heteroleptic Gold Hydride Nanocluster for Efficient and Selective Electrocatalytic Reduction of CO ₂ to CO. Journal of the American Chemical Society, 2022, 144, 5258-5262.	6.6	87
96	Sm Co 5 \hat{a} Fe nanocomposites synthesized from reductive annealing of oxide nanoparticles. Applied Physics Letters, 2007, 91, .	1.5	85
97	Bipyridineâ€Assisted Assembly of Au Nanoparticles on Cu Nanowires To Enhance the Electrochemical Reduction of CO ₂ . Angewandte Chemie - International Edition, 2019, 58, 14100-14103.	7.2	85
98	Strain Effect in Palladium Nanostructures as Nanozymes. Nano Letters, 2020, 20, 272-277.	4.5	85
99	Controlled growth of LaFeO ₃ nanoparticles on reduced graphene oxide for highly efficient photocatalysis. Nanoscale, 2016, 8, 752-756.	2.8	83
100	Ternary CoPtAu Nanoparticles as a General Catalyst for Highly Efficient Electroâ€oxidation of Liquid Fuels. Angewandte Chemie - International Edition, 2019, 58, 11527-11533.	7.2	83
101	Magnetic Nanoparticles: Synthesis, Anisotropy, and Applications. Chemical Reviews, 2023, 123, 3904-3943.	23.0	81
102	Electrochemical Reduction of CO2 Catalyzed by Metal Nanocatalysts. Trends in Chemistry, 2019, 1, 739-750.	4.4	80
103	FePd alloy nanoparticles assembled on reduced graphene oxide as a catalyst for selective transfer hydrogenation of nitroarenes to anilines using ammonia borane as a hydrogen source. Catalysis Science and Technology, 2016, 6, 6137-6143.	2.1	79
104	Anisotropic Strain Tuning of L1 ₀ Ternary Nanoparticles for Oxygen Reduction. Journal of the American Chemical Society, 2020, 142, 19209-19216.	6.6	76
105	Enhancement of radiation effect on cancer cells by gold-pHLIP. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5372-5376.	3.3	7 3
106	Room-Temperature Chemoselective Reduction of 3-Nitrostyrene to 3-Vinylaniline by Ammonia Borane over Cu Nanoparticles. Journal of the American Chemical Society, 2018, 140, 16460-16463.	6.6	73
107	AgPd Nanoparticles Deposited on WO _{2.72} Nanorods as an Efficient Catalyst for One-Pot Conversion of Nitrophenol/Nitroacetophenone into Benzoxazole/Quinazoline. Journal of the American Chemical Society, 2017, 139, 5712-5715.	6.6	71
108	A guideline for atomistic design and understanding of ultrahard nanomagnets. Nature Communications, 2011, 2, 528.	5.8	67

#	Article	IF	CITATIONS
109	A New Hexagonal Cobalt Nanosheet Catalyst for Selective CO ₂ Conversion to Ethanal. Journal of the American Chemical Society, 2021, 143, 15335-15343.	6.6	64
110	Chemical synthesis of hard magnetic SmCo nanoparticles. Journal of Materials Chemistry, 2011, 21, 16873.	6.7	63
111	Recent advances in the organic solution phase synthesis of metal nanoparticles and their electrocatalysis for energy conversion reactions. Nano Energy, 2016, 29, 178-197.	8.2	63
112	Surface Profile Control of FeNiPt/Pt Core/Shell Nanowires for Oxygen Reduction Reaction. Small, 2015, 11, 3545-3549.	5.2	61
113	Monodisperse nanoparticles for catalysis and nanomedicine. Nanoscale, 2019, 11, 18946-18967.	2.8	61
114	Detection of DNA labeled with magnetic nanoparticles using MgO-based magnetic tunnel junction sensors. Journal of Applied Physics, 2008, 103 , .	1.1	60
115	Model Compounds for the Homogeneous Hydrodesulfurization of Benzothiophene: Insertion of Manganese into the SC(aryl) Bond. Angewandte Chemie International Edition in English, 1996, 35, 212-214.	4.4	50
116	Monodisperse Magnetite Nanoparticles Coupled with Nuclear Localization Signal Peptide for Cellâ€Nucleus Targeting. Chemistry - an Asian Journal, 2008, 3, 548-552.	1.7	50
117	Enhancing electrochemical detection of dopamine via dumbbell-like FePt–Fe ₃ O ₄ nanoparticles. Nanoscale, 2017, 9, 1022-1027.	2.8	48
118	Pt-based composite nanoparticles for magnetic, catalytic, and biomedical applications. Journal of Materials Chemistry, 2011, 21, 12579.	6.7	47
119	Maximizing the Catalytic Activity of Nanoparticles through Monolayer Assembly on Nitrogenâ€Doped Graphene. Angewandte Chemie - International Edition, 2018, 57, 451-455.	7.2	47
120	Porous yolk-shell Fe/Fe3O4 nanoparticles with controlled exposure of highly active Fe(0) for cancer therapy. Biomaterials, 2021, 268, 120530.	5.7	47
121	Conjugating Methotrexate to magnetite (Fe3O4) nanoparticles via trichloro-s-triazine. Journal of Materials Chemistry, 2009, 19, 6400.	6.7	46
122	Penetration of Endothelial Cell Coated Multicellular Tumor Spheroids by Iron Oxide Nanoparticles. Theranostics, 2012, 2, 66-75.	4.6	45
123	PdAu Alloy Nanoparticles for Ethanol Oxidation in Alkaline Conditions: Enhanced Activity and C1 Pathway Selectivity. ACS Applied Energy Materials, 2019, 2, 8701-8706.	2.5	45
124	Efficient Hydrogen Generation from Ammonia Borane and Tandem Hydrogenation or Hydrodehalogenation over AuPd Nanoparticles. ACS Sustainable Chemistry and Engineering, 2020, 8, 2814-2821.	3.2	45
125	Controlled synthesis of Au–Fe heterodimer nanoparticles and their conversion into Au–Fe ₃ O ₄ heterostructured nanoparticles. Nanoscale, 2016, 8, 17947-17952.	2.8	44
126	Stabilizing Fe Nanoparticles in the SmCo ₅ Matrix. Nano Letters, 2017, 17, 5695-5698.	4.5	44

#	Article	IF	Citations
127	Reductive amination of ethyl levulinate to pyrrolidones over AuPd nanoparticles at ambient hydrogen pressure. Green Chemistry, 2019, 21, 1895-1899.	4.6	44
128	Magnetic Fe3O4 nanoparticles coupled with a fluorescent Eu complex for dual imaging applications. Chemical Communications, 2012, 48, 2952.	2.2	43
129	Cu nanowire-catalyzed electrochemical reduction of CO or CO ₂ . Nanoscale, 2019, 11, 12075-12079.	2.8	43
130	Misfit dislocations in multimetallic core-shelled nanoparticles. Applied Physics Letters, 2012, 100, .	1.5	42
131	Chemical Synthesis of Magnetically Hard and Strong Rare Earth Metal Based Nanomagnets. Angewandte Chemie - International Edition, 2019, 58, 602-606.	7.2	42
132	Halide ion-mediated growth of single crystalline Fe nanoparticles. Nanoscale, 2014, 6, 4852-4856.	2.8	41
133	From FePt–Fe ₃ O ₄ to L1 _O -FePt–Fe nanocomposite magnets with a gradient interface. Journal of Materials Chemistry C, 2015, 3, 7075-7080.	2.7	41
134	Role of Elastic Strain on Electrocatalysis of Oxygen Reduction Reaction on Pt. Journal of Physical Chemistry C, 2015, 119, 19042-19052.	1.5	40
135	A Flameâ€Reaction Method for the Largeâ€Scale Synthesis of Highâ€Performance Sm _{<i>x</i>} Co _{<i>y</i>} Nanomagnets. Angewandte Chemie - International Edition, 2019, 58, 14509-14512.	7.2	39
136	Controlled Synthesis of Monodisperse CeO ₂ Nanoplates Developed from Assembled Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 2761-2765.	1.5	37
137	A new strategy to synthesize anisotropic SmCo ₅ nanomagnets. Nanoscale, 2018, 10, 8735-8740.	2.8	37
138	Stabilizing Hard Magnetic SmCo ₅ Nanoparticles by N-Doped Graphitic Carbon Layer. Journal of the American Chemical Society, 2020, 142, 8440-8446.	6.6	37
139	Controlling core/shell Au/FePt nanoparticle electrocatalysis via changing the core size and shell thickness. Nanoscale, 2016, 8, 2626-2631.	2.8	36
140	Chemical Synthesis of Magnetic Nanoparticles for Permanent Magnet Applications. Chemistry - A European Journal, 2020, 26, 6757-6766.	1.7	36
141	Surface Modification and Assembly of Transparent Indium Tin Oxide Nanocrystals for Enhanced Conductivity. Journal of Physical Chemistry C, 2014, 118, 12017-12021.	1.5	33
142	One-pot formic acid dehydrogenation and synthesis of benzene-fused heterocycles over reusable AgPd/WO _{2.72} nanocatalyst. Journal of Materials Chemistry A, 2018, 6, 23766-23772.	5.2	29
143	Tuning Electron-Conduction and Spin Transport in Magnetic Iron Oxide Nanoparticle Assemblies <i>via</i>) Tetrathiafulvalene-Fused Ligands. ACS Nano, 2015, 9, 12205-12213.	7.3	25
144	One-Pot Synthesis of Pt Nanocubes and Nanopods via Burst Nucleation and Controlled Secondary Growth. Chemistry of Materials, 2011, 23, 132-136.	3.2	24

#	Article	IF	Citations
145	Recent Advances in the Highâ€Temperature Chemical Synthesis of Magnetic Nanoparticles. Advanced Functional Materials, 2016, 26, 3809-3817.	7.8	24
146	Atomic scale deposition of Pt around Au nanoparticles to achieve much enhanced electrocatalysis of Pt. Nanoscale, 2017, 9, 7745-7749.	2.8	24
147	Hydrodehalogenation of Polyhalogenated Aromatics Catalyzed by NiPd Nanoparticles Supported on Nitrogenâ€Doped Graphene. ChemSusChem, 2018, 11, 1617-1620.	3.6	23
148	Bipyridineâ€Assisted Assembly of Au Nanoparticles on Cu Nanowires To Enhance the Electrochemical Reduction of CO 2. Angewandte Chemie, 2019, 131, 14238-14241.	1.6	20
149	Ternary CoPtAu Nanoparticles as a General Catalyst for Highly Efficient Electroâ€oxidation of Liquid Fuels. Angewandte Chemie, 2019, 131, 11651-11657.	1.6	20
150	Selfâ€Assembly of Nanoparticles into Twoâ€Dimensional Arrays for Catalytic Applications. ChemPhysChem, 2019, 20, 23-30.	1.0	20
151	Nanoparticle-Catalyzed Green Chemistry Synthesis of Polybenzoxazole. Journal of the American Chemical Society, 2021, 143, 2115-2122.	6.6	20
152	Spin valve biosensors: Signal dependence on nanoparticle position. Journal of Applied Physics, 2006, 99, 08P107.	1.1	19
153	Static and Dynamic Magnetic Properties of Composite Au-Fe\$_{3}\$O\$_4\$Nanoparticles. IEEE Transactions on Magnetics, 2007, 43, 3094-3096.	1.2	19
154	CuPd Nanoparticles as a Robust Catalyst for Electrochemical Allylic Alkylation. Angewandte Chemie - International Edition, 2020, 59, 15933-15936.	7.2	19
155	Synthesis and assembly of barium-doped iron oxide nanoparticles and nanomagnets. Nanoscale, 2015, 7, 16165-16169.	2.8	17
156	Linking melem with conjugated Schiff-base bonds to boost photocatalytic efficiency of carbon nitride for overall water splitting. Nanoscale, 2021, 13, 9315-9321.	2.8	17
157	NixWO2.72 nanorods as an efficient electrocatalyst for oxygen evolution reaction. Green Energy and Environment, 2017, 2, 119-123.	4.7	15
158	Fluorescent magnetic nanoparticles based on a ruthenium complex and Fe ₃ O ₄ . Journal of Materials Chemistry, 2011, 21, 11464-11467.	6.7	14
159	Enhancing magnetoresistance in tetrathiafulvalene carboxylate modified iron oxide nanoparticle assemblies. Nanoscale, 2016, 8, 12128-12133.	2.8	14
160	Magnetic tunneling junction based magnetic field sensors: Role of shape anisotropy versus free layer thickness. Journal of Applied Physics, 2011, 109, .	1.1	11
161	Noncrystallographic Atomic Arrangement Driven Enhancement of the Catalytic Activity of Au Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 26668-26673.	1.5	9
162	Chemical Synthesis of Monodisperse Magnetic Nanoparticles for Sensitive Cancer Detection. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 33-38.	1.9	9

#	Article	IF	CITATIONS
163	Preparation of Magnetic Nanoparticles for Biomedical Applications. Methods in Molecular Biology, 2017, 1570, 73-89.	0.4	9
164	A Flameâ€Reaction Method for the Largeâ€Scale Synthesis of Highâ€Performance Sm _{<i>x</i>} Co _{<i>y</i>} Nanomagnets. Angewandte Chemie, 2019, 131, 14651-14654.	1.6	9
165	Chemical Synthesis of Magnetically Hard and Strong Rare Earth Metal Based Nanomagnets. Angewandte Chemie, 2019, 131, 612-616.	1.6	9
166	Giant positive magnetoresistance in Co@CoO nanoparticle arrays. Journal of Applied Physics, 2009, 105, 063920.	1.1	8
167	Highly Efficient AuPd Catalyst for Synthesizing Polybenzoxazole with Controlled Polymerization. Matter, 2019, 1, 1631-1643.	5.0	8
168	Nanocatalysts in electrosynthesis. IScience, 2021, 24, 102172.	1.9	8
169	Cu ₂ O nanoparticle-catalyzed tandem reactions for the synthesis of robust polybenzoxazole. Nanoscale, 2022, 14, 6162-6170.	2.8	8
170	Synthese und Struktur von <i>η</i> ⁴ , <i>η</i> ⁶ â€Naphthalinâ€Dimetallkomplexen mit <i>syn</i> âefacial gebundener Mnâ€Mnâ€Einheit âe" ein allgemeiner Syntheseweg zu homoâe•und heteronuclearen Polyarenâ€Dimetallkomplexen. Angewandte Chemie, 1995, 107, 2734-2737.	1.6	6
171	Modellverbindungen fù⁄4r die homogene Hydrodesulfurierung von Benzothiophen: Insertion von Mangan in die S (Aryl)â€Bindung. Angewandte Chemie, 1996, 108, 234-237.	1.6	6
172	Enhancing low-field magnetoresistance in magnetite nanoparticles via zinc substitution. Physical Chemistry Chemical Physics, 2018, 20, 17245-17252.	1.3	6
173	Analysis of the noise spectra from oxidized superparamagnetic nanoparticles. Physical Review B, 2014, 90, .	1.1	5
174	Controlling the assembly and spin transport of tetrathiafulvalene carboxylate coated iron oxide nanoparticles. Journal of Materials Chemistry C, 2017, 5, 7200-7206.	2.7	5
175	CHEMICAL SYNTHESIS, SELF-ASSEMBLY AND APPLICATIONS OF MAGNETIC NANOPARTICLES. Annual Review of Nano Research, 2009, , 275-316.	0.2	3
176	Maximizing the Catalytic Activity of Nanoparticles through Monolayer Assembly on Nitrogenâ€Doped Graphene. Angewandte Chemie, 2018, 130, 460-464.	1.6	2
177	Pocket the difference. Nature Energy, 2020, 5, 943-944.	19.8	2
178	CuPd Nanoparticles as a Robust Catalyst for Electrochemical Allylic Alkylation. Angewandte Chemie, 2020, 132, 16067-16070.	1.6	2
179	Overview of Magnetic Nanomaterials. , 2017, , 1-28.		1
180	Frontispiece: Chemical Synthesis of Magnetic Nanoparticles for Permanent Magnet Applications. Chemistry - A European Journal, 2020, 26, .	1.7	1