
Stefan Kopp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4333935/publications.pdf Version: 2024-02-01

STEEAN KODD

#	Article	IF	CITATIONS
1	To Err is Human(-like): Effects of Robot Gesture on Perceived Anthropomorphism and Likability. International Journal of Social Robotics, 2013, 5, 313-323.	4.6	273
2	Synthesizing multimodal utterances for conversational agents. Computer Animation and Virtual Worlds, 2004, 15, 39-52.	1.2	183
3	The Behavior Markup Language: Recent Developments and Challenges. Lecture Notes in Computer Science, 2007, , 99-111.	1.3	145
4	Generation and Evaluation of Communicative Robot Gesture. International Journal of Social Robotics, 2012, 4, 201-217.	4.6	130
5	Guidelines for Designing Social Robots as Second Language Tutors. International Journal of Social Robotics, 2018, 10, 325-341.	4.6	117
6	Second Language Tutoring Using Social Robots: A Large-Scale Study. , 2019, , .		89
7	A Second Chance to Make a First Impression? How Appearance and Nonverbal Behavior Affect Perceived Warmth and Competence of Virtual Agents over Time. Lecture Notes in Computer Science, 2012, , 126-138.	1.3	89
8	Social resonance and embodied coordination in face-to-face conversation with artificial interlocutors. Speech Communication, 2010, 52, 587-597.	2.8	80
9	Simulating the Emotion Dynamics of a Multimodal Conversational Agent. Lecture Notes in Computer Science, 2004, , 154-165.	1.3	78
10	Smile and the world will smile with you—The effects of a virtual agentâ€~̃s smile on users' evaluation and behavior. International Journal of Human Computer Studies, 2013, 71, 335-349.	5.6	78
11	The impact of latency on perceptual judgments and motor performance in closed-loop interaction in virtual reality. , 2016, , .		65
12	A friendly gesture: Investigating the effect of multimodal robot behavior in human-robot interaction. , 2011, , .		63
13	Adaptive Robot Language Tutoring Based on Bayesian Knowledge Tracing and Predictive Decision-Making. , 2017, , .		63
14	Towards integrated microplanning of language and iconic gesture for multimodal output. , 2004, , .		62
15	The Effect of a Robot's Gestures and Adaptive Tutoring on Children's Acquisition of Second Language Vocabularies. , 2018, , .		62
16	Virtual Agents as Daily Assistants for Elderly or Cognitively Impaired People. Lecture Notes in Computer Science, 2013, , 79-91.	1.3	62
17	Media Equation Revisited: Do Users Show Polite Reactions towards an Embodied Agent?. Lecture Notes in Computer Science, 2009, , 159-165.	1.3	49
18	GNetlc – Using Bayesian Decision Networks for Iconic Gesture Generation. Lecture Notes in Computer Science, 2009, , 76-89.	1.3	48

#	Article	IF	CITATIONS
19	Effects of Gesture on the Perception of Psychological Anthropomorphism: A Case Study with a Humanoid Robot. Lecture Notes in Computer Science, 2011, , 31-41.	1.3	44
20	The Next Step towards a Function Markup Language. Lecture Notes in Computer Science, 2008, , 270-280.	1.3	42
21	Modeling Embodied Feedback with Virtual Humans. , 2008, , 18-37.		41
22	The Effects of an Embodied Conversational Agent's Nonverbal Behavior on User's Evaluation and Behavioral Mimicry. Lecture Notes in Computer Science, 2007, , 238-251.	1.3	38
23	Why Emotions should be Integrated into Conversational Agents. , 0, , 49-67.		36
24	MULTIMODAL COMMUNICATION FROM MULTIMODAL THINKING — TOWARDS AN INTEGRATED MODEL OF SPEECH AND GESTURE PRODUCTION. International Journal of Semantic Computing, 2008, 02, 115-136.	0.5	34
25	Realizing a low-latency virtual reality environment for motor learning. , 2015, , .		33
26	Towards Adaptive Social Behavior Generation for Assistive Robots Using Reinforcement Learning. , 2017, , .		33
27	A Predictive Processing Model of Perception and Action for Self-Other Distinction. Frontiers in Psychology, 2018, 9, 2421.	2.1	32
28	A personality-based emotional model for embodied conversational agents: Effects on perceived social presence and game experience of users. Entertainment Computing, 2019, 32, 100313.	2.9	32
29	Individualized Gesturing Outperforms Average Gesturing – Evaluating Gesture Production in Virtual Humans. Lecture Notes in Computer Science, 2010, , 104-117.	1.3	30
30	More Human-Likeness, More Trust?. , 2019, , .		29
31	Effects of a Social Robot's Self-Explanations on How Humans Understand and Evaluate Its Behavior. , 2020, , .		29
32	Embodied Gesture Processing: Motor-Based Integration of Perception and Action in Social Artificial Agents. Cognitive Computation, 2011, 3, 419-435.	5.2	28
33	A model for production, perception, and acquisition of actions in face-to-face communication. Cognitive Processing, 2010, 11, 187-205.	1.4	27
34	Data-based analysis of speech and gesture: the Bielefeld Speech and Gesture Alignment corpus (SaGA) and its applications. Journal on Multimodal User Interfaces, 2013, 7, 5-18.	2.9	26
35	Action Choice and Outcome Congruency Independently Affect Intentional Binding and Feeling of Control Judgments. Frontiers in Human Neuroscience, 2018, 12, 137.	2.0	25
36	Classification of motor errors to provide real-time feedback for sports coaching in virtual reality — A case study in squats and Tai Chi pushes. Computers and Graphics, 2018, 76, 47-59.	2.5	24

#	Article	IF	CITATIONS
37	Dominant and submissive nonverbal behavior of virtual agents and its effects on evaluation and negotiation outcome in different age groups. Computers in Human Behavior, 2019, 90, 397-409.	8.5	24
38	AsapRealizer 2.0: The Next Steps in Fluent Behavior Realization for ECAs. Lecture Notes in Computer Science, 2014, , 449-462.	1.3	23
39	Mapping out the multifunctionality of speakers' gestures. Gesture, 2016, 15, 37-59.	0.2	22
40	The analysis of embodied communicative feedback in multimodal corpora: a prerequisite for behavior simulation. Computers and the Humanities, 2007, 41, 255-272.	1.4	21
41	Exploring the Alignment Space ââ,¬â€œ Lexical and Gestural Alignment with Real and Virtual Humans. Frontiers in ICT, 2015, 2, .	3.6	21
42	Explanation as a Social Practice: Toward a Conceptual Framework for the Social Design of Al Systems. IEEE Transactions on Cognitive and Developmental Systems, 2021, 13, 717-728.	3.8	20
43	Modeling the Semantic Coordination of Speech and Gesture under Cognitive and Linguistic Constraints. Lecture Notes in Computer Science, 2013, , 203-216.	1.3	20
44	An alignment-capable microplanner for natural language generation. , 2009, , .		20
45	Situated interaction with a virtual human - perception, action, and cognition. Trends in Linguistics Studies and Monographs, 0, , .	0.1	19
46	Appropriate feedback in asymmetric interactions. Journal of Pragmatics, 2010, 42, 2369-2384.	1.5	19
47	An architecture for fluid real-time conversational agents: integrating incremental output generation and input processing. Journal on Multimodal User Interfaces, 2014, 8, 97.	2.9	19
48	An assistance system for guiding workers in central sterilization supply departments. , 2013, , .		19
49	A Social Cognition Perspective on Human–Computer Trust: The Effect of Perceived Warmth and Competence on Trust in Decision-Making With Computers. Frontiers in Digital Humanities, 2018, 5, .	1.2	19
50	Towards an integrated model of speech and gesture production for multi-modal robot behavior. , 2010, , .		18
51	A Multimodal System for Real-Time Action Instruction in Motor Skill Learning. , 2015, , .		17
52	Adaptive Grounding and Dialogue Management for Autonomous Conversational Assistants for Elderly Users. Lecture Notes in Computer Science, 2015, , 28-38.	1.3	17
53	Revisiting Human-Agent Communication: The Importance of Joint Co-construction and Understanding Mental States. Frontiers in Psychology, 2021, 12, 580955.	2.1	17
54	Lifelike Gesture Synthesis and Timing for Conversational Agents. Lecture Notes in Computer Science, 2002, , 120-133.	1.3	17

#	Article	IF	CITATIONS
55	An Incremental Multimodal Realizer for Behavior Co-Articulation and Coordination. Lecture Notes in Computer Science, 2012, , 175-188.	1.3	17
56	MODELING THE PRODUCTION OF COVERBAL ICONIC GESTURES BY LEARNING BAYESIAN DECISION NETWORKS. Applied Artificial Intelligence, 2010, 24, 530-551.	3.2	16
57	A Multimodal In-Car Dialogue System That Tracks The Driver's Attention. , 2014, , .		16
58	Using cognitive models to understand multimodal processes: the case for speech and gesture production. , 0, , 239-276.		15
59	Adapt, Explain, Engage—A Study on How Social Robots Can Scaffold Second-language Learning of Children. ACM Transactions on Human-Robot Interaction, 2020, 9, 1-27.	4.1	15
60	Incremental Multimodal Feedback for Conversational Agents. Lecture Notes in Computer Science, 2007, , 139-146.	1.3	13
61	Towards Meaningful Robot Gesture. Cognitive Systems Monographs, 2009, , 173-182.	0.1	13
62	Better Driving and Recall When In-car Information Presentation Uses Situationally-Aware Incremental Speech Output Generation. , 2014, , .		12
63	Let's Be Serious and Have a Laugh: Can Humor Support Cooperation with a Virtual Agent?. Lecture Notes in Computer Science, 2014, , 250-259.	1.3	12
64	Towards Conversational Agents That Attend to and Adapt to Communicative User Feedback. Lecture Notes in Computer Science, 2011, , 169-182.	1.3	12
65	Gesture-based Object Recognition using Histograms of Guiding Strokes. , 2012, , .		12
66	The ALICO corpus: analysing the active listener. Language Resources and Evaluation, 2016, 50, 411-442.	2.7	11
67	Situationally Aware In-Car Information Presentation Using Incremental Speech Generation: Safer, and More Effective. , 2014, , .		11
68	Imitation Games with an Artificial Agent: From Mimicking to Understanding Shape-Related Iconic Gestures. Lecture Notes in Computer Science, 2004, , 436-447.	1.3	11
69	Multi-Level Analysis of Motor Actions as a Basis for Effective Coaching in Virtual Reality. Advances in Intelligent Systems and Computing, 2016, , 211-214.	0.6	10
70	What a Pity, Pepper!. , 2020, , .		10
71	Imitation Learning and Response Facilitation in Embodied Agents. Lecture Notes in Computer Science, 2006, , 28-41.	1.3	9
72	Real-Time Visual Prosody for Interactive Virtual Agents. Lecture Notes in Computer Science, 2015, , 139-151.	1.3	9

#	Article	IF	CITATIONS
73	Systematicity and Idiosyncrasy in Iconic Gesture Use: Empirical Analysis and Computational Modeling. Lecture Notes in Computer Science, 2010, , 182-194.	1.3	9
74	Age-Related Differences in the Evaluation of a Virtual Health Agent's Appearance and Embodiment in a Health-Related Interaction: Experimental Lab Study. Journal of Medical Internet Research, 2020, 22, e13726.	4.3	9
75	Co-constructing Grounded Symbols—Feedback and Incremental Adaptation in Human–Agent Dialogue. KI - Kunstliche Intelligenz, 2013, 27, 137-143.	3.2	8
76	A Probabilistic Model of Motor Resonance for Embodied Gesture Perception. Lecture Notes in Computer Science, 2009, , 90-103.	1.3	8
77	Self-Explaining Social Robots: An Explainable Behavior Generation Architecture for Human-Robot Interaction. Frontiers in Artificial Intelligence, 2022, 5, 866920.	3.4	8
78	The Effect of Embodiment and Competence on Trust and Cooperation in Human–Agent Interaction. Lecture Notes in Computer Science, 2016, , 75-84.	1.3	7
79	Generating robot gesture using a virtual agent framework. , 2010, , .		6
80	How to manage affective state in child-robot tutoring interactions?. , 2017, , .		6
81	Individualized Gesture Production in Embodied Conversational Agents. Studies in Computational Intelligence, 2012, , 287-301.	0.9	6
82	The Communicative Activity of "Making Suggestions" as an Interactional Process. , 2017, , .		5
83	When to Elicit Feedback in Dialogue: Towards a Model Based on the Information Needs of Speakers. Lecture Notes in Computer Science, 2014, , 71-80.	1.3	5
84	Modeling a Social Brain for Interactive Agents: Integrating Mirroring and Mentalizing. Lecture Notes in Computer Science, 2015, , 77-86.	1.3	4
85	Intelligent Virtual Agents. Lecture Notes in Computer Science, 2017, , .	1.3	4
86	Automatic and strategic alignment of co-verbal gestures in dialogue. Advances in Interaction Studies, 2013, , 87-108.	2.0	4
87	ChapterÂ12. Computational gesture research. Gesture Studies, 2017, , 267-284.	0.6	4
88	Enabling robust and fluid spoken dialogue with cognitively impaired users. , 2017, , .		4
89	Towards graceful turn management in human-agent interaction for people with cognitive impairments. , 0, , .		4
90	Resonating Minds—Emergent Collaboration Through Hierarchical Active Inference. Cognitive Computation, 2022, 14, 581-601.	5.2	4

#	Article	IF	CITATIONS
91	Towards autonomous artificial agents with an active self: Modeling sense of control in situated action. Cognitive Systems Research, 2022, 72, 50-62.	2.7	4
92	Accuracy of Perceiving Precisely Gazing Virtual Agents. , 2018, , .		3
93	Effects of Referring to Robot vs. User Needs in Self-Explanations of Undesirable Robot Behavior. , 2021, , .		3
94	The Relation Between Cognitive Abilities and the Distribution of Semantic Features Across Speech and Gesture in 4â€yearâ€olds. Cognitive Science, 2021, 45, e13012.	1.7	3
95	Prototyping User Interfaces for Investigating the Role of Virtual Agents in Human-Machine Interaction. Lecture Notes in Computer Science, 2015, , 356-360.	1.3	3
96	An Interaction Game Framework for the Investigation of Human–Agent Cooperation. Lecture Notes in Computer Science, 2015, , 399-402.	1.3	3
97	How Do Iconic Gestures Convey Visuo-Spatial Information? Bringing Together Empirical, Theoretical, and Simulation Studies. Lecture Notes in Computer Science, 2012, , 139-150.	1.3	3
98	Giving interaction a hand. , 2013, , .		2
99	Deictic gestures in coaching interactions. , 2016, , .		2
100	Adaptive Behavior Generation for Child-Robot Interaction. , 2018, , .		2
101	Social Motorics – Towards an Embodied Basis of Social Human-Robot Interaction. Cognitive Systems Monographs, 2009, , 193-203.	0.1	2
102	Closing the Loop: Towards Tightly Synchronized Robot Gesture and Speech. Lecture Notes in Computer Science, 2013, , 381-391.	1.3	2
103	Spoken Language, Conversational Assistive Systems for People with Cognitive Impairments?. , 2015, , .		2
104	Explaining Before or After Acting? How the Timing of Self-Explanations Affects User Perception of Robot Behavior. Lecture Notes in Computer Science, 2021, , 142-153.	1.3	2
105	Towards an Architecture for Aligned Speech and Gesture Production. Lecture Notes in Computer Science, 2007, , 389-390.	1.3	2
106	Special corner on "cognitive robotics― Cognitive Processing, 2011, 12, 317-318.	1.4	1
107	Gesture processing as grounded motor cognition: Towards a computational model. Procedia, Social and Behavioral Sciences, 2012, 32, 213-223.	0.5	1
108	152. Gestures, postures, gaze, and movements in computer science: Embodied agents. , 2014, , 1948-1955.		1

#	Article	IF	CITATIONS
109	Pragmatic Multimodality: Effects of Nonverbal Cues of Focus and Certainty in a Virtual Human. Lecture Notes in Computer Science, 2017, , 142-155.	1.3	1
110	The Intelligent Coaching Space: A Demonstration. Lecture Notes in Computer Science, 2017, , 105-108.	1.3	1
111	Using Virtual Agents to Guide Attention in Multi-task Scenarios. Lecture Notes in Computer Science, 2013, , 295-302.	1.3	1
112	flexdiam - flexible dialogue management for problem-aware, incremental spoken interaction for all user groups (Demo paper). , 0, , .		1
113	flexdiam – Flexible Dialogue Management for Incremental Interaction with Virtual Agents (Demo) Tj ETQq1 1	0.784314 1.3	rgB ₁ T /Overlo
114	Get One or Create One: the Impact of Graded Involvement in a Selection Procedure for a Virtual Agent on Satisfaction and Suitability Ratings. Lecture Notes in Computer Science, 2017, , 109-118.	1.3	1
115	Mixed or Virtual: Does Device Type Matter in Human-ECA Interactions. , 2020, , .		1
116	Guest editorial of the special issue on intelligent virtual agents. Autonomous Agents and Multi-Agent Systems, 2010, 20, 1-2.	2.1	0
117	Editorial for special issue on intelligent virtual agents. Autonomous Agents and Multi-Agent Systems, 2013, 27, 197-199.	2.1	0
118	Interactive Human-Guided Optimization for Logistics Planning. , 2015, , 183-192.		0
119	Accurate online alignment of human motor performances. , 2017, , .		0
120	Confidence in uncertainty: Error cost and commitment in early speech hypotheses. PLoS ONE, 2018, 13, e0201516.	2.5	0
121	Adaptive Robot Second Language Tutoring for Children. , 2018, , .		0
122	Supporting Workers and Quality Management in Sterilization Departments. Advances in Intelligent Systems and Computing, 2013, , 229-236.	0.6	0
123	20. Artificial Interactivity. , 2012, , 707-734.		0