Jeffrey J Gillis-Davis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4333818/publications.pdf

Version: 2024-02-01

394421 526287 1,365 27 19 27 citations g-index h-index papers 27 27 27 1238 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Flood Volcanism in the Northern High Latitudes of Mercury Revealed by MESSENGER. Science, 2011, 333, 1853-1856.	12.6	225
2	Volcanism on Mercury: Evidence from the First MESSENGER Flyby. Science, 2008, 321, 69-72.	12.6	169
3	Volcanism on Mercury: Evidence from the first MESSENGER flyby for extrusive and explosive activity and the volcanic origin of plains. Earth and Planetary Science Letters, 2009, 285, 227-242.	4.4	135
4	Mercury's Weather-Beaten Surface: Understanding Mercury in the Context of Lunar and Asteroidal Space Weathering Studies. Space Science Reviews, 2014, 181, 121-214.	8.1	108
5	Orbital multispectral mapping of Mercury with the MESSENGER Mercury Dual Imaging System: Evidence for the origins of plains units and low-reflectance material. Icarus, 2015, 254, 287-305.	2.5	95
6	Multispectral images of Mercury from the first MESSENGER flyby: Analysis of global and regional color trends. Earth and Planetary Science Letters, 2009, 285, 272-282.	4.4	88
7	Global inventory and characterization of pyroclastic deposits on Mercury: New insights into pyroclastic activity from MESSENGER orbital data. Journal of Geophysical Research E: Planets, 2014, 119, 635-658.	3.6	79
8	Pit-floor craters on Mercury: Evidence of near-surface igneous activity. Earth and Planetary Science Letters, 2009, 285, 243-250.	4.4	58
9	Detection of solar wind-produced water in irradiated rims on silicate minerals. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1732-1735.	7.1	53
10	Untangling the formation and liberation of water in the lunar regolith. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11165-11170.	7.1	40
11	Testing the relation between UV–vis color and TiO2 content of the lunar maria. Geochimica Et Cosmochimica Acta, 2006, 70, 6079-6102.	3.9	31
12	Mercury surface composition: Integrating petrologic modeling and remote sensing data to place constraints on FeO abundance. Icarus, 2010, 209, 301-313.	2.5	31
13	Nearâ€infrared optical constants of naturally occurring olivine and synthetic pyroxene as a function of mineral composition. Journal of Geophysical Research E: Planets, 2013, 118, 708-732.	3.6	31
14	Ultraviolet spectral reflectance of carbonaceous materials. Icarus, 2018, 307, 40-82.	2.5	31
15	Incremental laser space weathering of Allende reveals non-lunar like space weathering effects. Icarus, 2017, 286, 1-14.	2.5	30
16	Olivine-bearing lithologies on the Moon: Constraints on origins and transport mechanisms from M3 spectroscopy, radiative transfer modeling, and GRAIL crustal thickness. Icarus, 2018, 300, 287-304.	2.5	27
17	Modal analyses of lunar soils by quantitative X-ray diffraction analysis. Geochimica Et Cosmochimica Acta, 2019, 266, 17-28.	3.9	27
18	The compositional and physical properties of localized lunar pyroclastic deposits. Icarus, 2017, 283, 232-253.	2.5	23

#	Article	lF	CITATIONS
19	Availability and delta-v requirements for delivering water extracted from near-Earth objects to cis-lunar space. Planetary and Space Science, 2018, 159, 28-42.	1.7	21
20	Can perchlorates be transformed to hydrogen peroxide (H ₂ O ₂) products by cosmic rays on the Martian surface?. Journal of Geophysical Research E: Planets, 2017, 122, 1880-1892.	3.6	13
21	Composition and origin of the Dewar geochemical anomaly. Journal of Geophysical Research, 2008, 113,	3.3	12
22	Untangling the Origin of Molecular Hydrogen in the Lunar Exosphere. Astrophysical Journal, 2019, 887, 27.	4.5	9
23	Absolute model ages from lunar crater morphology. Journal of Geophysical Research E: Planets, 2015, 120, 725-738.	3.6	8
24	The origin of lunar concentric craters. Icarus, 2016, 278, 62-78.	2.5	7
25	Space Weatheringâ€Induced Formation of Hydrogen Sulfide (H 2 S) and Hydrogen Disulfide (H 2 S 2) in the Murchison Meteorite. Journal of Geophysical Research E: Planets, 2019, 124, 2772-2779.	3.6	5
26	Regenerative water sources on surfaces of airless bodies. Nature Astronomy, 2020, 4, 45-52.	10.1	5
27	Volcanic Processes in the Gassendi Region of the Moon. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006034.	3.6	4