Jörg Kärger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4333376/publications.pdf

Version: 2024-02-01

468 papers 19,511 citations

72 h-index 24258 110 g-index

510 all docs

510 docs citations

510 times ranked

8379 citing authors

#	Article	IF	CITATIONS
1	Principles and Application of Self-Diffusion Measurements by Nuclear Magnetic Resonance. Advances in Magnetic and Optical Resonance, 1988, 12, 1-89.	1.7	530
2	Single-File Diffusion Observation. Physical Review Letters, 1996, 76, 2762-2765.	7.8	406
3	NMR Studies of Single-File Diffusion in Unidimensional Channel Zeolites. Science, 1996, 272, 702-704.	12.6	325
4	N.m.r. self-diffusion studies in zeolite science and technology. Zeolites, 1987, 7, 90-107.	0.5	286
5	Mass transfer in mesoporous materials: the benefit of microscopic diffusion measurement. Chemical Society Reviews, 2013, 42, 4172.	38.1	221
6	Exploration of molecular dynamics during transient sorption of fluids in mesoporous materials. Nature, 2006, 443, 965-968.	27.8	218
7	The Role of Mesopores in Intracrystalline Transport in USY Zeolite:Â PFG NMR Diffusion Study on Various Length Scales. Journal of the American Chemical Society, 2005, 127, 13055-13059.	13.7	211
8	NMR Studies on the Diffusion of Hydrocarbons on the Metal-Organic Framework Material MOF-5. Angewandte Chemie - International Edition, 2006, 45, 2123-2126.	13.8	211
9	Structural analysis of hierarchically organized zeolites. Nature Communications, 2015, 6, 8633.	12.8	206
10	Microdynamics of methane, ethane and propane in ZSM-5 type zeolites. Journal of the Chemical Society Faraday Transactions I, 1985, 81, 2541.	1.0	204
11	Transport properties of hierarchical micro–mesoporous materials. Chemical Society Reviews, 2016, 45, 3439-3467.	38.1	202
12	Interpretation and correlation of zeolitic diffusivities obtained from nuclear magnetic resonance and sorption experiments. Journal of the Chemical Society Faraday Transactions I, 1977, 73, 1363.	1.0	193
13	On the comparison between macroscopic and n.m.r. measurements of intracrystalline diffusion in zeolites. Zeolites, 1989, 9, 267-281.	0.5	191
14	NMR self-diffusion studies in heterogeneous systems. Advances in Colloid and Interface Science, 1985, 23, 129-148.	14.7	190
15	Single-file diffusion and reaction in zeolites. Journal of Catalysis, 1992, 136, 283-299.	6.2	189
16	Microimaging of transient guest profiles to monitor mass transfer in nanoporous materials. Nature Materials, 2014, 13, 333-343.	27.5	187
17	The Nature of Surface Barriers on Nanoporous Solids Explored by Microimaging of Transient Guest Distributions. Journal of the American Chemical Society, 2011, 133, 2804-2807.	13.7	166
18	Simultaneous Measurement of Self- and Transport Diffusivities in Zeolites. Physical Review Letters, 1999, 82, 4260-4263.	7.8	157

#	Article	IF	Citations
19	Molecular Simulations and NMR Measurements of Binary Diffusion in Zeolites. Journal of Physical Chemistry B, 1997, 101, 6469-6473.	2.6	154
20	Generation and Application of Ultra-High-Intensity Magnetic Field Gradient Pulses for NMR Spectroscopy. Journal of Magnetic Resonance, 2001, 151, 260-268.	2.1	154
21	Diffusion in nanoporous materials: fundamental principles, insights and challenges. New Journal of Chemistry, 2016, 40, 4027-4048.	2.8	153
22	In situ study on molecular diffusion phenomena in nanoporous catalytic solids. Chemical Society Reviews, 2010, 39, 4864.	38.1	148
23	Self-diffusion of n-paraffins in NaX zeolite. Journal of the Chemical Society Faraday Transactions I, 1980, 76, 717.	1.0	146
24	Oriented Crystallisation on Supports and Anisotropic Mass Transport of the Metal-Organic Framework Manganese Formate. European Journal of Inorganic Chemistry, 2007, 2007, 60-64.	2.0	142
25	The role of crystal diversity in understanding mass transfer in nanoporous materials. Nature Materials, 2016, 15, 401-406.	27. 5	142
26	Adsorption and diffusion of alkanes in CuBTC crystals investigated using infra-red microscopy and molecular simulations. Microporous and Mesoporous Materials, 2009, 117, 22-32.	4.4	135
27	Diffusion in zeolites. Comparison of sorption and nuclear magnetic resonance diffusivities. Journal of the Chemical Society Faraday Transactions I, 1981, 77, 1485.	1.0	131
28	High-temperature pulsed field gradient nuclear magnetic resonance self-diffusion measurements of n-alkanes in MFI-type zeolites. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 3505-3509.	1.7	130
29	Enhanced charge transport in nano-confined ionic liquids. Soft Matter, 2012, 8, 289-293.	2.7	119
30	How Hydrogen Bonds Influence the Mobility of Imidazolium-Based Ionic Liquids. A Combined Theoretical and Experimental Study of 1- <i>n</i> -Butyl-3-methylimidazolium Bromide. Journal of Physical Chemistry B, 2011, 115, 15280-15288.	2.6	118
31	Straightforward derivation of the long-time limit of the mean-square displacement in one-dimensional diffusion. Physical Review A, 1992, 45, 4173-4174.	2.5	117
32	Evidence of Anisotropic Self-Diffusion of Guest Molecules in Nanoporous Materials of MCM-41 Type. Journal of the American Chemical Society, 2000, 122, 9237-9242.	13.7	116
33	Electrical conductivity and translational diffusion in the 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. Journal of Chemical Physics, 2008, 128, 214509.	3.0	115
34	Intracrystalline self-diffusion of benzene, toluene and xylene isomers in zeolites Naî—,X. Zeolites, 1985, 5, 91-95.	0.5	114
35	Unidirectional and Single-File Diffusion of Molecules in One-Dimensional Channel Systems. A Quasi-Elastic Neutron Scattering Study. Journal of Physical Chemistry B, 1997, 101, 5834-5841.	2.6	112
36	Mass Transfer in a Nanoscale Material Enhanced by an Opposing Flux. Physical Review Letters, 2010, 104, 085902.	7.8	111

#	Article	IF	Citations
37	The propagator representation of molecular transport in microporous crystallites. Journal of Magnetic Resonance, 1983, 51, 1-7.	0.5	110
38	Charge transport and diffusion of ionic liquids in nanoporous silica membranes. Physical Chemistry Chemical Physics, 2010, 12, 13798.	2.8	109
39	The Potentials of Pulsed Field Gradient NMR for Investigation of Porous Media. Adsorption, 1999, 5, 117-133.	3.0	108
40	PFG NMR Study of Diffusion in MFI-Type Zeolites:  Evidence of the Existence of Intracrystalline Transport Barriers. Journal of Physical Chemistry B, 2001, 105, 5922-5927.	2.6	108
41	Unprecedented Insight into Diffusion by Monitoring the Concentration of Guest Molecules in Nanoporous Host Materials. Angewandte Chemie - International Edition, 2006, 45, 7846-7849.	13.8	107
42	Transport Phenomena in Nanoporous Materials. ChemPhysChem, 2015, 16, 24-51.	2.1	105
43	Diffusion in ionic liquids: the interplay between molecular structure and dynamics. Soft Matter, 2011, 7, 1678.	2.7	104
44	Investigation of internal silanol groups as structural defects in ZSM-5-type zeolites. Journal of the Chemical Society Faraday Transactions I, 1987, 83, 3459.	1.0	101
45	Theoretical prediction of uptake behaviour in adsorption kinetics of binary gas mixtures using irreversible thermodynamics. Chemical Engineering Science, 1975, 30, 893-896.	3.8	99
46	Measurement of Diffusion in Zeolitesâ€"A Never Ending Challenge?. Adsorption, 2003, 9, 29-35.	3.0	99
47	Interference Microscopy Investigation of the Influence of Regular Intergrowth Effects in MFI-Type Zeolites on Molecular Uptake. Journal of Physical Chemistry B, 2001, 105, 10217-10222.	2.6	97
48	Molecular self-diffusion of methane in zeolite ZSM-5 by quasi-elastic neutron scattering and nuclear magnetic resonance pulsed field gradient technique. Journal of the Chemical Society Faraday Transactions I, 1989, 85, 4201.	1.0	95
49	Diffusion of a Mixture of Methane and Xenon in Silicalite:Â A Molecular Dynamics Study and Pulsed Field Gradient Nuclear Magnetic Resonance Experiments. Journal of Physical Chemistry B, 1998, 102, 6375-6381.	2.6	93
50	A study of fast tracer desorption in molecular sieve crystals. AICHE Journal, 1982, 28, 417-423.	3.6	90
51	Transport in Nanoporous Materials Including MOFs: The Applicability of Fick's Laws. Angewandte Chemie - International Edition, 2015, 54, 14580-14583.	13.8	90
52	Influence of Defects on the External Crystal Surface on Molecular Uptake into MFI-Type Zeolites. Chemistry of Materials, 2004, 16, 3552-3558.	6.7	89
53	129Xe and 13C PFG n.m.r. study of the intracrystalline self-diffusion of Xe, CO2, and CO. Zeolites, 1993, 13, 50-55.	0.5	88
54	NMR and IR studies of zeolite H-ZSM-5 modified with orthophosphoric acid. Journal of Catalysis, 1990, 124, 367-375.	6.2	87

#	Article	IF	CITATIONS
55	Calculating exact propagators in single-file systems via the reflection principle. Physical Review E, 1998, 57, 4382-4397.	2.1	87
56	NMR diffusion and relaxation studies during cement hydration—A non-destructive approach for clarification of the mechanism of internal post curing of cementitious materials. Cement and Concrete Research, 2006, 36, 817-826.	11.0	86
57	Measurement of the intracrystalline self-diffusion of xenon in zeolites by the NMR pulsed field gradient technique. Journal of the American Chemical Society, 1990, 112, 2175-2178.	13.7	85
58	Intracrystalline Transport Resistances in Nanoporous Zeolite X. ChemPhysChem, 2009, 10, 2429-2433.	2.1	85
59	Sorption kinetics of n-hexane on MgA zeolites of different crystal sizes. Study of the rate-limiting transport mechanism. Journal of the Chemical Society Faraday Transactions I, 1980, 76, 597.	1.0	84
60	PFG n.m.r. study of diffusion anisotropy in oriented ZSM-5 type zeolite crystallites. Zeolites, 1991, 11, 816-821.	0.5	84
61	Comparative QENS and PFG NMR diffusion studies of water in zeolite NaCaA. Microporous and Mesoporous Materials, 2002, 55, 147-158.	4.4	83
62	Concentration-dependent self-diffusion of liquids in nanopores: A nuclear magnetic resonance study. Journal of Chemical Physics, 2004, 120, 11804-11814.	3.0	83
63	Correlating phase behaviour and diffusion in mesopores: perspectives revealed by pulsed field gradient NMR. Physical Chemistry Chemical Physics, 2009, 11, 2833.	2.8	83
64	Quantitation of diffusion in zeolite catalysts. Microporous and Mesoporous Materials, 2005, 85, 195-206.	4.4	82
65	Assessing Surface Permeabilities from Transient Guest Profiles in Nanoporous Host Materials. Angewandte Chemie - International Edition, 2009, 48, 3525-3528.	13.8	82
66	Evidence for the existence of intracrystalline transport barriers in MFI-type zeolites: a model consistency check using MC simulations. Microporous and Mesoporous Materials, 2002, 55, 139-145.	4.4	81
67	Regular Intergrowth in the AFI-Type Crystals:  Influence on the Intracrystalline Adsorbate Distribution As Observed by Interference and FTIR-Microscopy. Journal of the American Chemical Society, 2002, 124, 8690-8692.	13.7	81
68	Understanding capillary condensation and hysteresis in porous silicon: Network effects within independent pores. Physical Review E, 2008, 78, 060601.	2.1	80
69	Correlating Surface Permeability with Intracrystalline Diffusivity in Nanoporous Solids. Physical Review Letters, 2011, 106, 074501.	7.8	80
70	Interference microscopy as a technique for directly measuring intracrystalline transport diffusion in zeolites. Microporous and Mesoporous Materials, 1999, 32, 101-110.	4.4	77
71	Mixture diffusion in zeolites studied by MAS PFG NMR and molecular simulation. Microporous and Mesoporous Materials, 2007, 105, 124-131.	4.4	76
72	Assessing Guest Diffusivities in Porous Hosts from Transient Concentration Profiles. Physical Review Letters, 2009, 102, 065901.	7.8	76

#	Article	IF	CITATIONS
73	PFG NMR and QENS diffusion study of n-alkane homologues in MFI-type zeolites. Microporous and Mesoporous Materials, 2006, 90, 299-306.	4.4	7 5
74	Diffusion in Fluid Catalytic Cracking Catalysts on Various Displacement Scales and Its Role in Catalytic Performance. Chemistry of Materials, 2005, 17, 2466-2474.	6.7	74
75	Time correlation during anomalous diffusion in fractal systems and signal attenuation in NMR field-gradient spectroscopy. Physical Review A, 1988, 37, 4514-4517.	2.5	73
76	High-Resolution DOSY NMR with Spins in Different Chemical Surroundings: Influence of Particle Exchange. Journal of Magnetic Resonance, 2002, 157, 124-131.	2.1	73
77	Der Einfluğ der Zweibereichdiffusion auf die SpinechodĤpfung unter Berýcksichtigung der Relaxation bei Messungen mit der Methode der gepulsten Feldgradienten. Annalen Der Physik, 1971, 482, 107-109.	2.4	71
78	Intracrystalline Diffusivities and Surface Permeabilities Deduced from Transient Concentration Profiles:Â Methanol in MOF Manganese Formate. Journal of the American Chemical Society, 2007, 129, 8041-8047.	13.7	71
79	Intracrystalline self-diffusion of H2O and CH4 in ZSM-5 zeolites. Zeolites, 1986, 6, 213-216.	0.5	68
80	Mass Transfer in Micro- and Mesoporous Materials. Chemical Engineering and Technology, 2002, 25, 769.	1.5	67
81	Understanding adsorption and desorption processes in mesoporous materials with independent disordered channels. Physical Review E, 2009, 80, 031607.	2.1	67
82	Diffusion of methanol in NaX crystals: Comparison of i.r., ZLC, and PFG-n.m.r. measurements. Zeolites, 1994, 14, 242-249.	0.5	65
83	A phenomenological study of surface barriers in zeolites. Zeolites, 1986, 6, 146-150.	0.5	63
84	Synthesis and characterization of the layered sodium silicate ilerite. Microporous and Mesoporous Materials, 2000, 40, 43-52.	4.4	63
85	Uphill diffusion and overshooting in the adsorption of binary mixtures in nanoporous solids. Nature Communications, 2015, 6, 7697.	12.8	63
86	Dynamics of water diffusion in mesoporous zeolites. Microporous and Mesoporous Materials, 2011, 142, 236-244.	4.4	62
87	Microimaging of Transient Concentration Profiles of Reactant and Product Molecules during Catalytic Conversion in Nanoporous Materials. Angewandte Chemie - International Edition, 2015, 54, 5060-5064.	13.8	62
88	Tracer Exchange and Catalytic Reaction in Single-File Systems. Journal of Catalysis, 1995, 157, 656-664.	6.2	61
89	Exploring the hierarchy of transport phenomena in hierarchical pore systems by NMR diffusion measurement. Microporous and Mesoporous Materials, 2012, 164, 273-279.	4.4	61
90	N.m.r. evidence of the existence of surface barriers on zeolite crystallites. Zeolites, 1982, 2, 275-278.	0.5	59

#	Article	IF	Citations
91	Internal Concentration Gradients of Guest Molecules in Nanoporous Host Materials:Â Measurement and Microscopic Analysis. Journal of Physical Chemistry B, 2006, 110, 23821-23828.	2.6	59
92	Exploring Crystal Morphology of Nanoporous Hosts from Timeâ€Dependent Guest Profiles. Angewandte Chemie - International Edition, 2008, 47, 3954-3957.	13.8	59
93	Charge transport and glassy dynamics in imidazole-based liquids. Journal of Chemical Physics, 2008, 129, 234511.	3.0	59
94	Self-Diffusion of Chain Molecules in the Metal–Organic Framework IRMOF-1: Simulation and Experiment. Journal of Physical Chemistry Letters, 2012, 3, 930-933.	4.6	59
95	Monitoring the evolution of intracrystalline concentration. Europhysics Letters, 1999, 46, 204-210.	2.0	58
96	An MD simulation on the applicability of the diffusion equation for molecules adsorbed in a zeolite. Chemical Physics Letters, 1992, 198, 283-287.	2.6	57
97	Long-time limit of the self-correlation-function of one-dimensional diffusion. Physical Review E, 1993, 47, 1427-1428.	2.1	57
98	On the Use of Pulsed Field Gradients in a High-Field NMR Spectrometer to Study Restricted Diffusion in Zeolites. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1995, 50, 186-190.	1.5	57
99	A new view of diffusion in nanoporous materials. Chemie-Ingenieur-Technik, 2010, 82, 779-804.	0.8	57
100	Sorption Kinetics and Intracrystalline Diffusion of Methanol in Ferrierite: An Example of Disguised Kinetics. Adsorption, 2005, 11, 235-244.	3.0	56
101	Probing Memory Effects in Confined Fluids via Diffusion Measurements. Langmuir, 2008, 24, 6429-6432.	3.5	56
102	Ensemble Measurement of Diffusion: Novel Beauty and Evidence. ChemPhysChem, 2009, 10, 2623-2627.	2.1	56
103	Observing Diffusion Anisotropy in Zeolites by Pulsed Field Gradient NMR. Zeitschrift Fur Physikalische Chemie, 1991, 173, 225-234.	2.8	55
104	Diffusivities of n-Alkanes in 5A Zeolite Measured by Neutron Spin Echo, Pulsed-Field Gradient NMR, and Zero Length Column Techniques. Adsorption, 2005, 11, 403-407.	3.0	55
105	Molecular transport through assemblages of microporous particles. Journal of Colloid and Interface Science, 1981, 84, 240-249.	9.4	54
106	Molecular mobility of methane adsorbed on ZSM-5 containing co-adsorbed benzene, and the location of the benzene molecules. Journal of the Chemical Society Faraday Transactions I, 1987, 83, 2301.	1.0	54
107	Exact analytical description of tracer exchange and particle conversion in single-file systems. Physical Review E, 1997, 55, 5697-5712.	2.1	54
108	Effect of Surface Modification on Uptake Rates of Isobutane in MFI Crystals: An Infrared Microscopy Study. Chemistry of Materials, 2007, 19, 6012-6019.	6.7	54

#	Article	IF	Citations
109	Self-diffusion measurements of n-alkanes in zeolite NaCaA by pulsed-field gradient nuclear magnetic resonance. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 515-519.	1.7	53
110	Fractal Geometry of Surface Areas of Sand Grains Probed by Pulsed Field Gradient NMR. Physical Review Letters, 2002, 88, 105505.	7.8	53
111	In situ measurement of molecular diffusion during catalytic reaction by pulsed-field gradient NMR spectroscopy. Journal of Catalysis, 1992, 137, 243-251.	6.2	52
112	On the heat effect in measurements of sorption kinetics by the frequency response method. Chemical Engineering Science, 1993, 48, 715-722.	3.8	52
113	Background gradient suppression in stimulated echo NMR diffusion studies using magic pulsed field gradient ratios. Journal of Magnetic Resonance, 2004, 166, 164-173.	2.1	52
114	Pulsed field gradient NMR and nuclear magnetic relaxation studies of water mobility in hydrated collagen II. Magnetic Resonance in Medicine, 1996, 36, 241-248.	3.0	51
115	Freezing and melting transitions of liquids in mesopores with ink-bottle geometry. New Journal of Physics, 2007, 9, 272-272.	2.9	51
116	Some remarks on the straight and cross-coefficients in irreversible thermodynamics of surface flow and on the relation between diffusion and selfdiffusion. Surface Science, 1973, 36, 797-801.	1.9	49
117	Application of zeugmatography to study kinetics of physical adsorption. Chemical Engineering Science, 1978, 33, 1019-1023.	3.8	49
118	Selective two-component self-diffusion measurement of adsorbed molecules by pulsed field gradient Fourier transform NMR. Journal of the American Chemical Society, 1991, 113, 4812-4815.	13.7	49
119	Inhomogeneous Distribution of Water Adsorbed under Low Pressure in CrAPO-5 and SAPO-5:Â An Interference Microscopy Study. Journal of Physical Chemistry B, 2003, 107, 4685-4687.	2.6	47
120	Self-diffusion measurements of water adsorbed in NaY zeolites by means of NMR pulsed field gradient techniques. Journal of Colloid and Interface Science, 1973, 44, 187-188.	9.4	46
121	Pulsed field gradient nuclear magnetic resonance study of long–range diffusion in beds of NaX zeolite: Evidence for different apparent tortuosity factors in the Knudsen and bulk regimes. Journal of Chemical Physics, 2002, 117, 1935-1938.	3.0	46
122	Application of Interference Microscopy and IR Microscopy for Characterizing and Investigating Mass Transport in Nanoporous Materials. Chemical Engineering and Technology, 2007, 30, 995-1002.	1.5	46
123	Formation of surface barriers on silicalite-1 crystal fragments by residual water vapour as probed with isobutane by interference microscopy. Microporous and Mesoporous Materials, 2008, 110, 72-76.	4.4	46
124	The predictive power of classical transition state theory revealed in diffusion studies with MOF ZIF-8. Microporous and Mesoporous Materials, 2016, 225, 128-132.	4.4	46
125	Fourier-transform pulsed-field-gradient1H nuclear magnetic resonance investigation of the diffusion of light n-alkanes in zeolite ZSM-5. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 1935-1943.	1.7	45
126	Direct assessment of molecular transport in mordenite: dominance of surface resistances. Chemical Communications, 2009, , 6424.	4.1	45

#	Article	IF	Citations
127	Monitoring Molecular Mass Transfer in Cation-Free Nanoporous Host Crystals of Type AlPO-LTA. Journal of the American Chemical Society, 2012, 134, 7725-7732.	13.7	45
128	Self-diffusion of paraffins and olefins in zeolite Naî—,X under the influence of residual water molecules. Zeolites, 1984, 4, 188-190.	0.5	44
129	Comparison of nuclear magnetic resonance tracer exchange and molecular uptake of benzene on pentasils. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 881-885.	1.7	44
130	Nuclear magnetic resonance measurement of mass transfer in molecular sieve crystallites. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 1989-1996.	1.7	44
131	Boundary effects of molecular diffusion in nanoporous materials: A pulsed field gradient nuclear magnetic resonance study. Journal of Chemical Physics, 2004, 120, 367-373.	3.0	44
132	Inflection in the loading dependence of the Maxwell–Stefan diffusivity of iso-butane in MFI zeolite. Chemical Physics Letters, 2008, 459, 141-145.	2.6	44
133	In-depth study of surface resistances in nanoporous materials by microscopic diffusion measurement. Microporous and Mesoporous Materials, 2014, 189, 126-135.	4.4	44
134	On the diffusion mechanism of methane in a cation-free zeolite of type ZK4. Chemical Physics, 1993, 174, 229-236.	1.9	43
135	Liquid-phase self-diffusion in hydrating cement pastes â€" results from NMR studies and perspectives for further research. Cement and Concrete Research, 2007, 37, 398-413.	11.0	43
136	Exploring the nature of surface barriers on MOF Zn(tbip) by applying IR microscopy in high temporal and spatial resolution. Microporous and Mesoporous Materials, 2010, 129, 340-344.	4.4	43
137	Singleâ€Particle and Ensemble Diffusivities—Test of Ergodicity. Angewandte Chemie - International Edition, 2012, 51, 1152-1155.	13.8	43
138	Scale-dependent diffusion anisotropy in nanoporous silicon. Scientific Reports, 2017, 7, 40207.	3.3	43
139	In SituPFG NMR Study of Intracrystalline Diffusion during Ethene Conversion in ZSM-5. Journal of Catalysis, 1996, 163, 130-137.	6.2	42
140	In Situ13C Fourier Transform Pulsed Field Gradient NMR Study of Intracrystalline Diffusion during Isopropanol Conversion in X-Type Zeolites. Journal of Catalysis, 1997, 167, 248-255.	6.2	42
141	Molecular dynamics under confinement to one dimension: options of measurement and accessible information. New Journal of Physics, 2005, 7, 15-15.	2.9	42
142	Exchange Dynamics at the Interface of Nanoporous Materials with their Surroundings. Physical Review Letters, 2007, 99, 228301.	7.8	42
143	Nanoporous Glass as a Model System for a Consistency Check of the Different Techniques of Diffusion Measurement. ChemPhysChem, 2011, 12, 1130-1134.	2.1	41
144	Intracrystalline Diffusion in Mesoporous Zeolites. ChemPhysChem, 2012, 13, 1495-1499.	2.1	41

#	Article	IF	Citations
145	Uncommon Synergy between Adsorption and Diffusion of Hexane Isomer Mixtures in MFI Zeolite Induced by Configurational Entropy Effects. Journal of Physical Chemistry C, 2014, 118, 2660-2665.	3.1	41
146	Nuclear magnetic resonance self-diffusion studies of methanol–water mixtures in pentasil-type zeolites. Journal of the Chemical Society Faraday Transactions I, 1987, 83, 1843.	1.0	40
147	NMR study of mass transfer in granulated molecular sieves. AICHE Journal, 1988, 34, 1185-1189.	3.6	40
148	Molecular Mobility Measurement of Hydrocarbons in Zeolites by NMR Techniques. Advances in Catalysis, 1993, 39, 351-414.	0.2	40
149	"Two-step―model of molecular diffusion in silicalite. Journal of Chemical Physics, 1999, 110, 1163-1172.	3.0	40
150	Surface Self-Diffusion of Organic Molecules Adsorbed in Porous Silicon. Journal of Physical Chemistry B, 2005, 109, 5746-5752.	2.6	40
151	Pulsed field gradient NMR diffusion measurement in nanoporous materials. Adsorption, 2021, 27, 453-484.	3.0	40
152	Comparison of predicted and nuclear magnetic resonance zeolitic diffusion coefficients. Journal of the Chemical Society Faraday Transactions I, 1980, 76, 1562.	1.0	39
153	Length and occupancy dependence of the tracer exchange in single-file systems. Journal of Chemical Physics, 1999, 110, 3970-3980.	3.0	39
154	Reactivity Enhancement by Molecular Traffic Control. Journal of Catalysis, 2000, 194, 1-3.	6.2	39
155	Determination of Genuine Diffusivities in Heterogeneous Media Using Stimulated Echo Pulsed Field Gradient NMR. Journal of Magnetic Resonance, 2001, 149, 228-233.	2.1	39
156	On the diffusion of water in silicalite-1: MD simulations using ab initio fitted potential and PFG NMR measurements. Applied Catalysis A: General, 2002, 232, 59-66.	4.3	39
157	Investigating the reasons for the significant influence of lattice flexibility on self-diffusivity of ethane in Zn(tbip). Microporous and Mesoporous Materials, 2010, 130, 92-96.	4.4	39
158	Direct Assessment of Transport Properties of Supercritical Fluids Confined to Nanopores. Journal of the American Chemical Society, 2007, 129, 10344-10345.	13.7	38
159	The Impact of Mesopores on Mass Transfer in Nanoporous Materials: Evidence of Diffusion Measurement by NMR. Chemie-Ingenieur-Technik, 2011, 83, 166-176.	0.8	38
160	Intracrystalline mass transfer in zeolites monitored by microscopic and macroscopic techniques. Journal of the American Chemical Society, 1990, 112, 7-9.	13.7	37
161	P.f.g. n.m.r. study of the influence of the exchangeable cations on the self-diffusion of hydrocarbons in zeolites. Zeolites, 1994, 14, 320-325.	0.5	37
162	NMR relaxometry during internal curing of Portland cements by lightweight aggregates. Materials and Structures/Materiaux Et Constructions, 2008, 41, 1647-1655.	3.1	37

#	Article	IF	Citations
163	NMR Study of Adsorbate Self-Diffusion in Porous Glasses. Journal of the American Ceramic Society, 1983, 66, 69-72.	3.8	36
164	On the translational mobility of benzene adsorbed on NaX-type zeolites. Journal of the Chemical Society Chemical Communications, 1990, , 341-342.	2.0	36
165	Anomalous Segment Diffusion in Polymer Melts. Macromolecules, 1994, 27, 4274-4277.	4.8	36
166	PFG NMR Self-Diffusion Measurements with Large Field Gradients. Journal of Magnetic Resonance Series A, 1995, 114, 101-104.	1.6	36
167	Intracrystalline monitoring of molecular uptake into the one-dimensional channels of the AFI-type crystals using interference microscopy. Journal of Chemical Physics, 2003, 118, 6129-6132.	3.0	36
168	Tracing pore connectivity and architecture in nanostructured silica SBA-15. Microporous and Mesoporous Materials, 2008, 110, 37-40.	4.4	36
169	Assessing Molecular Transport Properties of Nanoporous Materials by Interference Microscopy: Remarkable Effects of Composition and Microstructure on Diffusion in the Silicoaluminophosphate Zeotype STA-7. Journal of the American Chemical Society, 2010, 132, 11665-11670.	13.7	36
170	On the correlation between diffusion and self-diffusion processes of adsorbed molecules in a simple microkinetic model. Surface Science, 1976, 57, 749-754.	1.9	35
171	Diffusion, cracking and coking on HZSM-5 of various morphologies. Applied Catalysis, 1988, 42, 15-27.	0.8	35
172	Basic Principles and Recent Results of H Magic-Angle-Spinning and Pulsed Field Gradient Nuclear Magnetic Resonance Studies on Zeolites11'H Mas Nmr Studies on Dehydrated Zeolites. Studies in Surface Science and Catalysis, 1991, 65, 89-115.	1.5	35
173	Self-diffusion of polymers in cartilage as studied by pulsed field gradient NMR. Biophysical Chemistry, 2002, 97, 251-260.	2.8	35
174	Temperature effects on phase equilibrium and diffusion in mesopores. Physical Review E, 2007, 75, 041202.	2.1	35
175	Waterâ€Mediated Proton Conduction in a Robust Triazolyl Phosphonate Metal–Organic Framework with Hydrophilic Nanochannels. Chemistry - A European Journal, 2014, 20, 8862-8866.	3.3	35
176	Revealing the Transient Concentration of CO ₂ in a Mixedâ€Matrix Membrane by IR Microimaging and Molecular Modeling. Angewandte Chemie - International Edition, 2018, 57, 5156-5160.	13.8	35
177	Diffusion anisotropy in natural chabazite. Microporous and Mesoporous Materials, 1998, 22, 289-295.	4.4	34
178	The options of interference microscopy to explore the significance of intracrystalline diffusion and surface permeation for overall mass transfer on nanoporous materials. Adsorption, 2007, 13, 215-223.	3.0	34
179	Assessing one-dimensional diffusion in nanoporous materials from transient concentration profiles. New Journal of Physics, 2008, 10, 023035.	2.9	34
180	Influence of exchangeable cations on the diffusion of neutral diffusants in zeolites of type LTA. An MD study. Chemical Physics Letters, 1995, 242, 361-366.	2.6	33

#	Article	IF	Citations
181	Different time regimes of tracer exchange in single-file systems. Physical Review E, 2002, 66, 052601.	2.1	33
182	New options for measuring molecular diffusion in zeolites by MAS PFG NMR. Chemical Physics Letters, 2005, 407, 53-57.	2.6	33
183	Pitfalls in PFG NMR Self-Diffusion Measurements with Powder Samples. Journal of Magnetic Resonance Series A, 1995, 113, 278-280.	1.6	32
184	Lateral diffusion of a transmembrane peptide in lipid bilayers studied by pulsed field gradient NMR in combination with magic angle sample spinning. Chemical Physics Letters, 2003, 379, 555-561.	2.6	32
185	Molecular Dynamics Study of Diffusion and Surface Permeation of Benzene in Silicalite. Journal of Physical Chemistry C, 2018, 122, 7217-7225.	3.1	32
186	Internal Transport Resistances and their Influence on Diffusion in Zeolites as Traced by Microscopic Measuring Techniques. Adsorption, 2005, 11, 455-460.	3.0	31
187	Sticking Probability on Zeolites. Journal of Physical Chemistry B, 2005, 109, 13523-13528.	2.6	31
188	Möglichkeiten der Beobachtung molekularer Transportvorgäge in Zeolithen. Zeitschrift Fýr Chemie, 1981, 21, 175-182.	0.0	31
189	Ethane diffusion in mixed linker zeolitic imidazolate framework-7-8 by pulsed field gradient NMR in combination with single crystal IR microscopy. Physical Chemistry Chemical Physics, 2018, 20, 23967-23975.	2.8	31
190	Application of absolute rate theory to intracrystalline diffusion in zeolites. Journal of the Chemical Society Faraday Transactions I, 1980, 76, 1569.	1.0	30
191	Intracrystalline self-diffusion of water and short-chain-length paraffins in A-type zeolites. Zeolites, 1989, 9, 247-249.	0.5	30
192	Synthesis of large crystals of all-silica zeolite ferrierite. Microporous and Mesoporous Materials, 2007, 104, 179-184.	4.4	30
193	Freezing of fluids in disordered mesopores. Journal of Chemical Physics, 2008, 129, 154702.	3.0	30
194	Guest Diffusion in Interpenetrating Networks of Micro- and Mesopores. Journal of the American Chemical Society, 2011, 133, 2437-2443.	13.7	30
195	Diffusion Study by IR Micro-Imaging of Molecular Uptake and Release on Mesoporous Zeolites of Structure Type CHA and LTA. Materials, 2013, 6, 2662-2688.	2.9	30
196	An MD Study on the Correlation between Transport Diffusion and Self-Diffusion in Zeolites. Zeitschrift Fur Physikalische Chemie, 1995, 189, 211-220.	2.8	29
197	Understanding Adsorption and Transport of Light Gases in Hierarchical Materials Using Molecular Simulation and Effective Medium Theory. Journal of Physical Chemistry C, 2014, 118, 14355-14370.	3.1	29
198	Mesoscopic simulations of the diffusivity of ethane in beds of NaX zeolite crystals: Comparison with pulsed field gradient NMR measurements. Journal of Chemical Physics, 2007, 126, 094702.	3.0	28

#	Article	IF	CITATIONS
199	Benefit of Microscopic Diffusion Measurement for the Characterization of Nanoporous Materials. Chemical Engineering and Technology, 2009, 32, 1494-1511.	1.5	28
200	Probing Mass Transfer in Mesoporous Faujasiteâ€Type Zeolite Nanosheet Assemblies. ChemPhysChem, 2014, 15, 1681-1686.	2.1	28
201	Mesoporeâ€Promoted Transport in Microporous Materials. Chemie-Ingenieur-Technik, 2015, 87, 1794-1809.	0.8	28
202	The Random Walk of Understanding Diffusion. Industrial & Engineering Chemistry Research, 2002, 41, 3335-3340.	3.7	27
203	Selective multi-component diffusion measurement in zeolites by pulsed field gradient NMR. Microporous and Mesoporous Materials, 2006, 90, 271-277.	4.4	27
204	Diffusion studies in confined nematic liquid crystals by MAS PFG NMR. Journal of Magnetic Resonance, 2009, 196, 110-114.	2.1	27
205	Transport enhancement in binderless zeolite X- and A-type molecular sieves revealed by PFG NMR diffusometry. Microporous and Mesoporous Materials, 2014, 188, 126-132.	4.4	27
206	Large Ferrierite Crystals as Models for Catalyst Deactivation during Skeletal Isomerisation of Oleic Acid: Evidence for Pore Mouth Catalysis. Chemistry - A European Journal, 2016, 22, 199-210.	3.3	27
207	Diffusion in Nanoporous Materials: Novel Insights by Combining MAS and PFG NMR. Processes, 2018, 6, 147.	2.8	27
208	NMR study of translational mobility of molecules adsorbed on active carbons. Carbon, 1988, 26, 515-520.	10.3	26
209	Diffusion of ethane in silicalite-1 by frequency response, sorption uptake and nuclear magnetic resonance techniques. Journal of the Chemical Society Faraday Transactions I, 1989, 85, 1501.	1.0	26
210	On the interdependence of the principal values of the diffusion tensor in zeolites with channel networks. Zeolites, 1992, 12, 872-873.	0.5	26
211	Space- and Time-Resolved PFG NMR Self-Diffusion Measurements in Zeolites. Journal of Magnetic Resonance Series A, 1993, 102, 327-331.	1.6	26
212	Diffusion of ammonia in silicalite studied by QENS and PFG NMR. Microporous and Mesoporous Materials, 1998, 26, 67-75.	4.4	26
213	Nuclear magnetic resonance study of diffusion and relaxation in hydrating white cement pastes of different water content. Journal of Applied Physics, 2001, 89, 8061-8065.	2.5	26
214	Diffusion Measurements by NMR Techniques. , 2008, , 85-133.		26
215	Effects of Self-Assembly on Diffusion Mechanisms of Triblock Copolymers in Aqueous Solution. Physical Review Letters, 2009, 102, 037801.	7.8	26
216	lon and water mobility in hydrated Li-LSX zeolite studied by 1H, 6Li and 7Li NMR spectroscopy and diffusometry. Microporous and Mesoporous Materials, 2013, 172, 174-181.	4.4	26

#	Article	IF	CITATIONS
217	Tracing Water and Cation Diffusion in Hydrated Zeolites of Type Li-LSX by Pulsed Field Gradient NMR. Journal of Physical Chemistry C, 2013, 117, 24866-24872.	3.1	26
218	Tracing indications of anomalous diffusion in adsorbent-adsorbate systems by PFG NMR spectroscopy. Journal of the American Chemical Society, 1991, 113, 7571-7574.	13.7	25
219	NMR diffusion studies in heterogeneous systems. TrAC - Trends in Analytical Chemistry, 1994, 13, 145-157.	11.4	25
220	129Xe NMR Study of the Bed Resistance to Molecular Transport in Assemblages of Zeolite Crystallites. The Journal of Physical Chemistry, 1996, 100, 7200-7203.	2.9	25
221	An MD study on the diffusion of methane in a cation-free LTA zeolite. Illustrations and new results. Chemical Physics Letters, 1997, 265, 253-258.	2.6	25
222	Diffusion of n-hexane in 5A zeolite studied by the neutron spin-echo and pulsed-field gradient NMR techniques. Microporous and Mesoporous Materials, 2003, 59, 113-121.	4.4	25
223	Surface barriers on nanoporous particles: A new method of their quantitation by PFG NMR. Microporous and Mesoporous Materials, 2007, 104, 89-96.	4.4	25
224	Investigating adsorption- and diffusion selectivity of CO2 and CH4 from air on zeolitic imidazolate Framework-78 using molecular simulations. Microporous and Mesoporous Materials, 2019, 274, 266-276.	4.4	25
225	Surface barriers and symmetry of adsorption and desorption processes. Adsorption, 2021, 27, 777-785.	3.0	25
226	On the use of NMR pulsed field-gradient spectroscopy for the study of anomalous diffusion in fractal networks. Chemical Physics Letters, 1987, 141, 411-413.	2.6	24
227	Measurement of intracrystalline diffusion of nitrogen in zeolites NaX and NaCaA using pulsed field gradient n.m.r Zeolites, 1997, 18, 71-74.	0.5	24
228	Concentration-dependent self-diffusion of adsorbates in mesoporous materials. Magnetic Resonance Imaging, 2005, 23, 209-214.	1.8	24
229	Lambert diffusion in porous media in the Knudsen regime: Equivalence of self-diffusion and transport diffusion. Physical Review E, 2005, 72, 030101.	2.1	24
230	13C Pulsed-Field-Gradient NMR Diffusion Studies of Guest Molecules in Zeolites. Journal of Magnetic Resonance Series A, 1993, 102, 270-273.	1.6	23
231	Analysis of thermal effects in infrared and interference microscopy: n-Butane-5A and methanol–ferrierite systems. Microporous and Mesoporous Materials, 2007, 104, 18-25.	4.4	23
232	Deposition of vanadium silicalite-1 nanoparticles on SBA-15 materials. Structural and transport characteristics of SBA-VS-15. Microporous and Mesoporous Materials, 2007, 99, 14-22.	4.4	23
233	How to compare diffusion processes assessed by single-particle tracking and pulsed field gradient nuclear magnetic resonance. Journal of Chemical Physics, 2011, 135, 144118.	3.0	23
234	Alkane/alkene mixture diffusion in silicalite-1 studied by MAS PFG NMR. Microporous and Mesoporous Materials, 2018, 257, 128-134.	4.4	23

#	Article	IF	CITATIONS
235	Untersuchung der Adsorptâ€Selbstdiffusion auf Zeolithen mit Hilfe der	0.0	23
236	Intercrystalline molecular transport in zeolites studied by uptake experiments and by nuclear magnetic resonance pulsed field gradient techniques. Journal of the Chemical Society Faraday Transactions I, 1978, 74, 1210.	1.0	22
237	Self-diffusion behaviour of n-heptane/benzene mixtures in the intercrystalline space of packings of NaX zeolite crystals as observed by the NMR pulsed field gradient technique. Colloids and Surfaces, 1984, 11, 353-364.	0.9	22
238	NMR study of intrinsic diffusion and reaction in CsNaX type zeolites. Applied Catalysis A: General, 1995, 130, 227-241.	4.3	22
239	Molecular dynamics under the confinement by the host lattice in zeolitic adsorbate–adsorbent systems. Chemical Engineering Journal, 1999, 74, 15-24.	12.7	22
240	Anisotropic Self-Diffusion in a Hexagonally Ordered Asymmetric PEPâ^'PDMS Diblock Copolymer Studied by Pulsed Field Gradient NMR. Macromolecules, 1999, 32, 5872-5877.	4.8	22
241	The influence of the desorption barrier on the transport of molecules through the external surface of nanoporous crystals. Chemical Physics Letters, 2006, 430, 60-66.	2.6	22
242	Influence of heat generated on adsorption in bidisperse adsorbents. Journal of Chemical Technology and Biotechnology, 1979, 29, 339-345.	0.2	22
243	A diffusion study of small hydrocarbons in DDR zeolites by micro-imaging. Microporous and Mesoporous Materials, 2013, 180, 219-228.	4.4	22
244	NMR Study of the Host Structure and Guest Dynamics Investigated with Alkane/Alkene Mixtures in Metal Organic Frameworks ZIF-8. Journal of Physical Chemistry C, 2019, 123, 1904-1912.	3.1	22
245	NMR self-diffusion measurements in n-heptaneâ€"benzene mixtures adsorbed on NaX zeolites. Journal of Colloid and Interface Science, 1978, 65, 181-185.	9.4	21
246	19F NMR diffusion studies of molecules adsorbed on zeolites. Journal of Fluorine Chemistry, 1988, 39, 349-356.	1.7	21
247	Molecular self-diffusion in active carbons. Pure and Applied Chemistry, 1989, 61, 1875-1880.	1.9	21
248	Transient entanglement behaviour in a poly(propylene glycole) melt: A field gradient NMR self-diffusion study. Colloid and Polymer Science, 1997, 275, 187-191.	2.1	21
249	Pulsed High-Field Gradient in Vivo NMR Spectroscopy to Measure Diffusional Water Permeability in Corynebacterium glutamicum. Analytical Biochemistry, 2000, 279, 100-105.	2.4	21
250	Blastfurnace slag cements: A construction material with very unusual nuclear spin relaxation behavior during hardening. Journal of Applied Physics, 2000, 88, 4269.	2.5	21
251	On the importance of dimension variation in determining the limiting steps in adsorption kinetics. Journal of Chemical Technology and Biotechnology, 1982, 32, 376-381.	0.2	21
252	Self-Assembly and Diffusion of Block Copolymer Templates in SBA-15 Nanochannels. Journal of Physical Chemistry B, 2010, 114, 4223-4229.	2.6	21

#	Article	IF	Citations
253	Pulsed-Field-Gradient NMR Analogue of the Single-Slit Diffraction Pattern. Journal of Magnetic Resonance Series A, 1996, 122, 248-250.	1.6	20
254	Application of the thermal frequency response method and of pulsed field gradient NMR to study water diffusion in zeolite NaX. Adsorption, 1996, 2, 205-216.	3.0	20
255	NMR evidence of anomalous molecular diffusion due to structural confinement. Europhysics Letters, 1996, 34, 483-488.	2.0	20
256	Combining macroscopic and microscopic diffusion studies in zeolites using NMR techniques. Magnetic Resonance Imaging, 2005, 23, 227-232.	1.8	20
257	Single-File Diffusion in Zeolites. , 2008, , 329-366.		20
258	Application of IR Spectroscopy, IR Microscopy, and Optical Interference Microscopy to Diffusion in Zeolites., 2008,, 135-206.		20
259	Carboxylates and sulfates of polysaccharides for controlled internal water release during cement hydration. Cement and Concrete Composites, 2009, 31, 244-249.	10.7	20
260	Micro-Imaging by Interference Microscopy: A Case Study of Orientation-Dependent Guest Diffusion in MFI-Type Zeolite Host Crystals. Materials, 2012, 5, 721-740.	2.9	20
261	The influence of chemisorbed molecules on mass transfer in H-ZSM-5-type zeolites and the location of $Br\tilde{A}_{s}$, nsted acid sites. Journal of Catalysis, 1988, 114, 186-189.	6.2	19
262	Self-diffusion investigations on a series of PEP-PDMS diblock copolymers with different morphologies by pulsed field gradient NMR. Physical Chemistry Chemical Physics, 1999, 1, 3923-3931.	2.8	19
263	Study of Structure Formation in Aqueous Solutions of Poly(ethylene oxide)â^Poly(propylene) Tj ETQq1 1 0.7843 lsomerization of an Azobenzene Dye and Self-Diffusion of Copolymer Molecules. Langmuir, 1999, 15, 1059-1066.		Overlock 10 T 19
264	Application of the two-step model to the diffusion of linear diatomic and triatomic molecules in silicalite. Physical Chemistry Chemical Physics, 2000, 2, 1455-1463.	2.8	19
265	Structure-mobility relations of molecular diffusion in nanoporous materials. Magnetic Resonance Imaging, 2003, 21, 185-191.	1.8	19
266	Adsorption and Reaction in Single-File Networks. Journal of Physical Chemistry B, 2003, 107, 1821-1831.	2.6	19
267	Revealing complex formation in acetone–n-alkane mixtures by MAS PFG NMR diffusion measurement in nanoporous hosts. Physical Chemistry Chemical Physics, 2008, 10, 4165.	2.8	19
268	Characterization of carbon materials with the help of NMR methods. Microporous and Mesoporous Materials, 2009, 120, 91-97.	4.4	19
269	Diffusion in microporous materials with embedded mesoporosities. Microporous and Mesoporous Materials, 2013, 178, 84-89.	4.4	19
270	Mass transfer through beds of zeolite crystallites and the paradox of the evaporation barrier. Langmuir, 1988, 4, 1289-1292.	3.5	18

#	Article	IF	Citations
271	Fluorescence Probe and Pulsed Field Gradient NMR Study of Aqueous Solutions of Poly(ethylene) Tj ETQq1 1 0.78	43.14 rgBT	 Qverlock
272	Reaction and particle distribution in networks of single-file systems. Europhysics Letters, 2001, 53, 8-14.	2.0	18
273	Sorption kinetics for surface resistance controlled systems. Microporous and Mesoporous Materials, 2010, 132, 94-102.	4.4	18
274	Entropy-Driven Enhanced Self-Diffusion in Confined Reentrant Supernematics. Physical Review Letters, 2010, 105, 227802.	7.8	18
275	Probing mesopore connectivity in hierarchical nanoporous materials. Carbon, 2012, 50, 4804-4808.	10.3	18
276	Exploring Mass Transfer in Mesoporous Zeolites by NMR Diffusometry. Materials, 2012, 5, 699-720.	2.9	18
277	Sorption kinetics: measurement of surface resistance. Adsorption, 2021, 27, 787-799.	3.0	18
278	PFG NMR self-diffusion measurements in microporous adsorbents. Magnetic Resonance Imaging, 1994, 12, 235-239.	1.8	17
279	Unexpectedly low translational mobility of methane and tetrafluoromethane in the large-pore molecular sieve VPI-5. Microporous Materials, 1995, 3, 401-408.	1.6	17
280	Restricted self-diffusion in an aqueous solution of poly(ethylene oxide) poly(propylene oxide) poly(ethylene oxide) triblock copolymer. Colloid and Polymer Science, 1997, 275, 730-735.	2.1	17
281	Molecular dynamics of glass-forming liquids in confining geometries. Physical Chemistry Chemical Physics, 1999, 1, 519-523.	2.8	17
282	Comment on "PFG NMR self-diffusion of small hydrocarbons in high silica DDR, CHA and LTA structures―[Micropor. Mesopor. Mater. 109 (2008) 327]. Microporous and Mesoporous Materials, 2008, 116, 715-717.	4.4	17
283	Micro-imaging of liquid–vapor phase transition in nano-channels. Microporous and Mesoporous Materials, 2015, 214, 143-148.	4.4	17
284	Oneâ€Shot Measurement of Effectiveness Factors of Chemical Conversion in Porous Catalysts. ChemCatChem, 2018, 10, 5602-5609.	3.7	17
285	Sorption kinetics ofn-decane on 5A zeolites from a nonadsorbing liquid solvent. AICHE Journal, 1980, 26, 1044-1046.	3.6	16
286	Investigation of surface barriers on CaNaA type zeolites by combined application of the n.m.r. tracer desorption method and X-ray photoelectron spectroscopy. Zeolites, 1987, 7, 282-284.	0.5	16
287	Mobility of cyclohexane in a microporous silica sample: a quasielastic neutron scattering and NMR pulsed-field gradient technique study. Journal of Membrane Science, 1995, 108, 71-78.	8.2	16
288	Self-diffusion in poly(N? -vinyl pyrrolidone) - poly(ethylene glycol) systems. Colloid and Polymer Science, 2001, 279, 532-538.	2.1	16

#	Article	IF	Citations
289	Molecular Dynamics in Poly(N-vinylpyrrolidone)-Poly(ethylene glycol) Blends Investigated by the Pulsed-Field Gradient NMR Method: Effects of Aging, Hydration and PEG Chain Length. Macromolecular Chemistry and Physics, 2001, 202, 2648-2656.	2.2	16
290	Diffusion in Zeolites. , 2003, , .		16
291	Modeling molecular diffusion in channel networks via displacements between the channel segments. Physical Chemistry Chemical Physics, 2004, 6, 3676-3679.	2.8	16
292	From computer design to gas separation. Nature Materials, 2020, 19, 374-375.	27.5	16
293	Influence of molecular shape on probing mass transfer resistances on zeolites. AICHE Journal, 1990, 36, 1500-1504.	3.6	15
294	Investigation of the Restricted Diffusion in Spherical Cavities of Polymers by Pulsed Field Gradient Nuclear Magnetic Resonance. Macromolecules, 1995, 28, 2345-2350.	4.8	15
295	On the Unusually High Apparent Activation Energy of Chemical Conversion under Single-File Conditions. Journal of Catalysis, 1998, 176, 513-526.	6.2	15
296	Self-diffusion of an asymmetric diblock copolymer above and below the order-to-disorder transition temperature. Journal of Chemical Physics, 1999, 111, 2789-2796.	3.0	15
297	Self-Diffusion in a Lamellar and Gyroid (Ordered) Diblock Copolymer Investigated Using Pulsed Field Gradient NMR. Macromolecules, 2001, 34, 868-873.	4.8	15
298	Structure and Self-Diffusion of Water Molecules in Chabazite:  A Molecular Dynamics Study. Journal of Physical Chemistry C, 2007, 111, 14707-14712.	3.1	15
299	Improving mass-transfer in controlled pore glasses as supports for the platinum-catalyzed aromatics hydrogenation. Catalysis Science and Technology, 2015, 5, 3137-3146.	4.1	15
300	MD simulations of hydrogen diffusion in ZIF-11 with a force field fitted to experimental adsorption data. Microporous and Mesoporous Materials, 2015, 203, 132-138.	4.4	15
301	Anomaly in the Chain Length Dependence of n-Alkane Diffusion in ZIF-4 Metal-Organic Frameworks. Molecules, 2018, 23, 668.	3.8	15
302	Diffusion in nanopores: inspecting the grounds. Adsorption, 2021, 27, 267-281.	3.0	15
303	Comment on hydrocarbon diffusivity in zeolites. Chemical Engineering Science, 1985, 40, 2169-2170.	3.8	14
304	Diffusion in a unidimensional zeolite pore system: Propane in AlPO4-5. Microporous Materials, 1997, 8, 193-200.	1.6	14
305	Anisotropic Diffusion in a Nematic Liquid Crystal— An Electric Field PFG NMR Approach. Journal of Magnetic Resonance, 2000, 143, 427-430.	2.1	14
306	PFG NMR and internal magnetic field gradients in plant-based materials. Magnetic Resonance Imaging, 2002, 20, 567-573.	1.8	14

#	Article	IF	CITATIONS
307	Tracing Memory Effects in Correlated Diffusion Anisotropy in MFI-Type Zeolites by MD Simulation. Journal of Physical Chemistry B, 2003, 107, 3515-3521.	2.6	14
308	Memory effects in correlated anisotropic diffusion. Europhysics Letters, 2003, 63, 465-471.	2.0	14
309	Pulsed-field gradient nuclear magnetic resonance study of transport properties of fluid catalytic cracking catalysts. Magnetic Resonance Imaging, 2005, 23, 233-237.	1.8	14
310	Micro-imaging of transient guest profiles in nanochannels. Journal of Chemical Physics, 2011, 135, 184201.	3.0	14
311	Diffusion Path Reversibility Confirms Symmetry of Surface Barriers. Journal of Physical Chemistry C, 2019, 123, 19596-19601.	3.1	14
312	Diffusion Analysis in Pore Hierarchies by the Twoâ€Region Model. Advanced Materials Interfaces, 2021, 8, 2000749.	3.7	14
313	On the limits of the application of the n.m.r. pulsed-field gradient technique for self-diffusion measurements in zeolites. Zeolites, 1989, 9, 299-302.	0.5	13
314	Measurement of the diffusivity of benzene in microporous silica by quasi-elastic neutron scattering and NMR pulsed-field gradient technique. Adsorption, 1995, 1, 197-201.	3.0	13
315	The gel-forming behaviour of dextran in the presence of KCl: a quantitative 13C and pulsed field gradient (PFG) NMR study. Biophysical Chemistry, 2003, 104, 131-140.	2.8	13
316	Co-Micellization Investigated by Pulsed Field Gradient-NMR Spectroscopy. Macromolecular Rapid Communications, 2004, 25, 1015-1018.	3.9	13
317	Diffusion of guest molecules in MCM-41 agglomerates. Journal of Chemical Physics, 2007, 126, 054705.	3.0	13
318	Diffusion of aromatic guest molecules in zeolite NaX studied by pulsed field gradient NMR. Microporous and Mesoporous Materials, 2009, 120, 98-103.	4.4	13
319	Diffusion of pentane isomers in faujasite-type zeolites: NMR and molecular dynamics study. Microporous and Mesoporous Materials, 2013, 171, 58-64.	4.4	13
320	Microimaging of Transient Intracrystalline Concentration Profiles during Two-Component Uptake of Light Hydrocarbonâ€"Carbon Dioxide Mixtures by DDR-Type Zeolites. Industrial & DR-Engineering Chemistry Research, 2015, 54, 8997-9004.	3.7	13
321	Assessing Guestâ€Molecule Diffusion in Heterogeneous Powder Samples of Metal–Organic Frameworks through Pulsedâ€Fieldâ€Gradient (PFG) NMR Spectroscopy. Chemistry - A European Journal, 2017, 23, 13000-13005.	3.3	13
322	On the correlation between the results of 129Xe n.m.r. line shift and 1H n.m.r. pulsed-field-gradient measurements on zeolites. Zeolites, 1989, 9, 351-352.	0.5	12
323	A simple pulse sequence to exclude falsification of NMR self-diffusion results by multi-phase relaxation. Journal of the Chemical Society Chemical Communications, 1990, , 1454-1455.	2.0	12
324	PFG NMR Self-Diffusion Study of n-Paraffins Adsorbed on Silica Gel. Journal of Colloid and Interface Science, 1993, 159, 366-371.	9.4	12

#	Article	IF	CITATIONS
325	A network of characteristic functions describing the dynamics of adsorbateâ€adsorbent systems. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1998, 102, 929-944.	0.9	12
326	Investigating one-dimensional diffusion by quasielastic neutron scattering: A theoretical approach. Physical Review E, 1999, 59, 6662-6671.	2.1	12
327	Dynamics of a Triblock Copolymer in a Selective Solvent for the Middle Block Investigated Using Pulsed Field Gradient NMR. Macromolecules, 2000, 33, 7066-7071.	4.8	12
328	Pore opening effects and transport diffusion in the Knudsen regime in comparison to self- (or tracer-) diffusion. Europhysics Letters, 2007, 78, 20001.	2.0	12
329	1H NMR signal broadening in spectra of alkane molecules adsorbed on MFI-type zeolites. Solid State Nuclear Magnetic Resonance, 2008, 33, 65-71.	2.3	12
330	Micro-imaging of transient guest profiles in nanoporous host systems of cylindrical symmetry. Journal of Chemical Physics, 2012, 137, 164704.	3.0	12
331	Tracing compartment exchange by NMR diffusometry: Water in lithium-exchanged low-silica X zeolites. Journal of Magnetic Resonance, 2018, 289, 1-11.	2.1	12
332	Der Einfluß von OberflÃ e henbarrieren auf den Sorptionsvorgang an 5Aâ€ Z eolithen. Zeitschrift Für Chemie, 1976, 16, 331-332.	0.0	12
333	On the compatibility of diffusion data for adsorbate-adsorbent systems obtained from N.M.R. pulsed field gradient technique and from quasi-elastic neutron scattering. Molecular Physics, 1981, 43, 1189-1191.	1.7	11
334	NMR Characterization of Zeolite H-ZSM-5 after Post-Synthesis Modification with H3PO4. Studies in Surface Science and Catalysis, 1989, 52, 295-304.	1.5	11
335	Pulsed field gradient NMR studies of small molecule diffusion in amorphous microporous silicas. Advanced Materials, 1996, 8, 912-916.	21.0	11
336	Chain diffusion in the melt of an asymmetric diblock copolymer in the disordered and ordered state. Colloid and Polymer Science, 1997, 275, 807-813.	2.1	11
337	Network of characterizing functions for stationary populations. Physical Review E, 1999, 60, 2737-2740.	2.1	11
338	PFG NMR observation of an extremely strong dependence of the ammonia self-diffusivity on its loading in H-ZSM-5. Journal of Catalysis, 2003, 213, 321-323.	6.2	11
339	Assessing Guest Diffusion in Nanoporous Materials by Boltzmann's Integration Method. Chemistry of Materials, 2007, 19, 3917-3923.	6.7	11
340	Dynamical aspects of the adsorption hysteresis phenomenon. Magnetic Resonance Imaging, 2007, 25, 481-484.	1.8	11
341	Imaging of transient guest profiles in nanoporous host materials: aÂnew experimental technique to study intra-crystalline diffusion. Adsorption, 2010, 16, 515-523.	3.0	11
342	The evidence of NMR diffusometry on pore space heterogeneity in activated carbon. Microporous and Mesoporous Materials, 2011, 141, 184-191.	4.4	11

#	Article	IF	CITATIONS
343	Tracing Molecular Propagation in Dextran Solutions by Pulsed Field Gradient NMR. Journal of Physical Chemistry Letters, 2012, 3, 1854-1857.	4.6	11
344	NMR diffusometry with guest molecules in nanoporous materials. Magnetic Resonance Imaging, 2019, 56, 3-13.	1.8	11
345	Comment on "The diffusion of benzene in high silica zeolite ZSM-5 studied by PFGNMR and QUENS― Colloids and Surfaces, 1991, 58, 203-205.	0.9	10
346	An MD study of methane diffusion in zeolites of structure type LTA. Studies in Surface Science and Catalysis, 1994, 84, 2139-2146.	1.5	10
347	Supercritical fluids in mesoporesâ€"new insight using NMR. Adsorption, 2007, 13, 197-200.	3.0	10
348	Normal and anomalous diffusion of non-interacting particles in linear nanopores. European Physical Journal: Special Topics, 2008, 161, 109-120.	2.6	10
349	NMR Diffusometry with Beds of Nanoporous Host Particles: An Assessment of Mass Transfer in Compartmented Two-Phase Systems. Langmuir, 2008, 24, 10474-10479.	3.5	10
350	Rotational and translational diffusion in glass-forming N,N,-diethyl-3-methylbenzamide (DEET). Soft Matter, 2011, 7, 10565.	2.7	10
351	Water dynamics in chabazite. Microporous and Mesoporous Materials, 2011, 146, 106-118.	4.4	10
352	Inâ€Depth Study of Mass Transfer in Nanoporous Materials by Microâ€Imaging. Chemie-Ingenieur-Technik, 2011, 83, 2211-2218.	0.8	10
353	Singleâ€Molecule and Ensemble Diffusivities in Individual Nanopores with Spatially Dependent Mobility. ChemPhysChem, 2017, 18, 2094-2102.	2.1	10
354	On the consistency of zeolitic self-diffusion coefficients. Journal of Colloid and Interface Science, 1977, 60, 386-388.	9.4	9
355	PFG NMR study of self-diffusion of low carbon chain length paraffins in carbonaceous adsorbents. Journal of Colloid and Interface Science, 1992, 152, 281-283.	9.4	9
356	A comparative study of water interaction with alkali–metal cation-exchanged X-type zeolites by pulsed field gradient NMR and temperature-programmed desorption. Applied Catalysis A: General, 1999, 188, 241-246.	4.3	9
357	PFG NMR study of the transport properties of A-type zeolite membranes. Chemical Communications, 1999, , 57-58.	4.1	9
358	NMR studies of water diffusion and relaxation in hydrating slag-based construction materials. Magnetic Resonance Imaging, 2001, 19, 547-548.	1.8	9
359	Title is missing!. Adsorption, 2003, 9, 235-241.	3.0	9
360	On the Sticking Probability of Aromatic Molecules on Zeolites. Reply to "Comment on â€~STICKING PROBABILITY ON ZEOLITES'― Journal of Physical Chemistry B, 2006, 110, 17694-17695.	2.6	9

#	Article	IF	CITATIONS
361	New Option for Characterizing the Mobility of Organic Compounds in Humic Acids. Environmental Science & Environmental Science	10.0	9
362	Comment on "Single-File Diffusion of Confined Water Inside SWNTs: An NMR Study― ACS Nano, 2010, 4, 3537-3537.	14.6	9
363	Diffusion in nanopores: correlating experimental findings with "first-principles―predictions. Adsorption, 2020, 26, 1001-1013.	3.0	9
364	Liquid phase adsorption studies of octene-1 and octane on X-zeolites. Journal of Colloid and Interface Science, 1984, 102, 227-231.	9.4	8
365	Microdynamics of Guest Molecules in Zeolites Studied by Quasielastic Neutron Scattering and Nmr Pulsed Field Gradient Technique. Studies in Surface Science and Catalysis, 1991, , 445-455.	1.5	8
366	PFG NMR study of multicomponent selfdiffusion on active carbons. Carbon, 1993, 31, 1083-1087.	10.3	8
367	Influence of intracrystalline confinement on pulsed field gradient NMR diffusion studies with zeolite crystallites of finite size. Microporous Materials, 1996, 6, 355-361.	1.6	8
368	Chain trapping in diblock copolymers near the ordering transition. Europhysics Letters, 2000, 51, 68-74.	2.0	8
369	Long-range diffusion in beds of nanoporous particles: pitfalls and potentials. Magnetic Resonance Imaging, 2005, 23, 139-145.	1.8	8
370	Comment on the paper "Diffusion and adsorption selectivities of hydrocarbons over FCC catalysts―by A.M. Ãvila, C.M. Bidabehere and U. Sedran [Chem. Eng. J. 132 (2007) 67–75]. Chemical Engineering Journal, 2009, 145, 522-524.	12.7	8
371	Paramagnetic Relaxation Enhancement (PRE) as a Tool for Probing Diffusion in Environmentally Relevant Porous Media. Environmental Science & Eamp; Technology, 2011, 45, 8866-8872.	10.0	8
372	Intercrystalline molecular transport of ethane in NaCaA zeolites studied by NMR pulsed field gradient technique and by uptake experiments. Journal of Colloid and Interface Science, 1980, 76, 525-531.	9.4	7
373	Comparison of 129Xe n.m.r. and 1H pulsed field gradient n.m.r. measurements for the location of the deposit of carbonaceous compounds on zeolite A. Zeolites, 1991, 11, 103-106.	0.5	7
374	Liquid polyethylene glycol dispersed in a poly(styrene)-b-poly(ethylene/butylene)-b-poly(styrene) elastomer: determination of morphology and molecular mobility by light and electron microscopy as well as nuclear magnetic resonance self-diffusion andT2 measurements. Polymers for Advanced Technologies, 1998, 9, 700-708.	3.2	7
375	Percolation diffusion of guest molecules in NaCaA zeolites: field gradient NMR studies and Monte Carlo simulations. Journal of Molecular Catalysis A, 2000, 158, 373-376.	4.8	7
376	Calculation of separation diagrams from ternary liquid adsorption on activated carbons. Separation and Purification Technology, 2000, 20, 41-48.	7.9	7
377	Stallmach and KÃÆger Reply:. Physical Review Letters, 2003, 90, .	7.8	7

"Pore-Like―Effects of Super-Molecular Self-Assembly on Molecular Diffusion of Poly(Ethylene) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 process of Super-Molecular Self-Assembly on Molecular Diffusion of Poly(Ethylene) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 process of Super-Molecular Self-Assembly on Molecular Diffusion of Poly(Ethylene) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 process of Super-Molecular Self-Assembly on Molecular Diffusion of Poly(Ethylene) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 process of Super-Molecular Self-Assembly on Molecular Diffusion of Poly(Ethylene) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 process of Self-Assembly on Molecular Diffusion of Poly(Ethylene) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 process of Self-Assembly on Molecular Diffusion of Poly(Ethylene) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 process of Self-Assembly on Molecular Diffusion of Poly(Ethylene) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 process of Self-Assembly on Molecular Diffusion of Poly(Ethylene) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 process of Self-Assembly on Molecular Diffusion of Poly(Ethylene) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 process of Self-Assembly on Molecular Diffusion of Poly(Ethylene) Tj ETQq0 0 0 rgBT/Overlock 10 process of Self-Assembly on Molecular Diffusion of Poly(Ethylene) Tj ETQq0 0 0 rgBT/Overlock 10 process of Self-Assembly on Molecular Diffusion of Poly(Ethylene) Tj ETQq0 0 0 rgBT/Overlock 10 process of Self-Assembly on Molecular Diffusion of Poly(Ethylene) Tj ETQq0 0 0 rgBT/Overlock 10 process of Self-Assembly on Molecular Diffusion of Poly(Ethylene) Tj ETQq0 0 0 rgBT/Overlock 10 process of Self-Assembly on Molecular Diffusion of Poly(Ethylene) Tj ETQq0 0 0 rgBT/Overlock 10 process of Self-Assembly on Molecular Diffusion of Poly(Ethylene) Tj ETQq0 0 0 rgBT/Overlock 10 process of Self-Assembly on Molecular Diffusion of Poly(Ethylene) Tj ETQq0 0 0 rgBT/Overlock 10 process of Self-Assembly on Molecular Diffusion of Self-Assembly on Molecular Diffusion of Self-Assembly on Molecular Diffusion of Self-Assembly on Molecular Dif

378

#	Article	IF	CITATIONS
379	Intracrystalline self-diffusion of hydrocarbons in zeolite NaX in equilibrium with excess liquid phase. Zeolites, 1988, 8, 251-254.	0.5	6
380	¹²⁹ Xe PFG NMR Tracer Exchange Measurements on Zeolites. Zeitschrift Fur Physikalische Chemie, 1995, 189, 43-52.	2.8	6
381	Pulsed Field Gradient NMR Self-Diffusion Study in Distinct Phases of the Ternary System Water/n-Heptane/Igepal CA-520. Journal of Colloid and Interface Science, 1997, 190, 9-16.	9.4	6
382	Molecular dynamics study of sorbate diffusion in a simple porous membrane containing microporous nanocrystals and mesopores. Chemical Physics Letters, 2009, 479, 95-99.	2.6	6
383	NMRâ€Untersuchungen zum interkristallinen Stofftransport an Zeolithen im Übergangsgebiet zwischen Knudsen―und Normaldiffusion. Zeitschrift FÃ⅓r Chemie, 1978, 18, 155-157.	0.0	6
384	Tracing Pore-Space Heterogeneities in X-Type Zeolites by Diffusion Studies. Langmuir, 2011, 27, 416-419.	3.5	6
385	Diffusion of propene in DDR crystals studied by interference microscopy. Chemical Engineering Science, 2015, 138, 110-117.	3.8	6
386	Equilibrium isotherms and transport diffusivities for CO2 and CO2/N2 mixtures in silicalite measured by Infra-Red Micro-imaging. Microporous and Mesoporous Materials, 2020, 300, 110172.	4.4	6
387	Application of microimaging to diffusion studies in nanoporous materials. Adsorption, 2021, 27, 819-840.	3.0	6
388	Diffusion Research with Nanoporous Material. Chemistry International, 2021, 43, 25-29.	0.3	6
389	Theory of Tracer Exchange in Single-File Systems. Collection of Czechoslovak Chemical Communications, 1997, 62, 995-1014.	1.0	6
390	Zur kernmagnetischen Relaxation in Mehrbereichsystemen mit endlicher rĤmlicher Ausdehnung. Annalen Der Physik, 1974, 486, 277-286.	2.4	5
391	Concentration dependence of Fickian diffusivity in solutions and sorption systems. Journal of the Chemical Society Faraday Transactions I, 1985, 81, 3103.	1.0	5
392	NMR investigations on molecular transport in ZSM-5 type zeolites containing structural defects. Catalysis Today, 1988, 3, 493-499.	4.4	5
393	Molecular mobility in coal-solvent multicomponent systems. Fuel, 1990, 69, 1249-1252.	6.4	5
394	A new method for the NMR-spectroscopic measurement of the deprotonation energy of surface hydroxyl groups in zeolites. Studies in Surface Science and Catalysis, 1997, 105, 463-470.	1.5	5
395	Comment on "Normal, single-file, and dual-mode diffusion of binary adsorbate mixtures in AlPO4-5―[J. Chem. Phys. 107, 4384 (1997)]. Journal of Chemical Physics, 1998, 109, 5691-5692.	3.0	5
396	Direct measurement of water self-diffusion in hardening blast furnace slag cement pastes by means of nuclear magnetic resonance techniques. Journal of Applied Physics, 2001, 90, 518-520.	2.5	5

#	Article	IF	CITATIONS
397	A simple jump model for describing the molecular traffic control effect. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 187-188, 459-467.	4.7	5
398	PFG NMR Studies of Anomalous Diffusion. , 2005, , 417-459.		5
399	Surface permeability on zeolite NaCaA enhanced by layer deposition. Microporous and Mesoporous Materials, 2011, 146, 151-157.	4.4	5
400	Diffusion of cyclohexane in native and surface-modified mesoporous glasses. Adsorption, 2011, 17, 93-99.	3.0	5
401	IR Microimaging of Directionâ€Dependent Uptake in MFlâ€Type Crystals. Chemie-Ingenieur-Technik, 2017, 89, 1686-1693.	0.8	5
402	Diffusion in Nanoporous Materials: from Paradigm Shift by Zhdanov Zeolites Till Recent Insight. Petroleum Chemistry, 2019, 59, 275-296.	1.4	5
403	Diffusion in Nanoporous Solids in the Focus of IUPAC – A Tribute to Jens Weitkamp. Chemie-Ingenieur-Technik, 2021, 93, 893-901.	0.8	5
404	Direct Investigation of the Fate of NAPL Contaminations in a Hydrating Cement Matrix by Means of Magnetic Resonance Techniques. Environmental Science & Environmental Science	10.0	4
405	A memorial. Microporous and Mesoporous Materials, 2006, 90, 1-4.	4.4	4
406	Guest-specific diffusion anisotropy in nanoporous materials: Molecular dynamics and dynamic Monte Carlo simulations. Adsorption, 2006, 12, 417-422.	3.0	4
407	Two-component desorption from anisotropic pore networks. Journal of Chemical Physics, 2006, 124, 034713.	3.0	4
408	Looking into the crystallites: diffusion studies by interference microscopy. Studies in Surface Science and Catalysis, 2007, , 739-747.	1.5	4
409	Guest Diffusion in Binderless Highâ€Performance NaX Molecular Sieves. Chemie-Ingenieur-Technik, 2011, 83, 2251-2259.	0.8	4
410	Diffusive Spreading of Molecules in Nanoporous Materials. , 2018, , 171-202.		4
411	Application of the NMR broad line technique to study phase transitions in microporous materials. Journal of Magnetic Resonance, 1983, 51, 8-13.	0.5	3
412	Studies of molecular diffusion in porous crystals (zeolites). Journal of Molecular Liquids, 1992, 54, 229-238.	4.9	3
413	Uptake of silicone oil in the polystyrene matrix of the two phase system polystyrene/silicone oil as detected by NMR. Macromolecular Rapid Communications, 1996, 17, 81-85.	3.9	3
414	PFG NMR tracer exchange measurements of xenon in zeolites. Magnetic Resonance Imaging, 1996, 14, 967-969.	1.8	3

#	Article	IF	CITATIONS
415	Application of pulsed field gradient NMR to characterize the transport properties of microporous membranes. Membrane Science and Technology, 2000, 6, 97-108.	0.5	3
416	Is there a coupling between rotational and translational motion of methane in silicalite-1 and AlPO4-5?. Chemical Physics Letters, 2005, 411, 423-428.	2.6	3
417	The self-diffusion behavior of polyethylene glycol in cartilageas studied by pulsed-field gradient NMR. Physica Medica, 2005, 21, 69-73.	0.7	3
418	Diffusion of n-alkanes in zeolites: the benefit of observation over different length scales. Studies in Surface Science and Catalysis, 2007, 170, 981-987.	1.5	3
419	Study of the diffusion of liquids and their binary mixtures in mesoporous aluminosilicates under freezing conditions. Microporous and Mesoporous Materials, 2009, 120, 104-108.	4.4	3
420	Bestimmung von Trennfaktoren bei der Gemischadsorption an mikroporösen Adsorbenzien mit Hilfe der NMRâ€Feldâ€gradientenimpulstechnik. Zeitschrift FÃ1⁄4r Chemie, 1982, 22, 107-108.	0.0	3
421	Fraktale Analyse der Reaktion von Schwefelwasserstoff mit aktivem Zinkoxid. Zeitschrift Fýr Chemie, 1989, 29, 34-35.	0.0	3
422	Diffusion in complementary pore spaces. Adsorption, 2016, 22, 879-890.	3.0	3
423	Diffusion and reaction in pore hierarchies by the two-region model. Adsorption, 2021, 27, 761-776.	3.0	3
424	Application of NMR Methods to Catalysis. Catalysis, 1996, , 1-176.	0.0	3
425	Adsorption by single-file networks under molecular traffic control. Applied Surface Science, 2002, 196, 273-280.	6.1	2
426	Porous Materials. , 2006, , 231-250.		2
427	A Closer Look at Nanoporous Materials. Angewandte Chemie - International Edition, 2006, 45, 3732-3733.	13.8	2
428	The Beauty of the Different Views on Diffusion. Defect and Diffusion Forum, 2012, 326-328, 1-11.	0.4	2
429	Messgrößen für die Diffusion. Nachrichten Aus Der Chemie, 2016, 64, 620-624.	0.0	2
430	One-Shot Measurement of Effectiveness Factors of Chemical Conversion in Porous Catalysts. ChemCatChem, 2018, 10, 5553-5553.	3.7	2
431	Searching for the fundamentals of rehydroxylation dating of archaeological ceramics via NMR and IR microscopy. Journal of the American Ceramic Society, 2021, 104, 5328-5340.	3.8	2
432	Chapter 12. Confined Fluids: NMR Perspectives on Confinements and on Fluid Dynamics. New Developments in NMR, 2016, , 390-434.	0.1	2

#	Article	IF	CITATIONS
433	NMR Studies of the Dehydroxylation and Rehydroxylation (RHX) of Clays with Respect to the RHX Dating of Ceramic Materials. Journal of Physical Chemistry C, 2021, 125, 26274-26283.	3.1	2
434	On the Application of the Spin-Locking Technique for NMR Self-Diffusion Measurements by Pulsed Field Gradients. Annalen Der Physik, 1983, 495, 161-165.	2.4	1
435	Nuclear Spin Relaxation and Water Self-diffusion in Hardening Magnesium Oxychloride Cement. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2001, 56, 561-564.	1.5	1
436	Molecular Mobility in a Poly(ethylene glycol)–Poly(vinyl pyrrolidone) Blends: Study by the Pulsed Gradient NMR Techniques. Colloid Journal, 2003, 65, 684-690.	1.3	1
437	Title is missing!. Colloid Journal, 2003, 65, 60-64.	1.3	1
438	$R\tilde{A}\frac{1}{4}$ cktitelbild: Single-Particle and Ensemble Diffusivities-Test of Ergodicity (Angew. Chem. 5/2012). Angewandte Chemie, 2012, 124, 1308-1308.	2.0	1
439	Mesopore Diffusion Within Porous Silicon. , 2014, , 1-10.		1
440	Hellmut G. Karge (1931–2013). Microporous and Mesoporous Materials, 2014, 184, 70-71.	4.4	1
441	Structure-correlated diffusion anisotropy in nanoporous channel networks by Monte Carlo simulations and percolation theory. European Physical Journal B, 2017, 90, 1.	1.5	1
442	Mesopore Diffusion Within Porous Silicon. , 2014, , 221-230.		1
443	Spreading Fundamentals. , 2018, , 11-25.		1
444	What the Book Is Dealing With., 2018,, 3-9.		1
445	Mesopore Diffusion Within Porous Silicon. , 2018, , 331-340.		1
446	NMR Studies of Molecular Diffusion. , 2020, , 69-137.		1
447	Leipzig, Berlin and Hannover: Three Stations of a Beneficial Cooperation. Chemie-Ingenieur-Technik, 2022, 94, 15-22.	0.8	1
448	Comments on "diffusion of alkanes in molecular sieves: Evidence for confinement effects― Applied Catalysis, 1989, 52, 165-167.	0.8	0
449	Professor Harry Pfeifer: 65th Birthday. Zeolites, 1994, 14, 159-160.	0.5	0
450	Measurement of the diffusivity of benzene in a microporous membrane by quasi-elastic neutron scattering and NMR pulsed-field gradient technique. Studies in Surface Science and Catalysis, 1995, 98, 204-205.	1.5	0

#	Article	IF	CITATIONS
451	Structure-Related Diffusion in Nanoporous Materials. , 2002, , 175-193.		O
452	Relation Between Structure and Diffusion in Nanostructured Porous Solids and in Lipid Membranes. Materials Research Society Symposia Proceedings, 2005, 899, 1.	0.1	0
453	Isotropic concentration profiles during diffusion-limited desorption from anisotropic media. Journal of Colloid and Interface Science, 2007, 305, 183-187.	9.4	0
454	Determining the transport diffusivity from intra-crystalline concentration profiles. Studies in Surface Science and Catalysis, 2008, 174, 607-610.	1.5	0
455	Inside Cover: Ensemble Measurement of Diffusion: Novel Beauty and Evidence (ChemPhysChem 15/2009). ChemPhysChem, 2009, 10, 2550-2550.	2.1	0
456	Comment on "Computer Simulation of Static and Dynamic Properties During Transient Sorption of Fluids in Mesoporous Materials― Journal of Physical Chemistry C, 2010, 114, 9187-9188.	3.1	0
457	Influence of the Methane–Zeolite a Interaction Potential on the Concentration Dependence of Self-Diffusivity. Adsorption Science and Technology, 2011, 29, 553-567.	3.2	0
458	Studying Diffusion and Mass Transfer at the Microscale. , 2011, , 53-94.		0
459	Unprecedented Wealth of Information on Guest Dynamics in Nanoporous Materials from Transient Concentration Profiles. Defect and Diffusion Forum, 2011, 309-310, 177-194.	0.4	0
460	Back Cover: Singleâ€Particle and Ensemble Diffusivitiesâ€"Test of Ergodicity (Angew. Chem. Int. Ed. 5/2012). Angewandte Chemie - International Edition, 2012, 51, 1282-1282.	13.8	0
461	Diffusion properties of liquid crystal-based microemulsions. Colloid and Polymer Science, 2014, 292, 1961-1969.	2.1	0
462	Einblicke in die Verteilung von CO ₂ â€Molekülen und deren zeitliche Entwicklung durch Mikroâ€Bildgebung mittels IRâ€Spektroskopie und molekulardynamische Modellierung. Angewandte Chemie, 2018, 130, 5250-5255.	2.0	0
463	Transport-Optimized Nanoporous Materials for Mass Separation and Conversion as Designed by Microscopic Diffusion Measurement., 2018, 19, 96-124.		0
464	Molecular transport in nanoporous materials. , 2020, , 169-215.		0
465	Martin Bülow: response. Adsorption, 2021, 27, 993-993.	3.0	0
466	In Memoriam Prof. Dr.â€ing. Jens Weitkamp. Chemie-Ingenieur-Technik, 2021, 93, 863-863.	0.8	0
467	Mesopore Diffusion Within Porous Silicon. , 2016, , 1-10.		0
468	Douglas M. Ruthven: In Memoriam of a Great Scholar and a Caring Friend. Chemie-Ingenieur-Technik, 0,	0.8	0