Enrique Jurado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4331815/publications.pdf

Version: 2024-02-01

361413 189892 2,571 59 20 50 citations h-index g-index papers 60 60 60 3158 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Comparative evolutionary ecology of seed size. Trends in Ecology and Evolution, 1992, 7, 368-372.	8.7	503
2	Are nurseâ€protégé interactions more common among plants from arid environments?. Journal of Vegetation Science, 2003, 14, 911-916.	2.2	367
3	Correlates of Seed Size Variation: A Comparison Among Five Temperate Floras. Journal of Ecology, 1995, 83, 517.	4.0	249
4	Invasions: the trail behind, the path ahead, and a test of a disturbing idea. Journal of Ecology, 2012, 100, 116-127.	4.0	180
5	Putting plant resistance traits on the map: a test of the idea that plants are better defended at lower latitudes. New Phytologist, 2011, 191, 777-788.	7.3	155
6	Is seed dormancy under environmental control or bound to plant traits?. Journal of Vegetation Science, 2005, 16, 559-564.	2.2	125
7	Correlations between physical and chemical defences in plants: tradeoffs, syndromes, or just many different ways to skin a herbivorous cat?. New Phytologist, 2013, 198, 252-263.	7.3	124
8	Larger seeds in tropical floras: consistent patterns independent of growth form and dispersal mode. Journal of Biogeography, 1997, 24, 205-211.	3.0	87
9	Geographic Ranges of Plant Species in Relation to Dispersal Morphology, Growth Form and Diaspore Weight. Journal of Biogeography, 1993, 20, 563.	3.0	73
10	AusTraits, a curated plant trait database for the Australian flora. Scientific Data, 2021, 8, 254.	5.3	73
11	Effect of light on germination of seeds of Cactaceae from the Chihuahuan Desert, Mexico. Seed Science Research, 2006, 16, 149-155.	1.7	56
12	Spatial variations of interception loss components by Tamaulipan thornscrub in northeastern Mexico. Forest Ecology and Management, 1999, 124, 231-239.	3.2	52
13	Tree-rings and climate relationships for Douglas-fir chronologies from the Sierra Madre Occidental, Mexico: A 1681–2001 rain reconstruction. Forest Ecology and Management, 2005, 213, 39-53.	3.2	48
14	Effect of light on seed germination and seedling shape of succulent species from Mexico. Journal of Plant Ecology, 2016, 9, 174-179.	2.3	41
15	Potential impact of global warming on seed bank, dormancy and germination of three succulent species from the Chihuahuan Desert. Seed Science Research, 2018, 28, 312-318.	1.7	32
16	Biomass estimation equations in the Tamaulipan thornscrub of north-eastern Mexico. Journal of Arid Environments, 2002, 52, 167-179.	2.4	31
17	Breaking seed dormancy in specially protected <i>Turbinicarpus lophophoroides</i> and <i>Turbinicarpus pseudopectinatus</i> (Cactaceae). Plant Species Biology, 2008, 23, 43-46.	1.0	30
18	Positive effects of native shrubs on three specially protected cacti species in Durango, México. Plant Species Biology, 2012, 27, 53-58.	1.0	27

#	Article	IF	CITATIONS
19	Germination in tamaulipan thornscrub of north-eastern Mexico. Journal of Arid Environments, 2000, 46, 413-424.	2.4	22
20	Leguminous seedling establishment in Tamaulipan thornscrub of northeastern Mexico. Forest Ecology and Management, 2006, 221, 133-139.	3.2	22
21	Characterizing plant attributes with particular emphasis on seeds in Tamaulipan thornscrub in semi-arid Mexico. Journal of Arid Environments, 2001, 48, 309-321.	2.4	19
22	Seed traits and germination in the Cactaceae family: A review across Americas. Botanical Sciences, 2020, 98, 417-440.	0.8	19
23	Seedling establishment under native tamaulipan thornscrub and Leucaena leucocephala plantation. Forest Ecology and Management, 1998, 105, 151-157.	3.2	18
24	The combined effect of water stress and temperature on seed germination of Chihuahuan Desert species. Journal of Arid Environments, 2017, 146, 95-98.	2.4	18
25	Is seed hydration memory dependent on climate? Testing this hypothesis with Mexican and Argentinian cacti species. Journal of Arid Environments, 2016, 130, 94-97.	2.4	17
26	Preliminary estimates of biomass growth in the Tamaulipan thornscrub in north-eastern Mexico. Journal of Arid Environments, 2001, 47, 281-290.	2.4	16
27	Geographic Distribution and Conservation of Cactaceae from Tamaulipas Mexico. Biodiversity and Conservation, 2005, 14, 2483-2506.	2.6	15
28	Seasonal precipitation reconstruction and teleconnections with ENSO based on tree ring analysis of Pinus cooperi. Theoretical and Applied Climatology, 2014, 117, 495-500.	2.8	14
29	Growth and ecophysiology of succulent seedlings under the protection of nurse plants in the Southern Chihuahuan Desert. Ecosphere, 2015, 6, art36.	2.2	14
30	Effect of biological soil crusts on the germination of three plant species under laboratory conditions. Botanical Sciences, 2014, 92, 273.	0.8	13
31	Germination associated with season and sunlight for Tamaulipan thornscrub plants in north-eastern Mexico. Journal of Arid Environments, 2001, 49, 833-841.	2.4	11
32	PLANT ASSOCIATIONS OF CUMBRES DE MAJALCA NATIONAL PARK, CHIHUAHUA, MEXICO. Southwestern Naturalist, 2003, 48, 177-187.	0.1	8
33	Effects of wetting and drying cycles on the germination of nine species of the Chihuahuan Desert. Botanical Sciences, 2016, 94, 221-228.	0.8	8
34	Seed Removal Rates Under Isolated Trees and Continuous Vegetation in Semiarid Thornscrub. Restoration Ecology, 2006, 14, 204-209.	2.9	7
35	Is seed dormancy under environmental control or bound to plant traits?. Journal of Vegetation Science, 2005, 16, 559.	2.2	6
36	Heat shock effect in breaking physical dormancy in seeds of Lupinus elegans and L. rotundiflorus from Jalisco, Mexico. Botanical Sciences, 2014, 92, 123.	0.8	6

#	Article	IF	CITATIONS
37	Rapid Viability Loss in Seeds of Palmilla (Chamaedorea radicalis Mart.) from el Cielo Biosphere Reserve. Southwestern Naturalist, 2000, 45, 373.	0.1	5
38	Desert species adapted for dispersal and germination during floods: Experimental evidence in two Astrophytum species (Cactaceae). Flora: Morphology, Distribution, Functional Ecology of Plants, 2012, 207, 707-711.	1.2	5
39	Complete vivipary behavior detected in the epiphytic Tillandsia recurvata L. (Ball moss) in the Chihuahuan Desert in two continuous years. Journal of Arid Environments, 2020, 174, 103993.	2.4	5
40	Is ball moss (Tillandsia recurvata) a structural parasite of mesquite (Prosopis laevigata)? Anatomical and ecophysiological evidence. Trees - Structure and Function, 2021, 35, 135-144.	1.9	5
41	Flower, fruit phenology and flower traits in <i>Cordia boissieri</i> (Boraginaceae) from northeastern Mexico. PeerJ, 2016, 4, e2033.	2.0	5
42	Hidrocoria en semillas de Agave victoriae-reginae T. Moore, especie en peligro de extinción: MorfologÃa y anatomÃa como facilitadores de la hidro-dispersión y germinación. Gayana - Botanica, 2017, 74, 251-261.	0.2	4
43	Caracterización del hábitat de Amoreuxia wrightii (Bixaceae), una especie en peligro de extinción en el noreste de México. Acta Botanica Mexicana, 2018, , 21-31.	0.3	4
44	New Locality of Gleditsia triacanthos (Caesalpiniaceae) in Northeastern Mexico and Its Phytogeographic Interest. Southwestern Naturalist, 2002, 47, 602.	0.1	3
45	Are nurse plants always necessary for succulent plants? Observations in northeastern Mexico, including endangered and threatened species. Bradleya, 2013, 31, 150-156.	0.3	3
46	Effect of seed burial in different soils on the germination of three specially protected cactus species. Southwestern Naturalist, 2014, 59, 344-348.	0.1	3
47	Is drought altering plant populations in the mountainous region of Northeastern Mexico?. Acta Botanica Croatica, 2015, 74, 95-108.	0.7	3
48	Effect of induced warming on seedling emergence of Tamaulipan thornscrub at northeastern Mexico. Flora: Morphology, Distribution, Functional Ecology of Plants, 2021, 285, 151965.	1.2	3
49	The influence of land use on desertification processes. Rangeland Ecology and Management, 2004, 57, 320-324.	2.3	2
50	Physical Crust Does Not Affect Soil Seed Bank. Arid Land Research and Management, 2010, 24, 263-266.	1.6	2
51	Abundance of Seedlings in Response to Elevation and Nurse Species in Northeastern Mexico. Southwestern Naturalist, 2011, 56, 154-161.	0.1	2
52	Some tree species of ecological importance in Mexico: A documentary review. Revista Chapingo, Serie Ciencias Forestales Y Del Ambiente, 2017, 23, 185-219.	0.2	2
53	Densidad de semillas y plántulas de Zanthoxylum fagara en México y Zanthoxylum coco en Argentina: influencia de plantas bajo las cuales ocurren y borde de la vegetación. Botanical Sciences, 2021, 99, 67-79.	0.8	2
54	Seeds and seedlings from isolated mesquite trees. Journal of the Torrey Botanical Society, 2017, 144, 58-62.	0.3	1

#	Article	IF	CITATIONS
55	EFECTO DE LA DENSIDAD DE SEMILLAS EN LA GERMINACIÓN DE TRES ESPECIES DEL GÉNERO ASTROPHYTUM (CACTACEAE). Gayana - Botanica, 2013, 70, 26-30.	0.2	1
56	Effect of fire and elevation on the regeneration of Pinus hartwegii Lindl. in northeastern Mexico. Revista Chapingo, Serie Ciencias Forestales Y Del Ambiente, 2018, 24, 197-205.	0.2	1
57	Germination of Amoreuxia wrightii species at risk of extinction in Northeastern Mexico. Brazilian Journal of Biology, 2020, 80, 485-486.	0.9	1
58	Floral visitors of <i>Astrophytum myriostigma </i> in La Sierra El Sarnoso, Durango, Mexico. Southwestern Naturalist, 2015, 60, 158-165.	0.1	0
59	Livestock Effect On Floristic Composition and Vegetation Structure of Two Desert Scrublands In Northwest Coahuila, Mexico. Southwestern Naturalist, 2017, 62, 135-142.	0.1	O