
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/43318/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improving the electrochemical stability of AZ31 Mg alloy in a 3.5wt.% NaCl solution via the surface functionalization of plasma electrolytic oxidation coating. Journal of Magnesium and Alloys, 2022, 10, 1311-1325.	11.9	35
2	Microwave-assisted synthesis of NiTe2 photocatalyst as a facile and scalable approach for energy-efficient photocatalysis and detoxification of harmful organic dyes. Separation and Purification Technology, 2022, 282, 120025.	7.9	12
3	Macro and micro thermal investigation of nanoarchitectonics-based coatings on cotton fabric using new quaternized starch. RSC Advances, 2022, 12, 2888-2900.	3.6	4
4	Multi-Response Optimization of Surface Grinding Process Parameters of AISI 4140 Alloy Steel Using Response Surface Methodology and Desirability Function under Dry and Wet Conditions. Coatings, 2022, 12, 104.	2.6	9
5	Facile formation with HA/Sr–GO-based composite coatings via green hydrothermal treatment on β-type TiNbTaZr alloys: Morphological and electrochemical insights. Journal of Materials Research, 2022, 37, 2512-2524.	2.6	11
6	Improving the Chemical Stability of Al Alloy through the Densification of the Alumina Layer Assisted by SiF62â" Anion Hydrolysis. Nanomaterials, 2022, 12, 1354.	4.1	4
7	Anionic assisted incorporation of WO3 nanoparticles for enhanced electrochemical properties of AZ31 Mg alloy coated via plasma electrolytic oxidation. Journal of Alloys and Compounds, 2022, 916, 165445.	5.5	31
8	Bimetallic Cu/Fe MOF-Based Nanosheet Film via Binder-Free Drop-Casting Route: A Highly Efficient Urea-Electrolysis Catalyst. Nanomaterials, 2022, 12, 1916.	4.1	33
9	Simultaneous improvement of corrosion resistance and bioactivity of a titanium alloy via wet and dry plasma treatments. Journal of Alloys and Compounds, 2021, 851, 156840.	5.5	47
10	Stabilization of AZ31 Mg alloy in sea water via dual incorporation of MgO and WO3 during micro-arc oxidation. Journal of Alloys and Compounds, 2021, 853, 157036.	5.5	43
11	A novel hybrid composite composed of albumin, WO3, and LDHs film for smart corrosion protection of Mg alloy. Composites Part B: Engineering, 2021, 204, 108490.	12.0	57
12	Recent progress in surface modification of metals coated by plasma electrolytic oxidation: Principle, structure, and performance. Progress in Materials Science, 2021, 117, 100735.	32.8	282
13	Acceleration of Bone Formation and Adhesion Ability on Dental Implant Surface via Plasma Electrolytic Oxidation in a Solution Containing Bone Ions. Metals, 2021, 11, 106.	2.3	20
14	A Review on LDH-Smart Functionalization of Anodic Films of Mg Alloys. Nanomaterials, 2021, 11, 536.	4.1	25
15	Enhancement of Mixing Performance of Two-Layer Crossing Micromixer through Surrogate-Based Optimization. Micromachines, 2021, 12, 211.	2.9	4
16	Optimization of Surface Properties of Plasma Electrolytic Oxidation Coating by Organic Additives: A Review. Coatings, 2021, 11, 374.	2.6	22
17	Surface Properties of Graphene Functionalized TiO2/nHA Hybrid Coatings Made on Ti6Al7Nb Alloys via Plasma Electrolytic Oxidation (PEO). Molecules, 2021, 26, 3903.	3.8	17
18	Fabrication of a Protective Hybrid Coating Composed of TiO2, MoO2, and SiO2 by Plasma Electrolytic Oxidation of Titanium. Metals, 2021, 11, 1182.	2.3	23

#	Article	IF	CITATIONS
19	Fabrication of functionalized coating with a unique flowery-flake structure for an effective corrosion performance and catalytic degradation. Chemical Engineering Journal, 2021, 420, 129737.	12.7	40
20	A Review on Synthesis, Properties, and Applications of Polylactic Acid/Silica Composites. Polymers, 2021, 13, 3036.	4.5	23
21	The Ti3.6Nb1.0Ta0.2Zr0.2 coating on anodized aluminum by PVD: A potential candidate for short-time biomedical applications. Vacuum, 2021, 192, 110450.	3.5	11
22	The effect of in-situ reactive incorporation of MoOx on the corrosion behavior of Ti-6Al-4ÂV alloy coated via micro-arc oxidation coating. Corrosion Science, 2021, 192, 109764.	6.6	32
23	Processing of Ti/(HA+ZrO2) biocomposite and 50% porous hybrid scaffolds with low Young's modulus by powder metallurgy: Comparing of structural, mechanical, and corrosion properties. Materials Today Communications, 2021, 29, 102813.	1.9	7
24	Development of Antimicrobial Cotton Fabric Impregnating AgNPs Utilizing Contemporary Practice. Coatings, 2021, 11, 1413.	2.6	7
25	Tailored alumina coatings for corrosion inhibition considering the synergism between phosphate ions and benzotriazole. Journal of Alloys and Compounds, 2020, 822, 153566.	5.5	12
26	Triggering the hydroxyapatite deposition on the surface of PEO-coated Ti–6Al–4V alloy via the dual incorporation of Zn and Mg ions. Journal of Alloys and Compounds, 2020, 819, 153038.	5.5	59
27	Formation of stable coral reef-like structures via self-assembly of functionalized polyvinyl alcohol for superior corrosion performance of AZ31 Mg alloy. Materials and Design, 2020, 193, 108823.	7.0	37
28	Advantage of an in-situ reactive incorporation over direct particles incorporation of V2O5 for a competitive plasma electrolysis coating. Surface and Coatings Technology, 2020, 399, 126200.	4.8	25
29	Hard acid–hard base interactions responsible for densification of alumina layer for superior electrochemical performance. Corrosion Science, 2020, 170, 108663.	6.6	36
30	Plasma electrolytic oxidation of Ti-25Nb-xTa alloys in solution containing Ca and P ions. Surface and Coatings Technology, 2020, 395, 125916.	4.8	32
31	Morphological modification and corrosion response of MgO and Mg3(PO4)2 composite formed on magnesium alloy. Composites Part B: Engineering, 2019, 176, 107225.	12.0	54
32	Electrochemical and bioactive characteristics of the porous surface formed on Ti-xNb alloys via plasma electrolytic oxidation. Surface and Coatings Technology, 2019, 378, 125027.	4.8	46
33	Hydration-dehydration behavior induced densification of porous plasma electrolysis coating. Journal of Alloys and Compounds, 2019, 798, 220-226.	5.5	10
34	Effect of starch on the corrosion behavior of Al-Mg-Si alloy processed by micro arc oxidation from an ecofriendly electrolyte system. Bioelectrochemistry, 2019, 128, 133-139.	4.6	21
35	Benzoate intercalated Mg-Al-layered double hydroxides (LDHs) as efficient chloride traps for plasma electrolysis coatings. Journal of Alloys and Compounds, 2019, 787, 772-778.	5.5	53
36	Review of Recent Advances in Polylactic Acid/TiO2 Composites. Materials, 2019, 12, 3659.	2.9	46

#	Article	IF	CITATIONS
37	Poly(Lactic Acid) Composites. Materials, 2019, 12, 3586.	2.9	14
38	On the compactness of the oxide layer induced by utilizing a porosification agent. Applied Surface Science, 2019, 473, 715-725.	6.1	22
39	Optimization of defect-free protective layer considering the geometrical linearity of condensed phosphates. Journal of Alloys and Compounds, 2018, 752, 155-163.	5.5	14
40	Formation of flower-like structures for optimizing the corrosion resistance of Mg alloy. Materials Letters, 2018, 221, 196-200.	2.6	40
41	A novel composite system composed of zirconia and LDHs film grown on plasma electrolysis coating: Toward a stable smart coating. Ultrasonics Sonochemistry, 2018, 49, 316-324.	8.2	50
42	Polylactic acid blends: The future of green, light and tough. Progress in Polymer Science, 2018, 85, 83-127.	24.7	418
43	Microstructural characteristics of oxide layer formed by plasma electrolytic oxidation: Nanocrystalline and amorphous structures. Journal of Alloys and Compounds, 2017, 707, 167-171.	5.5	41
44	Soft plasma electrolysis with complex ions for optimizing electrochemical performance. Scientific Reports, 2017, 7, 44458.	3.3	95
45	Effect of Wood Fibers on the Rheological and Mechanical Properties of Polystyrene/Wood Composites. Journal of Wood Chemistry and Technology, 2017, 37, 251-260.	1.7	25
46	Electrochemical response of MoO 2 -Al 2 O 3 oxide films via plasma electrolytic oxidation. Surface and Coatings Technology, 2017, 322, 163-173.	4.8	30
47	A highly compact coating responsible for enhancing corrosion properties of Al-Mg-Si alloy. Materials Letters, 2017, 196, 316-319.	2.6	17
48	Towards a compact coating formed on Al6061 alloy in phosphate based electrolyte via two-step PEO process and K 2 ZrF 6 additives. Surface and Coatings Technology, 2017, 328, 355-360.	4.8	19
49	Corrosion behavior of Al-1wt% Mg-0.85wt%Si alloy coated by micro-arc-oxidation using TiO2 and Na2MoO4 additives: Role of current density. Journal of Alloys and Compounds, 2017, 723, 448-455.	5.5	36
50	Toward a nearly defect-free coating via high-energy plasma sparks. Scientific Reports, 2017, 7, 2378.	3.3	36
51	Dual incorporation of SiO 2 and ZrO 2 nanoparticles into the oxide layer on 6061 Al alloy via plasma electrolytic oxidation: Coating structure and corrosion properties. Journal of Alloys and Compounds, 2017, 707, 358-364.	5.5	76
52	Melt Flow Behavior and Processability of Polylactic Acid/Polystyrene (PLA/PS) Polymer Blends. Journal of Polymers and the Environment, 2017, 25, 994-998.	5.0	34
53	A review on recent researches on polylactic acid/carbon nanotube composites. Polymer Bulletin, 2017, 74, 2921-2937.	3.3	38
54	Synthesis and antioxidant activities of Schiff bases and their complexes: a review. Applied Organometallic Chemistry, 2016, 30, 810-817.	3.5	163

#	Article	IF	CITATIONS
55	Fabrication and materials properties of polystyrene/carbon nanotube (PS/CNT) composites: A review. European Polymer Journal, 2016, 79, 36-62.	5.4	112
56	Incorporation of MoO 2 and ZrO 2 particles into the oxide film formed on 7075 Al alloy via micro-arc oxidation. Materials Letters, 2016, 182, 260-263.	2.6	52
57	Electrochemical Response of Al ₂ O ₃ -MoO ₂ -TiO ₂ Oxide Films Formed on 6061 Al Alloy by Plasma Electrolytic Oxidation. Journal of the Electrochemical Society, 2016, 163, C587-C592.	2.9	36
58	Modification of a porous oxide layer formed on an Al–Zn–Mg alloy via plasma electrolytic oxidation and post treatment using oxalate ions. RSC Advances, 2016, 6, 107109-107113.	3.6	24
59	Mechanical properties and compatibility of polylactic acid/polystyrene polymer blend. Materials Letters, 2016, 164, 409-412.	2.6	41
60	Capillary Flow Behavior of Polycarbonate (PC)/Acrylonitrile– Butadiene–Styrene (ABS) Blends. Journal of Composites and Biodegradable Polymers, 2016, 4, 11-15.	0.3	2
61	Rheological properties of ABS/wood composites. European Journal of Wood and Wood Products, 2015, 73, 701-703.	2.9	10
62	Effect of sodium benzoate on corrosion behavior of 6061 Al alloy processed by plasma electrolytic oxidation. Surface and Coatings Technology, 2015, 283, 268-273.	4.8	54
63	Microstructure and plastic anisotropy of fine grained AZ31 magnesium alloy fabricated by differential speed rolling at 473 and 573 K. Materials Research Innovations, 2015, 19, S5-477-S5-480.	2.3	4
64	Effect of Deformation Temperature on Microstructure and Mechanical Properties of AZ31 Mg Alloy Processed by Differential-Speed Rolling. Journal of Materials Science and Technology, 2015, 31, 498-503.	10.7	67
65	Properties and medical applications of polylactic acid: A review. EXPRESS Polymer Letters, 2015, 9, 435-455.	2.1	505
66	Melt rheology of poly(vinylidene fluoride) (PVDF)/low density polyethylene (LDPE) blends. Polymer Science - Series A, 2015, 57, 233-238.	1.0	11
67	Material properties of polyethylene/wood composites: A review of recent works. Polymer Science - Series A, 2015, 57, 689-703.	1.0	21
68	Effect of acrylonitrile–butadiene–styrene on flow behavior and mechanical properties of polylactic acid/low density polyethylene blend. Asia-Pacific Journal of Chemical Engineering, 2014, 9, 349-353.	1.5	10
69	Biodegradable polymer blends and composites: An overview. Polymer Science - Series A, 2014, 56, 812-829.	1.0	79
70	Slit die rheology of thermoplastic starch during extrusion process. International Journal of Plastics Technology, 2013, 17, 51-60.	3.1	9
71	Recycling of waste from polymer materials: An overview of the recent works. Polymer Degradation and Stability, 2013, 98, 2801-2812.	5.8	352
72	On-Line Rheological Measurements and Mechanical Properties of Acrylonitrile-Butadiene-styrene/Corn Starch Composite. International Journal of Polymeric Materials and Polymeric Biomaterials, 2013, 62, 260-264.	3.4	10

#	Article	IF	CITATIONS
73	Poly(lactic acid)/low density polyethylene polymer blends: preparation and characterization. Asia-Pacific Journal of Chemical Engineering, 2012, 7, S310.	1.5	30
74	Preparation and studying properties of thermoplastic starch/acrylonitrile–butadiene–styrene blend. International Journal of Plastics Technology, 2012, 16, 39-49.	3.1	14
75	Thermoplastic starch blends: A review of recent works. Polymer Science - Series A, 2012, 54, 165-176.	1.0	112
76	Preparation and studying properties of polybuteneâ€1/thermoplastic starch blends. Journal of Applied Polymer Science, 2012, 124, 3092-3098.	2.6	8
77	Rheological and mechanical properties of polypropylene/thermoplastic starch blend. Polymer Bulletin, 2012, 68, 1079-1091.	3.3	33
78	Preparation and Characterization of Binary and Ternary Blends with Poly(Lactic Acid), Polystyrene, and Acrylonitrile-Butadiene-Styrene. Journal of Biomaterials and Nanobiotechnology, 2012, 03, 405-412.	0.5	20
79	Effect of recycling on rheological and mechanical properties of poly(lactic acid)/polystyrene polymer blend. Journal of Materials Science, 2011, 46, 3013-3019.	3.7	71
80	Rheological and mechanical characterization of poly(lactic acid)/polypropylene polymer blends. Journal of Polymer Research, 2011, 18, 1799-1806.	2.4	85
81	Melt Rheology of Poly(Lactic Acid)/Low Density Polyethylene Polymer Blends. Advances in Chemical Engineering and Science, 2011, 01, 208-214.	0.5	49
82	Rheological and mechanical properties of poly(lactic acid)/polystyrene polymer blend. Polymer Bulletin, 2010, 65, 509-519.	3.3	61
83	Biodegradable Polymers: Blends and Composites. , 0, , 625-637.		0
84	Polylactic Acid: Properties and Applications. , 0, , 6449-6459.		0