
Michael R Gillings

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4331742/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New perspectives on mobile genetic elements: a paradigm shift for managing the antibiotic resistance crisis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200462.	4.0	12
2	Assessment of global health risk of antibiotic resistance genes. Nature Communications, 2022, 13, 1553.	12.8	193
3	Methods for the targeted sequencing and analysis of integrons and their gene cassettes from complex microbial communities. Microbial Genomics, 2022, 8, .	2.0	9
4	Genetic differentiation in the threatened soft coral <i>Dendronephthya australis</i> in temperate eastern Australia. Austral Ecology, 2022, 47, 804-817.	1.5	6
5	Xenobiotic pollution affects transcription of antibiotic resistance and virulence factors in aquatic microcosms. Environmental Pollution, 2022, 306, 119396.	7.5	11
6	Three-Year Consecutive Field Application of Erythromycin Fermentation Residue Following Hydrothermal Treatment: Cumulative Effect on Soil Antibiotic Resistance Genes. Engineering, 2022, 15, 78-88.	6.7	12
7	A survey of sub-inhibitory concentrations of antibiotics in the environment. Journal of Environmental Sciences, 2021, 99, 21-27.	6.1	123
8	Air pollution could drive global dissemination of antibiotic resistance genes. ISME Journal, 2021, 15, 270-281.	9.8	95
9	Contrasting patterns of population structure in commercially fished sawsharks from southern Australian waters. Reviews in Fish Biology and Fisheries, 2021, 31, 359-379.	4.9	2
10	Aerobic bacteria and archaea tend to have larger and more versatile genomes. Oikos, 2021, 130, 501-511.	2.7	19
11	Cell size, genome size, and maximum growth rate are nearâ€independent dimensions of ecological variation across bacteria and archaea. Ecology and Evolution, 2021, 11, 3956-3976.	1.9	43
12	Trait dimensions in bacteria and archaea compared to vascular plants. Ecology Letters, 2021, 24, 1487-1504.	6.4	21
13	Deciphering Potential Roles of Earthworms in Mitigation of Antibiotic Resistance in the Soils from Diverse Ecosystems. Environmental Science & Technology, 2021, 55, 7445-7455.	10.0	49
14	The Antimicrobial Resistance Crisis: An Inadvertent, Unfortunate but Nevertheless Informative Experiment in Evolutionary Biology. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	3
15	An omics-based framework for assessing the health risk of antimicrobial resistance genes. Nature Communications, 2021, 12, 4765.	12.8	248
16	Predicting the taxonomic and environmental sources of integron gene cassettes using structural and sequence homology of attC sites. Communications Biology, 2021, 4, 946.	4.4	23
17	Trophic level drives the host microbiome of soil invertebrates at a continental scale. Microbiome, 2021, 9, 189.	11.1	18
18	The Natural History of Integrons. Microorganisms, 2021, 9, 2212.	3.6	32

#	Article	IF	CITATIONS
19	Three faces of biofilms: a microbial lifestyle, a nascent multicellular organism, and an incubator for diversity. Npj Biofilms and Microbiomes, 2021, 7, 80.	6.4	94
20	Non linical settings – the understudied facet of antimicrobial drug resistance. Environmental Microbiology, 2021, 23, 7271-7274.	3.8	9
21	Phylogeny and form in fishes: Genetic and morphometric characteristics of dragonets (Foetorepus) Tj ETQq1 1 C	0.784314 r 0.8	∙g₿T /Overlo
22	Conserving the holobiont. Functional Ecology, 2020, 34, 764-776.	3.6	61
23	Red fox viromes in urban and rural landscapes. Virus Evolution, 2020, 6, veaa065.	4.9	27
24	Integrating Biomedical, Ecological, and Sustainability Sciences to Manage Emerging Infectious Diseases. One Earth, 2020, 3, 23-26.	6.8	22
25	Secondary Effects of Antibiotics on Microbial Biofilms. Frontiers in Microbiology, 2020, 11, 2109.	3.5	61
26	A Novel Family of Acinetobacter Mega-Plasmids Are Disseminating Multi-Drug Resistance Across the Globe While Acquiring Location-Specific Accessory Genes. Frontiers in Microbiology, 2020, 11, 605952.	3.5	18
27	Cyanobacterial blooms contribute to the diversity of antibiotic-resistance genes in aquatic ecosystems. Communications Biology, 2020, 3, 737.	4.4	66
28	Novel Transposon Tn <i>6433</i> Variants Accelerate the Dissemination of <i>tet</i> (E) in <i>Aeromonas</i> in an Aerobic Biofilm Reactor under Oxytetracycline Stresses. Environmental Science & Technology, 2020, 54, 6781-6791.	10.0	30
29	Dynamics of class 1 integrons in aerobic biofilm reactors spiked with antibiotics. Environment International, 2020, 140, 105816.	10.0	21
30	A synthesis of bacterial and archaeal phenotypic trait data. Scientific Data, 2020, 7, 170.	5.3	59
31	The Peril and Promise of Integrons: Beyond Antibiotic Resistance. Trends in Microbiology, 2020, 28, 455-464.	7.7	62
32	Genetic and historical evidence of common sawsharks <i>Pristiophorus cirratus</i> in the waters of southern Queensland. Journal of Fish Biology, 2019, 95, 1342-1345.	1.6	6
33	Loss of soil microbial diversity exacerbates spread of antibiotic resistance. Soil Ecology Letters, 2019, 1, 3-13.	4.5	66
34	Soil biota, antimicrobial resistance and planetary health. Environment International, 2019, 131, 105059.	10.0	163
35	Fungus-initiated catalytic reactions at hyphal-mineral interfaces drive iron redox cycling and biomineralization. Geochimica Et Cosmochimica Acta, 2019, 260, 192-203.	3.9	40
36	Rapid microevolution of biofilm cells in response to antibiotics. Npj Biofilms and Microbiomes, 2019, 5, 34.	6.4	96

#	Article	IF	CITATIONS
37	Population genetic analyses reveal female reproductive philopatry in the oviparous Port Jackson shark. Marine and Freshwater Research, 2019, 70, 986.	1.3	17
38	Catabolism of Nucleic Acids by a Cystic Fibrosis Pseudomonas aeruginosa Isolate: An Adaptive Pathway to Cystic Fibrosis Sputum Environment. Frontiers in Microbiology, 2019, 10, 1199.	3.5	11
39	The complete mitochondrial genome of the Epaulette Shark, Hemiscyllium ocellatum (Bonnaterre,) Tj ETQq1 1 C	0.784314 r 0.4	gBŢ /Overlack
40	Bats as reservoirs of antibiotic resistance determinants: A survey of class 1 integrons in Grey-headed Flying Foxes (Pteropus poliocephalus). Infection, Genetics and Evolution, 2019, 70, 107-113.	2.3	25
41	High diversity and rapid spatial turnover of integron gene cassettes in soil. Environmental Microbiology, 2019, 21, 1567-1574.	3.8	33
42	Microbial Genomes as Extension Packs for Macroorganismal Diversity: A Reply to Morimoto and Baltrus. Trends in Ecology and Evolution, 2019, 34, 188.	8.7	1
43	Characterization of 12 polymorphic microsatellite loci in the Port Jackson Shark, Heterodontus portusjacksoni (Meyer, 1793). Marine Biodiversity, 2019, 49, 505-508.	1.0	1
44	Impact of Wastewater Treatment on the Prevalence of Integrons and the Genetic Diversity of Integron Gene Cassettes. Applied and Environmental Microbiology, 2018, 84, .	3.1	62
45	Human dissemination of genes and microorganisms in Earth's Critical Zone. Global Change Biology, 2018, 24, 1488-1499.	9.5	71
46	DNA as a Pollutant: the Clinical Class 1 Integron. Current Pollution Reports, 2018, 4, 49-55.	6.6	49
47	Prevalence and transmission of antibiotic resistance and microbiota between humans and water environments. Environment International, 2018, 121, 1155-1161.	10.0	92
48	Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome, 2018, 6, 231.	11.1	240
49	Environmental dimensions of antibiotic resistance: assessment of basic science gaps. FEMS Microbiology Ecology, 2018, 94, .	2.7	63
50	The Extended Genotype: Microbially Mediated Olfactory Communication. Trends in Ecology and Evolution, 2018, 33, 885-894.	8.7	56
51	Pollutants That Replicate: Xenogenetic DNAs. Trends in Microbiology, 2018, 26, 975-977.	7.7	22
52	Conserved phylogenetic distribution and limited antibiotic resistance of class 1 integrons revealed by assessing the bacterial genome and plasmid collection. Microbiome, 2018, 6, 130.	11.1	83
53	Tracking antibiotic resistome during wastewater treatment using high throughput quantitative PCR. Environment International, 2018, 117, 146-153.	10.0	152
54	Mobile DNAs as Ecologically and Evolutionarily Independent Units of Life. Trends in Microbiology, 2018, 26, 904-912.	7.7	43

#	Article	IF	CITATIONS
55	Continental-scale pollution of estuaries with antibiotic resistance genes. Nature Microbiology, 2017, 2, 16270.	13.3	812
56	Class 1 integrons as invasive species. Current Opinion in Microbiology, 2017, 38, 10-15.	5.1	128
57	Chemical, biological, and DNA markers for tracing slaughterhouse effluent. Environmental Research, 2017, 156, 534-541.	7.5	4
58	Application of Struvite Alters the Antibiotic Resistome in Soil, Rhizosphere, and Phyllosphere. Environmental Science & Technology, 2017, 51, 8149-8157.	10.0	196
59	Microbial mass movements. Science, 2017, 357, 1099-1100.	12.6	218
60	Lateral gene transfer, bacterial genome evolution, and the Anthropocene. Annals of the New York Academy of Sciences, 2017, 1389, 20-36.	3.8	106
61	Genomics and the evolution of antibiotic resistance. Annals of the New York Academy of Sciences, 2017, 1388, 92-107.	3.8	50
62	Metagenomics of urban sewage identifies an extensively shared antibiotic resistome in China. Microbiome, 2017, 5, 84.	11.1	247
63	Discovery of the fourth mobile sulfonamide resistance gene. Microbiome, 2017, 5, 160.	11.1	134
64	Evolution of class 1 integrons: Mobilization and dispersal via food-borne bacteria. PLoS ONE, 2017, 12, e0179169.	2.5	81
65	Escherichia coli out in the cold: Dissemination of human-derived bacteria into the Antarctic microbiome. Environmental Pollution, 2016, 215, 58-65.	7.5	37
66	Information in the Biosphere: Biological and Digital Worlds. Trends in Ecology and Evolution, 2016, 31, 180-189.	8.7	40
67	Screening Foodstuffs for Class 1 Integrons and Gene Cassettes. Journal of Visualized Experiments, 2015, , e52889.	0.3	8
68	Ecology and Evolution of the Human Microbiota: Fire, Farming and Antibiotics. Genes, 2015, 6, 841-857.	2.4	61
69	Potential impacts of aquatic pollutants: sub-clinical antibiotic concentrations induce genome changes and promote antibiotic resistance. Frontiers in Microbiology, 2015, 6, 803.	3.5	60
70	6. Microbial Slime Curtain Communities of the Nullarbor Caves. , 2015, , 125-136.		0
71	Antibiotic Discovery: Combatting Bacterial Resistance in Cells and in Biofilm Communities. Molecules, 2015, 20, 5286-5298.	3.8	276
72	The unusual occurrence of green algal balls of <i>Chaetomorpha linum</i> on a beach in Sydney, Australia. Botanica Marina, 2015, 58, 401-407.	1.2	6

#	Article	IF	CITATIONS
73	Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME Journal, 2015, 9, 1269-1279.	9.8	974
74	Microbiology of the Anthropocene. Anthropocene, 2014, 5, 1-8.	3.3	83
75	Were there evolutionary advantages to premenstrual syndrome?. Evolutionary Applications, 2014, 7, 897-904.	3.1	23
76	DNA technology and evolution of the Central Dogma. Trends in Ecology and Evolution, 2014, 29, 1-2.	8.7	33
77	The cost of living in the Anthropocene. Earth Perspectives Transdisciplinarity Enabled, 2014, 1, 2.	1.4	25
78	Genetic structure and diversity of two highly vulnerable carcharhinids in Australian waters. Endangered Species Research, 2014, 24, 45-60.	2.4	19
79	Integrons: Past, Present, and Future. Microbiology and Molecular Biology Reviews, 2014, 78, 257-277.	6.6	536
80	Fungal Community Structure in Disease Suppressive Soils Assessed by 28S LSU Gene Sequencing. PLoS ONE, 2014, 9, e93893.	2.5	140
81	Rapid Extraction of PCR-Competent DNA from Recalcitrant Environmental Samples. Methods in Molecular Biology, 2014, 1096, 17-23.	0.9	14
82	Life in the dark: metagenomic evidence that a microbial slime community is driven by inorganic nitrogen metabolism. ISME Journal, 2013, 7, 1227-1236.	9.8	63
83	The diatom genus <i><scp>P</scp>seudoâ€nitzschia</i> (<scp>B</scp> acillariophyceae) in <scp>N</scp> ew <scp>S</scp> outh <scp>W</scp> ales, <scp>A</scp> ustralia: morphotaxonomy, molecular phylogeny, toxicity, and distribution. Journal of Phycology, 2013, 49, 765-785.	2.3	32
84	Changes in Prokaryote and Eukaryote Assemblages Along a Gradient of Hydrocarbon Contamination in Groundwater. Geomicrobiology Journal, 2013, 30, 623-634.	2.0	15
85	Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome. Frontiers in Microbiology, 2013, 4, 4.	3.5	220
86	Into the Wild: Dissemination of Antibiotic Resistance Determinants via a Species Recovery Program. PLoS ONE, 2013, 8, e63017.	2.5	43
87	Population Expansion and Genetic Structure in Carcharhinus brevipinna in the Southern Indo-Pacific. PLoS ONE, 2013, 8, e75169.	2.5	21
88	Are humans increasing bacterial evolvability?. Trends in Ecology and Evolution, 2012, 27, 346-352.	8.7	146
89	Primordial Enemies: Fungal Pathogens in Thrips Societies. PLoS ONE, 2012, 7, e49737.	2.5	6
90	Individual Variability in Reproductive Success Determines Winners and Losers under Ocean Acidification: A Case Study with Sea Urchins. PLoS ONE, 2012, 7, e53118.	2.5	88

#	Article	IF	CITATIONS
91	HOW EVOLUTION GENERATES COMPLEXITY WITHOUT DESIGN: LANGUAGE AS AN INSTRUCTIONAL METAPHOR. Evolution; International Journal of Organic Evolution, 2012, 66, 617-622.	2.3	1
92	Identification of the rainbowfish in Lake Eacham using DNA sequencing. Australian Journal of Zoology, 2012, 60, 334.	1.0	3
93	Identification and differentiation of Cryptosporidium species by capillary electrophoresis single-strand conformation polymorphism. FEMS Microbiology Letters, 2011, 314, 34-41.	1.8	10
94	Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiology Reviews, 2011, 35, 790-819.	8.6	530
95	Antimicrobial strength increases with group size: implications for social evolution. Biology Letters, 2011, 7, 249-252.	2.3	35
96	Preclinical Class 1 Integron with a Complete Tn402-Like Transposition Module. Applied and Environmental Microbiology, 2011, 77, 335-337.	3.1	27
97	Differential antimicrobial activity in response to the entomopathogenic fungus <i>Cordyceps</i> in six Australian bee species. Australian Journal of Entomology, 2010, 49, 145-149.	1.1	6
98	Heterogeneity of surface attached microbial communities from Sydney Harbour, Australia. Marine Genomics, 2010, 3, 99-105.	1.1	3
99	Mating system and genetic structure in the paper wasp (Polistes humilis). Australian Journal of Zoology, 2009, 57, 73.	1.0	4
100	Terminal Restriction Fragment Length Polymorphism for Identification of <i>Cryptosporidium</i> Species in Human Feces. Applied and Environmental Microbiology, 2009, 75, 108-112.	3.1	27
101	Mobilization of a Tn <i>402</i> -Like Class 1 Integron with a Novel Cassette Array via Flanking Miniature Inverted-Repeat Transposable Element-Like Structures. Applied and Environmental Microbiology, 2009, 75, 6002-6004.	3.1	53
102	Proposal of Xanthomonas translucens pv. pistaciae pv. nov., pathogenic to pistachio (Pistacia vera). Systematic and Applied Microbiology, 2009, 32, 549-557.	2.8	22
103	ACID: annotation of cassette and integron data. BMC Bioinformatics, 2009, 10, 118.	2.6	53
104	Eimeria trichosuri: Phylogenetic position of a marsupial coccidium, based on 18S rDNA sequences. Experimental Parasitology, 2009, 122, 165-168.	1.2	41
105	Population connectivity in the temperate damselfish Parma microlepis: analyses of genetic structure across multiple spatial scales. Marine Biology, 2009, 156, 381-393.	1.5	19
106	Gene cassettes encoding resistance to quaternary ammonium compounds: a role in the origin of clinical class 1 integrons?. ISME Journal, 2009, 3, 209-215.	9.8	121
107	Evidence for dynamic exchange of <i>qac</i> ¢€ƒgene cassettes between class 1 integrons and other integrons in freshwater biofilms. FEMS Microbiology Letters, 2009, 296, 282-288.	1.8	101
108	Cultivation of Fastidious Bacteria by Viability Staining and Micromanipulation in a Soil Substrate Membrane System. Applied and Environmental Microbiology, 2009, 75, 3352-3354.	3.1	39

#	Article	IF	CITATIONS
109	Quantification of class 1 integron abundance in natural environments using real-time quantitative PCR. FEMS Microbiology Letters, 2008, 278, 207-212.	1.8	94
110	Recovery of diverse genes for class 1 integron-integrases from environmental DNA samples. FEMS Microbiology Letters, 2008, 287, 56-62.	1.8	79
111	Cultivating previously uncultured soil bacteria using a soil substrate membrane system. Nature Protocols, 2008, 3, 1261-1269.	12.0	85
112	A comparison of common programming languages used in bioinformatics. BMC Bioinformatics, 2008, 9, 82.	2.6	88
113	Alarm calling best predicts mating and reproductive success in ornamented male fowl, Gallus gallus. Animal Behaviour, 2008, 76, 543-554.	1.9	31
114	An enhanced miniaturized assay for antimicrobial prospecting. Journal of Microbiological Methods, 2008, 72, 103-106.	1.6	21
115	The Evolution of Class 1 Integrons and the Rise of Antibiotic Resistance. Journal of Bacteriology, 2008, 190, 5095-5100.	2.2	432
116	Plant-Pathogenic Bacteria as Biological Weapons – Real Threats?. Phytopathology, 2008, 98, 1060-1065.	2.2	18
117	Use of chromosomal integron arrays as a phylogenetic typing system for Vibrio cholerae pandemic strains. Microbiology (United Kingdom), 2007, 153, 1488-1498.	1.8	41
118	Antimicrobial defences increase with sociality in bees. Biology Letters, 2007, 3, 422-424.	2.3	91
119	Isolation and genetic diversity of endangered grey nurse shark (Carcharias taurus) populations. Biology Letters, 2006, 2, 308-311.	2.3	64
120	Isolation of microsatellites from Girella tricuspidata. Molecular Ecology Notes, 2006, 6, 428-430.	1.7	1
121	Genetic uniformity of international isolates ofLeifsonia xylisubsp.xyli, causal agent of ratoon stunting disease of sugarcane. Australasian Plant Pathology, 2006, 35, 503.	1.0	26
122	Recovery and evolutionary analysis of complete integron gene cassette arrays from Vibrio. BMC Evolutionary Biology, 2006, 6, 3.	3.2	51
123	Class 1 Integrons Potentially Predating the Association with Tn 402 -Like Transposition Genes Are Present in a Sediment Microbial Community. Journal of Bacteriology, 2006, 188, 5722-5730.	2.2	139
124	Molecular identification of species comprising an unusual biofilm from a groundwater treatment plant. Biofilms, 2006, 3, 19-24.	0.6	10
125	Integrons in Xanthomonas: A source of species genome diversity. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4419-4424.	7.1	93
126	Microcolony Cultivation on a Soil Substrate Membrane System Selects for Previously Uncultured Soil Bacteria. Applied and Environmental Microbiology, 2005, 71, 8714-8720.	3.1	204

#	Article	IF	CITATIONS
127	Integron-associated Mobile Gene Cassettes Code for Folded Proteins: The Structure of Bal32a, a New Member of the Adaptable α+β Barrel Family. Journal of Molecular Biology, 2005, 346, 1229-1241.	4.2	20
128	Isolation of highly polymorphic microsatellite loci from the temperate damselfish Parma microlepis. Molecular Ecology Notes, 2004, 4, 551-553.	1.7	4
129	Spatial scaling of microbial eukaryote diversity. Nature, 2004, 432, 747-750.	27.8	526
130	LAND SYSTEMS AS SURROGATES FOR BIODIVERSITY IN CONSERVATION PLANNING. , 2004, 14, 485-503.		72
131	Mobile Gene Cassettes: A Fundamental Resource for Bacterial Evolution. American Naturalist, 2004, 164, 1-12.	2.1	168
132	New enzymes from environmental cassette arrays: Functional attributes of a phosphotransferase and an RNA-methyltransferase. Protein Science, 2004, 13, 1651-1659.	7.6	30
133	Patterns of invertebrate biodiversity across a natural edge. Austral Ecology, 2003, 28, 227-236.	1.5	59
134	The gene cassette metagenome is a basic resource for bacterial genome evolution. Environmental Microbiology, 2003, 5, 383-394.	3.8	155
135	Survival of a lacZY-marked strain of Pseudomonas corrugata following a field release. FEMS Microbiology Ecology, 2003, 43, 367-374.	2.7	11
136	Recombination Activity of a Distinctive Integron-Gene Cassette System Associated with Pseudomonas stutzeri Populations in Soil. Journal of Bacteriology, 2003, 185, 918-928.	2.2	54
137	Survival of a lacZY-marked strain of Pseudomonas corrugata following a field release. FEMS Microbiology Ecology, 2003, 43, 367-374.	2.7	1
138	Hypothesis driven drug discovery. Microbiology Australia, 2002, 23, 8.	0.4	2
139	Potential problems with fluorescein diacetate assays of cell viability when testing natural products for antimicrobial activity. Journal of Microbiological Methods, 2001, 46, 261-267.	1.6	57
140	Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia. Environmental Microbiology, 2001, 3, 256-264.	3.8	151
141	Recovery of new integron classes from environmental DNA. FEMS Microbiology Letters, 2001, 195, 59-65.	1.8	151
142	Gene Cassette PCR: Sequence-Independent Recovery of Entire Genes from Environmental DNA. Applied and Environmental Microbiology, 2001, 67, 5240-5246.	3.1	174
143	Recovery of new integron classes from environmental DNA. FEMS Microbiology Letters, 2001, 195, 59-65.	1.8	5
144	Complementing genomics with proteomics: The membrane subproteome ofPseudomonas aeruginosa PAO1. Electrophoresis, 2000, 21, 3797-3809.	2.4	193

#	Article	IF	CITATIONS
145	Novel forms of ring-hydroxylating dioxygenases are widespread in pristine and contaminated soils. Environmental Microbiology, 2000, 2, 644-653.	3.8	36
146	Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria are widespread in Australian arid soils. FEMS Microbiology Ecology, 2000, 33, 111-120.	2.7	108
147	Title is missing!. Australasian Plant Pathology, 2000, 29, 120.	1.0	22
148	Heteroduplex mobility assay as a tool for predicting phylogenetic affiliation of environmental ribosomal RNA clones. Journal of Microbiological Methods, 2000, 41, 155-160.	1.6	9
149	Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria are widespread in Australian arid soils. FEMS Microbiology Ecology, 2000, 33, 111-120.	2.7	8
150	Phenotypic and genetic characterization of <i>Paecilomyces lilacinus</i> strains with biocontrol activity against root-knot nematodes. Canadian Journal of Microbiology, 2000, 46, 775-783.	1.7	10
151	Hemicellulase activity of antarctic microfungi. Journal of Applied Microbiology, 1999, 87, 366-370.	3.1	27
152	Sphingomonas paucimobilis BPSI-3 mutant AN2 produces a red catabolite during biphenyl degradation. Journal of Industrial Microbiology and Biotechnology, 1999, 23, 314-319.	3.0	6
153	Microorganisms, Australia and the Convention on Biological Diversity. Biodiversity and Conservation, 1999, 8, 1399-1415.	2.6	3
154	Identification of Xanthomonas fragariae, the cause of an outbreak of angular leaf spot on strawberry in South Australia, and comparison with the cause of previous outbreaks in New South Wales and New Zealand. Australasian Plant Pathology, 1998, 27, 97.	1.0	13
155	Rapid purification of DNA from soil for molecular biodiversity analysis. Letters in Applied Microbiology, 1998, 27, 49-53.	2.2	99
156	Characterization of the 3' End of the Gene for Bovine Factor XI. Journal of Dairy Science, 1998, 81, 539-543.	3.4	4
157	Use of fatty acid profiles and repetitive element polymerase chain reaction (PCR) to assess the genetic diversity of Pseudomonas syringae pv. pisi and Pseudomonas syringae pv. syringae isolated from field peas in Australia. Australasian Plant Pathology, 1997, 26, 98.	1.0	13
158	Polymerase chain reaction detection and assessment of genetic variation in New South Wales isolates of passionfruit woodiness potyvirus. Australasian Plant Pathology, 1997, 26, 155.	1.0	14
159	Repetitive element PCR fingerprinting (repâ€PCR) using enterobacterial repetitive intergenic consensus (ERIC) primers is not necessarily directed at ERIC elements. Letters in Applied Microbiology, 1997, 25, 17-21.	2.2	105
160	PCR amplification of crude microbial DNA extracted from soil. Letters in Applied Microbiology, 1997, 25, 303-307.	2.2	79
161	Amplification of anonymous DNA fragments using pairs of long primers generates reproducible DNA fingerprints that are sensitive to genetic variation. Electrophoresis, 1997, 18, 1512-1518.	2.4	55
162	Protection of tobacco plants transgenic for cucumber mosaic cucumovirus (CMV) coat protein is related to the virulence of the challenging CMV isolate. Australasian Plant Pathology, 1996, 25, 179.	1.0	6

#	Article	IF	CITATIONS
163	Relationships between populations of Pseudomonas syringae pv. persicae determined by restriction fragment analysis. Plant Pathology, 1996, 45, 350-357.	2.4	12
164	Sink Strength May Be the Key to Growth and Nitrogen Responses in N-Deficient Wheat at Elevated CO2. Functional Plant Biology, 1996, 23, 253.	2.1	109
165	Comparison of Strains of Agrobacterium-Vitis From Grapevine Source Areas in Australia. Australasian Plant Pathology, 1995, 24, 29.	1.0	6
166	A Further Outbreak of Citrus Canker Near Darwin Australasian Plant Pathology, 1995, 24, 90.	1.0	6
167	Rapid Identification of a Second Outbreak of Asiatic Citrus Canker in the Northern Territory Using the Polymerase Chain Reaction and Genomic Fingerprinting Australasian Plant Pathology, 1995, 24, 104.	1.0	6
168	Rapid identification of benomyl resistant strains of Botrytis cinerea using the polymerase chain reaction. Mycological Research, 1995, 99, 1483-1488.	2.5	61
169	Amplification and cloning of a βâ€ŧubulin gene fragment from strains ofBotrytis cinerearesistant and sensitive to benzimidazole fungicides. New Zealand Journal of Crop and Horticultural Science, 1994, 22, 173-179.	1.3	6
170	Detection of double-stranded RNA and virus-like particles in Australian isolates ofPythium irregulare. Plant Pathology, 1993, 42, 6-15.	2.4	40
171	Genetic diversity of Pseudomonas solanacearum biovars 2 and N2 assessed using restriction endonuclease analysis of total genomic DNA. Plant Pathology, 1993, 42, 744-753.	2.4	39
172	Restriction analysis of an amplified polygalacturonase gene fragment differentiates strains of the phytopathogenic bacterium Pseudomonas solanacearum. Letters in Applied Microbiology, 1993, 17, 44-48.	2.2	44
173	Characterisation of isolates and strains of citrus tristeza closterovirus using restriction analysis of the coat protein gene amplified by the polymerase chain reaction. Journal of Virological Methods, 1993, 44, 305-317.	2.1	67
174	Differentiation of Biologically Distinct Cucumber Mosaic Virus Isolates by PAGE of Double-Stranded RNA. Intervirology, 1992, 34, 23-29.	2.8	9
175	Cucumber Mosaic Cucumovirus Associated With Kava Plants Showing Symptoms of Dieback Disease in Fiji and Tonga Australasian Plant Pathology, 1992, 21, 169.	1.0	3
176	Characterization of Erwinia chrysanthemi biovars in alpine water sources by biochemical properties, GLC fatty acid analysis and genomic DNA fingerprinting. Journal of Applied Bacteriology, 1992, 73, 99-107.	1.1	28
177	Asiatic Citrus Canker Detected in a Pummelo Orchard in Northern Australia. Plant Disease, 1992, 76, 824.	1.4	16
178	Viroids in Australian Citrus: Relationship to Exocortis, Cachexia and Citrus Dwarfing. Functional Plant Biology, 1991, 18, 559.	2.1	33
179	Two New Records of Diseases Caused by Potyviruses in Australia Australasian Plant Pathology, 1990, 19, 36.	1.0	5
180	Phytophthora Erythroseptica Causing Wilting and Stunting of Tomato Australasian Plant Pathology, 1989, 18, 3.	1.0	4

#	Article	IF	CITATIONS
181	Pollution by antibiotics and resistance genes: dissemination into Australian wildlife. , 0, , 186-196.		1