Michael R Gillings

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4331742/publications.pdf

Version: 2024-02-01

181 papers 13,417 citations

23567 58 h-index 108 g-index

186 all docs

186 docs citations

186 times ranked 12922 citing authors

#	Article	IF	CITATIONS
1	Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME Journal, 2015, 9, 1269-1279.	9.8	974
2	Continental-scale pollution of estuaries with antibiotic resistance genes. Nature Microbiology, 2017, 2, 16270.	13.3	812
3	Integrons: Past, Present, and Future. Microbiology and Molecular Biology Reviews, 2014, 78, 257-277.	6.6	536
4	Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiology Reviews, 2011, 35, 790-819.	8.6	530
5	Spatial scaling of microbial eukaryote diversity. Nature, 2004, 432, 747-750.	27.8	526
6	The Evolution of Class 1 Integrons and the Rise of Antibiotic Resistance. Journal of Bacteriology, 2008, 190, 5095-5100.	2.2	432
7	Antibiotic Discovery: Combatting Bacterial Resistance in Cells and in Biofilm Communities. Molecules, 2015, 20, 5286-5298.	3.8	276
8	An omics-based framework for assessing the health risk of antimicrobial resistance genes. Nature Communications, 2021, 12, 4765.	12.8	248
9	Metagenomics of urban sewage identifies an extensively shared antibiotic resistome in China. Microbiome, 2017, 5, 84.	11.1	247
10	Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome, 2018, 6, 231.	11.1	240
11	Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome. Frontiers in Microbiology, 2013, 4, 4.	3.5	220
12	Microbial mass movements. Science, 2017, 357, 1099-1100.	12.6	218
13	Microcolony Cultivation on a Soil Substrate Membrane System Selects for Previously Uncultured Soil Bacteria. Applied and Environmental Microbiology, 2005, 71, 8714-8720.	3.1	204
14	Application of Struvite Alters the Antibiotic Resistome in Soil, Rhizosphere, and Phyllosphere. Environmental Science & Enviro	10.0	196
15	Complementing genomics with proteomics: The membrane subproteome of Pseudomonas aeruginosa PAO1. Electrophoresis, 2000, 21, 3797-3809.	2.4	193
16	Assessment of global health risk of antibiotic resistance genes. Nature Communications, 2022, 13, 1553.	12.8	193
17	Gene Cassette PCR: Sequence-Independent Recovery of Entire Genes from Environmental DNA. Applied and Environmental Microbiology, 2001, 67, 5240-5246.	3.1	174
18	Mobile Gene Cassettes: A Fundamental Resource for Bacterial Evolution. American Naturalist, 2004, 164, 1-12.	2.1	168

#	Article	IF	Citations
19	Soil biota, antimicrobial resistance and planetary health. Environment International, 2019, 131, 105059.	10.0	163
20	The gene cassette metagenome is a basic resource for bacterial genome evolution. Environmental Microbiology, 2003, 5, 383-394.	3.8	155
21	Tracking antibiotic resistome during wastewater treatment using high throughput quantitative PCR. Environment International, 2018, 117, 146-153.	10.0	152
22	Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia. Environmental Microbiology, 2001, 3, 256-264.	3.8	151
23	Recovery of new integron classes from environmental DNA. FEMS Microbiology Letters, 2001, 195, 59-65.	1.8	151
24	Are humans increasing bacterial evolvability?. Trends in Ecology and Evolution, 2012, 27, 346-352.	8.7	146
25	Fungal Community Structure in Disease Suppressive Soils Assessed by 28S LSU Gene Sequencing. PLoS ONE, 2014, 9, e93893.	2.5	140
26	Class 1 Integrons Potentially Predating the Association with Tn 402 -Like Transposition Genes Are Present in a Sediment Microbial Community. Journal of Bacteriology, 2006, 188, 5722-5730.	2.2	139
27	Discovery of the fourth mobile sulfonamide resistance gene. Microbiome, 2017, 5, 160.	11.1	134
28	Class 1 integrons as invasive species. Current Opinion in Microbiology, 2017, 38, 10-15.	5.1	128
29	A survey of sub-inhibitory concentrations of antibiotics in the environment. Journal of Environmental Sciences, 2021, 99, 21-27.	6.1	123
30	Gene cassettes encoding resistance to quaternary ammonium compounds: a role in the origin of clinical class 1 integrons?. ISME Journal, 2009, 3, 209-215.	9.8	121
31	Sink Strength May Be the Key to Growth and Nitrogen Responses in N-Deficient Wheat at Elevated CO2. Functional Plant Biology, 1996, 23, 253.	2.1	109
32	Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria are widespread in Australian arid soils. FEMS Microbiology Ecology, 2000, 33, 111-120.	2.7	108
33	Lateral gene transfer, bacterial genome evolution, and the Anthropocene. Annals of the New York Academy of Sciences, 2017, 1389, 20-36.	3.8	106
34	Repetitive element PCR fingerprinting (repâ€PCR) using enterobacterial repetitive intergenic consensus (ERIC) primers is not necessarily directed at ERIC elements. Letters in Applied Microbiology, 1997, 25, 17-21.	2.2	105
35	Evidence for dynamic exchange of <i>qac</i> â€Âfgene cassettes between class 1 integrons and other integrons in freshwater biofilms. FEMS Microbiology Letters, 2009, 296, 282-288.	1.8	101
36	Rapid purification of DNA from soil for molecular biodiversity analysis. Letters in Applied Microbiology, 1998, 27, 49-53.	2.2	99

#	Article	IF	CITATIONS
37	Rapid microevolution of biofilm cells in response to antibiotics. Npj Biofilms and Microbiomes, 2019, 5, 34.	6.4	96
38	Air pollution could drive global dissemination of antibiotic resistance genes. ISME Journal, 2021, 15, 270-281.	9.8	95
39	Quantification of class 1 integron abundance in natural environments using real-time quantitative PCR. FEMS Microbiology Letters, 2008, 278, 207-212.	1.8	94
40	Three faces of biofilms: a microbial lifestyle, a nascent multicellular organism, and an incubator for diversity. Npj Biofilms and Microbiomes, 2021, 7, 80.	6.4	94
41	Integrons in Xanthomonas: A source of species genome diversity. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4419-4424.	7.1	93
42	Prevalence and transmission of antibiotic resistance and microbiota between humans and water environments. Environment International, 2018, 121, 1155-1161.	10.0	92
43	Antimicrobial defences increase with sociality in bees. Biology Letters, 2007, 3, 422-424.	2.3	91
44	A comparison of common programming languages used in bioinformatics. BMC Bioinformatics, 2008, 9, 82.	2.6	88
45	Individual Variability in Reproductive Success Determines Winners and Losers under Ocean Acidification: A Case Study with Sea Urchins. PLoS ONE, 2012, 7, e53118.	2.5	88
46	Cultivating previously uncultured soil bacteria using a soil substrate membrane system. Nature Protocols, 2008, 3, 1261-1269.	12.0	85
47	Microbiology of the Anthropocene. Anthropocene, 2014, 5, 1-8.	3.3	83
48	Conserved phylogenetic distribution and limited antibiotic resistance of class 1 integrons revealed by assessing the bacterial genome and plasmid collection. Microbiome, 2018, 6, 130.	11.1	83
49	Evolution of class 1 integrons: Mobilization and dispersal via food-borne bacteria. PLoS ONE, 2017, 12, e0179169.	2.5	81
50	PCR amplification of crude microbial DNA extracted from soil. Letters in Applied Microbiology, 1997, 25, 303-307.	2.2	79
51	Recovery of diverse genes for class 1 integron-integrases from environmental DNA samples. FEMS Microbiology Letters, 2008, 287, 56-62.	1.8	79
52	LAND SYSTEMS AS SURROGATES FOR BIODIVERSITY IN CONSERVATION PLANNING. , 2004, 14, 485-503.		72
53	Human dissemination of genes and microorganisms in Earth's Critical Zone. Global Change Biology, 2018, 24, 1488-1499.	9.5	71
54	Characterisation of isolates and strains of citrus tristeza closterovirus using restriction analysis of the coat protein gene amplified by the polymerase chain reaction. Journal of Virological Methods, 1993, 44, 305-317.	2.1	67

#	Article	IF	CITATIONS
55	Loss of soil microbial diversity exacerbates spread of antibiotic resistance. Soil Ecology Letters, 2019, 1, 3-13.	4.5	66
56	Cyanobacterial blooms contribute to the diversity of antibiotic-resistance genes in aquatic ecosystems. Communications Biology, 2020, 3, 737.	4.4	66
57	Isolation and genetic diversity of endangered grey nurse shark (Carcharias taurus) populations. Biology Letters, 2006, 2, 308-311.	2.3	64
58	Life in the dark: metagenomic evidence that a microbial slime community is driven by inorganic nitrogen metabolism. ISME Journal, 2013, 7, 1227-1236.	9.8	63
59	Environmental dimensions of antibiotic resistance: assessment of basic science gaps. FEMS Microbiology Ecology, 2018, 94, .	2.7	63
60	Impact of Wastewater Treatment on the Prevalence of Integrons and the Genetic Diversity of Integron Gene Cassettes. Applied and Environmental Microbiology, 2018, 84, .	3.1	62
61	The Peril and Promise of Integrons: Beyond Antibiotic Resistance. Trends in Microbiology, 2020, 28, 455-464.	7.7	62
62	Rapid identification of benomyl resistant strains of Botrytis cinerea using the polymerase chain reaction. Mycological Research, 1995, 99, 1483-1488.	2.5	61
63	Ecology and Evolution of the Human Microbiota: Fire, Farming and Antibiotics. Genes, 2015, 6, 841-857.	2.4	61
64	Conserving the holobiont. Functional Ecology, 2020, 34, 764-776.	3.6	61
65	Secondary Effects of Antibiotics on Microbial Biofilms. Frontiers in Microbiology, 2020, 11, 2109.	3.5	61
66	Potential impacts of aquatic pollutants: sub-clinical antibiotic concentrations induce genome changes and promote antibiotic resistance. Frontiers in Microbiology, 2015, 6, 803.	3. 5	60
67	Patterns of invertebrate biodiversity across a natural edge. Austral Ecology, 2003, 28, 227-236.	1.5	59
68	A synthesis of bacterial and archaeal phenotypic trait data. Scientific Data, 2020, 7, 170.	5. 3	59
69	Potential problems with fluorescein diacetate assays of cell viability when testing natural products for antimicrobial activity. Journal of Microbiological Methods, 2001, 46, 261-267.	1.6	57
70	The Extended Genotype: Microbially Mediated Olfactory Communication. Trends in Ecology and Evolution, 2018, 33, 885-894.	8.7	56
71	Amplification of anonymous DNA fragments using pairs of long primers generates reproducible DNA fingerprints that are sensitive to genetic variation. Electrophoresis, 1997, 18, 1512-1518.	2.4	55
72	Recombination Activity of a Distinctive Integron-Gene Cassette System Associated with Pseudomonas stutzeri Populations in Soil. Journal of Bacteriology, 2003, 185, 918-928.	2.2	54

#	Article	IF	CITATIONS
73	Mobilization of a Tn $\langle i \rangle$ 402 $\langle i \rangle$ -Like Class 1 Integron with a Novel Cassette Array via Flanking Miniature Inverted-Repeat Transposable Element-Like Structures. Applied and Environmental Microbiology, 2009, 75, 6002-6004.	3.1	53
74	ACID: annotation of cassette and integron data. BMC Bioinformatics, 2009, 10, 118.	2.6	53
75	Recovery and evolutionary analysis of complete integron gene cassette arrays from Vibrio. BMC Evolutionary Biology, 2006, 6, 3.	3.2	51
76	Genomics and the evolution of antibiotic resistance. Annals of the New York Academy of Sciences, 2017, 1388, 92-107.	3.8	50
77	DNA as a Pollutant: the Clinical Class 1 Integron. Current Pollution Reports, 2018, 4, 49-55.	6.6	49
78	Deciphering Potential Roles of Earthworms in Mitigation of Antibiotic Resistance in the Soils from Diverse Ecosystems. Environmental Science & Ecosystems. Environmental Science & Ecosystems. Environmental Science & Ecosystems.	10.0	49
79	Restriction analysis of an amplified polygalacturonase gene fragment differentiates strains of the phytopathogenic bacterium Pseudomonas solanacearum. Letters in Applied Microbiology, 1993, 17, 44-48.	2.2	44
80	Into the Wild: Dissemination of Antibiotic Resistance Determinants via a Species Recovery Program. PLoS ONE, 2013, 8, e63017.	2.5	43
81	Mobile DNAs as Ecologically and Evolutionarily Independent Units of Life. Trends in Microbiology, 2018, 26, 904-912.	7.7	43
82	Cell size, genome size, and maximum growth rate are nearâ€independent dimensions of ecological variation across bacteria and archaea. Ecology and Evolution, 2021, 11, 3956-3976.	1.9	43
83	Use of chromosomal integron arrays as a phylogenetic typing system for Vibrio cholerae pandemic strains. Microbiology (United Kingdom), 2007, 153, 1488-1498.	1.8	41
84	Eimeria trichosuri: Phylogenetic position of a marsupial coccidium, based on 18S rDNA sequences. Experimental Parasitology, 2009, 122, 165-168.	1.2	41
85	Detection of double-stranded RNA and virus-like particles in Australian isolates ofPythium irregulare. Plant Pathology, 1993, 42, 6-15.	2.4	40
86	Information in the Biosphere: Biological and Digital Worlds. Trends in Ecology and Evolution, 2016, 31, 180-189.	8.7	40
87	Fungus-initiated catalytic reactions at hyphal-mineral interfaces drive iron redox cycling and biomineralization. Geochimica Et Cosmochimica Acta, 2019, 260, 192-203.	3.9	40
88	Genetic diversity of Pseudomonas solanacearum biovars 2 and N2 assessed using restriction endonuclease analysis of total genomic DNA. Plant Pathology, 1993, 42, 744-753.	2.4	39
89	Cultivation of Fastidious Bacteria by Viability Staining and Micromanipulation in a Soil Substrate Membrane System. Applied and Environmental Microbiology, 2009, 75, 3352-3354.	3.1	39
90	Escherichia coli out in the cold: Dissemination of human-derived bacteria into the Antarctic microbiome. Environmental Pollution, 2016, 215, 58-65.	7. 5	37

#	Article	IF	Citations
91	Novel forms of ring-hydroxylating dioxygenases are widespread in pristine and contaminated soils. Environmental Microbiology, 2000, 2, 644-653.	3.8	36
92	Antimicrobial strength increases with group size: implications for social evolution. Biology Letters, 2011, 7, 249-252.	2.3	35
93	DNA technology and evolution of the Central Dogma. Trends in Ecology and Evolution, 2014, 29, 1-2.	8.7	33
94	High diversity and rapid spatial turnover of integron gene cassettes in soil. Environmental Microbiology, 2019, 21, 1567-1574.	3.8	33
95	Viroids in Australian Citrus: Relationship to Exocortis, Cachexia and Citrus Dwarfing. Functional Plant Biology, 1991, 18, 559.	2.1	33
96	The diatom genus <i><scp>P</scp>seudoâ€nitzschia</i> (<scp>B</scp> acillariophyceae) in <scp>N</scp> ew <scp>S</scp> outh <scp>W</scp> ales, <scp>A</scp> ustralia: morphotaxonomy, molecular phylogeny, toxicity, and distribution. Journal of Phycology, 2013, 49, 765-785.	2.3	32
97	The Natural History of Integrons. Microorganisms, 2021, 9, 2212.	3.6	32
98	Alarm calling best predicts mating and reproductive success in ornamented male fowl, Gallus gallus. Animal Behaviour, 2008, 76, 543-554.	1.9	31
99	New enzymes from environmental cassette arrays: Functional attributes of a phosphotransferase and an RNA-methyltransferase. Protein Science, 2004, 13, 1651-1659.	7.6	30
100	Novel Transposon Tn <i>6433</i> Variants Accelerate the Dissemination of <i>tet</i> (E) in <i>Aeromonas</i> in an Aerobic Biofilm Reactor under Oxytetracycline Stresses. Environmental Science & Enviro	10.0	30
101	Characterization of Erwinia chrysanthemi biovars in alpine water sources by biochemical properties, GLC fatty acid analysis and genomic DNA fingerprinting. Journal of Applied Bacteriology, 1992, 73, 99-107.	1.1	28
102	Hemicellulase activity of antarctic microfungi. Journal of Applied Microbiology, 1999, 87, 366-370.	3.1	27
103	Terminal Restriction Fragment Length Polymorphism for Identification of <i>Cryptosporidium</i> Species in Human Feces. Applied and Environmental Microbiology, 2009, 75, 108-112.	3.1	27
104	Preclinical Class 1 Integron with a Complete Tn402-Like Transposition Module. Applied and Environmental Microbiology, 2011, 77, 335-337.	3.1	27
105	Red fox viromes in urban and rural landscapes. Virus Evolution, 2020, 6, veaa065.	4.9	27
106	Genetic uniformity of international isolates of Leifsonia xylisubsp.xyli, causal agent of ratoon stunting disease of sugarcane. Australasian Plant Pathology, 2006, 35, 503.	1.0	26
107	The cost of living in the Anthropocene. Earth Perspectives Transdisciplinarity Enabled, 2014, 1, 2.	1.4	25
108	Bats as reservoirs of antibiotic resistance determinants: A survey of class 1 integrons in Grey-headed Flying Foxes (Pteropus poliocephalus). Infection, Genetics and Evolution, 2019, 70, 107-113.	2.3	25

#	Article	IF	Citations
109	Were there evolutionary advantages to premenstrual syndrome?. Evolutionary Applications, 2014, 7, 897-904.	3.1	23
110	Predicting the taxonomic and environmental sources of integron gene cassettes using structural and sequence homology of attC sites. Communications Biology, 2021, 4, 946.	4.4	23
111	Title is missing!. Australasian Plant Pathology, 2000, 29, 120.	1.0	22
112	Proposal of Xanthomonas translucens pv. pistaciae pv. nov., pathogenic to pistachio (Pistacia vera). Systematic and Applied Microbiology, 2009, 32, 549-557.	2.8	22
113	Pollutants That Replicate: Xenogenetic DNAs. Trends in Microbiology, 2018, 26, 975-977.	7.7	22
114	Integrating Biomedical, Ecological, and Sustainability Sciences to Manage Emerging Infectious Diseases. One Earth, 2020, 3, 23-26.	6.8	22
115	An enhanced miniaturized assay for antimicrobial prospecting. Journal of Microbiological Methods, 2008, 72, 103-106.	1.6	21
116	Population Expansion and Genetic Structure in Carcharhinus brevipinna in the Southern Indo-Pacific. PLoS ONE, 2013, 8, e75169.	2.5	21
117	Dynamics of class 1 integrons in aerobic biofilm reactors spiked with antibiotics. Environment International, 2020, 140, 105816.	10.0	21
118	Trait dimensions in bacteria and archaea compared to vascular plants. Ecology Letters, 2021, 24, 1487-1504.	6.4	21
119	Integron-associated Mobile Gene Cassettes Code for Folded Proteins: The Structure of Bal32a, a New Member of the Adaptable $\hat{l}_{\pm}+\hat{l}^2$ Barrel Family. Journal of Molecular Biology, 2005, 346, 1229-1241.	4.2	20
120	Population connectivity in the temperate damselfish Parma microlepis: analyses of genetic structure across multiple spatial scales. Marine Biology, 2009, 156, 381-393.	1.5	19
121	Genetic structure and diversity of two highly vulnerable carcharhinids in Australian waters. Endangered Species Research, 2014, 24, 45-60.	2.4	19
122	Aerobic bacteria and archaea tend to have larger and more versatile genomes. Oikos, 2021, 130, 501-511.	2.7	19
123	Plant-Pathogenic Bacteria as Biological Weapons – Real Threats?. Phytopathology, 2008, 98, 1060-1065.	2.2	18
124	A Novel Family of Acinetobacter Mega-Plasmids Are Disseminating Multi-Drug Resistance Across the Globe While Acquiring Location-Specific Accessory Genes. Frontiers in Microbiology, 2020, 11, 605952.	3.5	18
125	Trophic level drives the host microbiome of soil invertebrates at a continental scale. Microbiome, 2021, 9, 189.	11.1	18
126	Population genetic analyses reveal female reproductive philopatry in the oviparous Port Jackson shark. Marine and Freshwater Research, 2019, 70, 986.	1.3	17

#	Article	IF	CITATIONS
127	Asiatic Citrus Canker Detected in a Pummelo Orchard in Northern Australia. Plant Disease, 1992, 76, 824.	1.4	16
128	Changes in Prokaryote and Eukaryote Assemblages Along a Gradient of Hydrocarbon Contamination in Groundwater. Geomicrobiology Journal, 2013, 30, 623-634.	2.0	15
129	Polymerase chain reaction detection and assessment of genetic variation in New South Wales isolates of passionfruit woodiness potyvirus. Australasian Plant Pathology, 1997, 26, 155.	1.0	14
130	Rapid Extraction of PCR-Competent DNA from Recalcitrant Environmental Samples. Methods in Molecular Biology, 2014, 1096, 17-23.	0.9	14
131	Use of fatty acid profiles and repetitive element polymerase chain reaction (PCR) to assess the genetic diversity of Pseudomonas syringae pv. pisi and Pseudomonas syringae pv. syringae isolated from field peas in Australia. Australasian Plant Pathology, 1997, 26, 98.	1.0	13
132	Identification of Xanthomonas fragariae, the cause of an outbreak of angular leaf spot on strawberry in South Australia, and comparison with the cause of previous outbreaks in New South Wales and New Zealand. Australasian Plant Pathology, 1998, 27, 97.	1.0	13
133	Relationships between populations of Pseudomonas syringae pv. persicae determined by restriction fragment analysis. Plant Pathology, 1996, 45, 350-357.	2.4	12
134	New perspectives on mobile genetic elements: a paradigm shift for managing the antibiotic resistance crisis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200462.	4.0	12
135	Three-Year Consecutive Field Application of Erythromycin Fermentation Residue Following Hydrothermal Treatment: Cumulative Effect on Soil Antibiotic Resistance Genes. Engineering, 2022, 15, 78-88.	6.7	12
136	Survival of a lacZY-marked strain of Pseudomonas corrugata following a field release. FEMS Microbiology Ecology, 2003, 43, 367-374.	2.7	11
137	Catabolism of Nucleic Acids by a Cystic Fibrosis Pseudomonas aeruginosa Isolate: An Adaptive Pathway to Cystic Fibrosis Sputum Environment. Frontiers in Microbiology, 2019, 10, 1199.	3.5	11
138	Xenobiotic pollution affects transcription of antibiotic resistance and virulence factors in aquatic microcosms. Environmental Pollution, 2022, 306, 119396.	7.5	11
139	Molecular identification of species comprising an unusual biofilm from a groundwater treatment plant. Biofilms, 2006, 3, 19-24.	0.6	10
140	Identification and differentiation of Cryptosporidium species by capillary electrophoresis single-strand conformation polymorphism. FEMS Microbiology Letters, 2011, 314, 34-41.	1.8	10
141	Phenotypic and genetic characterization of <i>Paecilomyces lilacinus</i> strains with biocontrol activity against root-knot nematodes. Canadian Journal of Microbiology, 2000, 46, 775-783.	1.7	10
142	Differentiation of Biologically Distinct Cucumber Mosaic Virus Isolates by PAGE of Double-Stranded RNA. Intervirology, 1992, 34, 23-29.	2.8	9
143	Heteroduplex mobility assay as a tool for predicting phylogenetic affiliation of environmental ribosomal RNA clones. Journal of Microbiological Methods, 2000, 41, 155-160.	1.6	9
144	Nonâ€clinical settings – the understudied facet of antimicrobial drug resistance. Environmental Microbiology, 2021, 23, 7271-7274.	3.8	9

#	Article	IF	CITATIONS
145	Methods for the targeted sequencing and analysis of integrons and their gene cassettes from complex microbial communities. Microbial Genomics, 2022, 8, .	2.0	9
146	Screening Foodstuffs for Class 1 Integrons and Gene Cassettes. Journal of Visualized Experiments, 2015, , e52889.	0.3	8
147	Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria are widespread in Australian arid soils. FEMS Microbiology Ecology, 2000, 33, 111-120.	2.7	8
148	Amplification and cloning of a βâ€tubulin gene fragment from strains ofBotrytis cinerearesistant and sensitive to benzimidazole fungicides. New Zealand Journal of Crop and Horticultural Science, 1994, 22, 173-179.	1.3	6
149	Comparison of Strains of Agrobacterium-Vitis From Grapevine Source Areas in Australia. Australasian Plant Pathology, 1995, 24, 29.	1.0	6
150	A Further Outbreak of Citrus Canker Near Darwin Australasian Plant Pathology, 1995, 24, 90.	1.0	6
151	Rapid Identification of a Second Outbreak of Asiatic Citrus Canker in the Northern Territory Using the Polymerase Chain Reaction and Genomic Fingerprinting Australasian Plant Pathology, 1995, 24, 104.	1.0	6
152	Protection of tobacco plants transgenic for cucumber mosaic cucumovirus (CMV) coat protein is related to the virulence of the challenging CMV isolate. Australasian Plant Pathology, 1996, 25, 179.	1.0	6
153	Sphingomonas paucimobilis BPSI-3 mutant AN2 produces a red catabolite during biphenyl degradation. Journal of Industrial Microbiology and Biotechnology, 1999, 23, 314-319.	3.0	6
154	Differential antimicrobial activity in response to the entomopathogenic fungus <i>Cordyceps</i> in six Australian bee species. Australian Journal of Entomology, 2010, 49, 145-149.	1.1	6
155	Primordial Enemies: Fungal Pathogens in Thrips Societies. PLoS ONE, 2012, 7, e49737.	2.5	6
156	The unusual occurrence of green algal balls of <i>Chaetomorpha linum</i> on a beach in Sydney, Australia. Botanica Marina, 2015, 58, 401-407.	1.2	6
157	Genetic and historical evidence of common sawsharks <i>Pristiophorus cirratus</i> in the waters of southern Queensland. Journal of Fish Biology, 2019, 95, 1342-1345.	1.6	6
158	Genetic differentiation in the threatened soft coral <i>Dendronephthya australis</i> in temperate eastern Australia. Austral Ecology, 2022, 47, 804-817.	1.5	6
159	Two New Records of Diseases Caused by Potyviruses in Australia Australasian Plant Pathology, 1990, 19, 36.	1.0	5
160	Recovery of new integron classes from environmental DNA. FEMS Microbiology Letters, 2001, 195, 59-65.	1.8	5
161	Phytophthora Erythroseptica Causing Wilting and Stunting of Tomato Australasian Plant Pathology, 1989, 18, 3.	1.0	4
162	Characterization of the 3' End of the Gene for Bovine Factor XI. Journal of Dairy Science, 1998, 81, 539-543.	3.4	4

#	Article	IF	Citations
163	Isolation of highly polymorphic microsatellite loci from the temperate damselfish Parma microlepis. Molecular Ecology Notes, 2004, 4, 551-553.	1.7	4
164	Mating system and genetic structure in the paper wasp (Polistes humilis). Australian Journal of Zoology, 2009, 57, 73.	1.0	4
165	Chemical, biological, and DNA markers for tracing slaughterhouse effluent. Environmental Research, 2017, 156, 534-541.	7.5	4
166	Cucumber Mosaic Cucumovirus Associated With Kava Plants Showing Symptoms of Dieback Disease in Fiji and Tonga Australasian Plant Pathology, 1992, 21, 169.	1.0	3
167	Microorganisms, Australia and the Convention on Biological Diversity. Biodiversity and Conservation, 1999, 8, 1399-1415.	2.6	3
168	Heterogeneity of surface attached microbial communities from Sydney Harbour, Australia. Marine Genomics, 2010, 3, 99-105.	1.1	3
169	The Antimicrobial Resistance Crisis: An Inadvertent, Unfortunate but Nevertheless Informative Experiment in Evolutionary Biology. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	3
170	Identification of the rainbowfish in Lake Eacham using DNA sequencing. Australian Journal of Zoology, 2012, 60, 334.	1.0	3
171	Contrasting patterns of population structure in commercially fished sawsharks from southern Australian waters. Reviews in Fish Biology and Fisheries, 2021, 31, 359-379.	4.9	2
172	Hypothesis driven drug discovery. Microbiology Australia, 2002, 23, 8.	0.4	2
173	Isolation of microsatellites from Girella tricuspidata. Molecular Ecology Notes, 2006, 6, 428-430.	1.7	1
174	HOW EVOLUTION GENERATES COMPLEXITY WITHOUT DESIGN: LANGUAGE AS AN INSTRUCTIONAL METAPHOR. Evolution; International Journal of Organic Evolution, 2012, 66, 617-622.	2.3	1
175	Pollution by antibiotics and resistance genes: dissemination into Australian wildlife. , 0, , 186-196.		1
176	The complete mitochondrial genome of the Epaulette Shark, Hemiscyllium ocellatum (Bonnaterre,) Tj ETQq0 0 0 r	rgBT ₄ /Over	lock 10 Tf 50
177	Microbial Genomes as Extension Packs for Macroorganismal Diversity: A Reply to Morimoto and Baltrus. Trends in Ecology and Evolution, 2019, 34, 188.	8.7	1
178	Characterization of 12 polymorphic microsatellite loci in the Port Jackson Shark, Heterodontus portusjacksoni (Meyer, 1793). Marine Biodiversity, 2019, 49, 505-508.	1.0	1
179	Phylogeny and form in fishes: Genetic and morphometric characteristics of dragonets (Foetorepus) Tj ETQq1 1 0.	.784314 r	gBT /Overl <mark>oc</mark>
180	Survival of a lacZY-marked strain of Pseudomonas corrugata following a field release. FEMS Microbiology Ecology, 2003, 43, 367-374.	2.7	1

ARTICLE IF CITATIONS

181 6. Microbial Slime Curtain Communities of the Nullarbor Caves., 2015,, 125-136.