
Michelle C Barton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4331108/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CD8+ T cells inhibit metastasis and CXCL4 regulates its function. British Journal of Cancer, 2021, 125, 176-189.	6.4	21
2	Oncogenic <i>KRAS</i> Recruits an Expansive Transcriptional Network through Mutant p53 to Drive Pancreatic Cancer Metastasis. Cancer Discovery, 2021, 11, 2094-2111.	9.4	66
3	Mammary-specific expression of Trim24 establishes a mouse model of human metaplastic breast cancer. Nature Communications, 2021, 12, 5389.	12.8	14
4	Uncovering the Role of RNA-Binding Protein hnRNP K in B-Cell Lymphomas. Journal of the National Cancer Institute, 2020, 112, 95-106.	6.3	22
5	KRAB domain of ZFP568 disrupts TRIM28-mediated abnormal interactions in cancer cells. NAR Cancer, 2020, 2, zcaa007.	3.1	4
6	Daxx maintains endogenous retroviral silencing and restricts cellular plasticity in vivo. Science Advances, 2020, 6, eaba8415.	10.3	22
7	ZEB1/NuRD complex suppresses TBC1D2b to stimulate E-cadherin internalization and promote metastasis in lung cancer. Nature Communications, 2019, 10, 5125.	12.8	72
8	Reciprocity of Action of Increasing Oct4 and Repressing p53 in Transdifferentiation of Mouse Embryonic Fibroblasts into Cardiac Myocytes. Cellular Reprogramming, 2018, 20, 27-37.	0.9	5
9	p53: emerging roles in stem cells, development and beyond. Development (Cambridge), 2018, 145, .	2.5	89
10	GCN5 Regulates FGF Signaling and Activates Selective MYC Target Genes during Early Embryoid Body Differentiation. Stem Cell Reports, 2018, 10, 287-299.	4.8	27
11	Cross-talk between chromatin acetylation and SUMOylation of tripartite motif–containing protein 24 (TRIM24) impacts cell adhesion. Journal of Biological Chemistry, 2018, 293, 7476-7485.	3.4	27
12	TRIM28 interacts with EZH2 and SWI/SNF to activate genes that promote mammosphere formation. Oncogene, 2017, 36, 2991-3001.	5.9	48
13	Systematic Epigenomic Analysis Reveals Chromatin States Associated with Melanoma Progression. Cell Reports, 2017, 19, 875-889.	6.4	78
14	Bromodomain Histone Readers and Cancer. Journal of Molecular Biology, 2017, 429, 2003-2010.	4.2	78
15	p53 is essential for DNA methylation homeostasis in naÃ⁻ve embryonic stem cells, and its loss promotes clonal heterogeneity. Genes and Development, 2017, 31, 959-972.	5.9	48
16	Sample Preparation for Mass Cytometry Analysis. Journal of Visualized Experiments, 2017, , .	0.3	6
17	p53-independent DUX4 pathology. DMM Disease Models and Mechanisms, 2017, 10, 1211-1216.	2.4	22
18	Rapid monoisotopic cisplatin based barcoding for multiplexed mass cytometry. Scientific Reports, 2017,	3.3	31

° 7, 3779.

#	Article	IF	CITATIONS
19	LncPRESS1 Is a p53-Regulated LncRNA that Safeguards Pluripotency by Disrupting SIRT6-Mediated De-acetylation of Histone H3K56. Molecular Cell, 2016, 64, 967-981.	9.7	176
20	Regulation of gene expression in human cancers by TRIM24. Drug Discovery Today: Technologies, 2016, 19, 57-63.	4.0	36
21	Acidic shield puts a chink in p53's armour. Nature, 2016, 538, 45-46.	27.8	0
22	Histone H3 lysine 23 acetylation is associated with oncogene TRIM24 expression and a poor prognosis in breast cancer. Tumor Biology, 2016, 37, 14803-14812.	1.8	31
23	Outside the p53 RING: Transcription Regulation by Chromatin-Bound MDM2. Molecular Cell, 2016, 62, 805-807.	9.7	3
24	TRIM-ing Ligand Dependence in Castration-Resistant Prostate Cancer. Cancer Cell, 2016, 29, 776-778.	16.8	7
25	MicroRNA Regulates Hepatocytic Differentiation of Progenitor Cells by Targeting YAP1. Stem Cells, 2016, 34, 1284-1296.	3.2	39
26	An essential role for UTX in resolution and activation of bivalent promoters. Nucleic Acids Research, 2016, 44, 3659-3674.	14.5	63
27	Structure-Guided Design of IACS-9571, a Selective High-Affinity Dual TRIM24-BRPF1 Bromodomain Inhibitor. Journal of Medicinal Chemistry, 2016, 59, 1440-1454.	6.4	124
28	TRIM24 suppresses development of spontaneous hepatic lipid accumulation and hepatocellular carcinoma in mice. Journal of Hepatology, 2015, 62, 371-379.	3.7	63
29	Myc and SAGA rewire an alternative splicing network during early somatic cell reprogramming. Genes and Development, 2015, 29, 803-816.	5.9	73
30	Preclinical activity of combined HDAC and KDM1A inhibition in glioblastoma. Neuro-Oncology, 2015, 17, 1463-1473.	1.2	61
31	Development of novel cellular histone-binding and chromatin-displacement assays for bromodomain drug discovery. Epigenetics and Chromatin, 2015, 8, 37.	3.9	32
32	Dual Roles of RNF2 in Melanoma Progression. Cancer Discovery, 2015, 5, 1314-1327.	9.4	57
33	Minimal role of base excision repair in TET-induced global DNA demethylation in HEK293T cells. Epigenetics, 2015, 10, 1006-1013.	2.7	20
34	TRIM24 links glucose metabolism with transformation of human mammary epithelial cells. Oncogene, 2015, 34, 2836-2845.	5.9	50
35	Tissue-specific metabolism and TRIM24. Aging, 2015, 7, 736-737.	3.1	3
36	Genome-wide profiling reveals stimulus-specific functions of p53 during differentiation and DNA damage of human embryonic stem cells. Nucleic Acids Research, 2014, 42, 205-223.	14.5	83

#	Article	IF	CITATIONS
37	TET1 is a maintenance DNA demethylase that prevents methylation spreading in differentiated cells. Nucleic Acids Research, 2014, 42, 6956-6971.	14.5	108
38	ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression. Nature, 2014, 508, 263-268.	27.8	276
39	Hierarchy of a regenerative cell cycle: Cyclin E1 multitasks. Hepatology, 2014, 59, 370-371.	7.3	3
40	TRIM24 Is a p53-Induced E3-Ubiquitin Ligase That Undergoes ATM-Mediated Phosphorylation and Autodegradation during DNA Damage. Molecular and Cellular Biology, 2014, 34, 2695-2709.	2.3	74
41	Nonpeptidic Propargylamines as Inhibitors of Lysine Specific Demethylase 1 (LSD1) with Cellular Activity. Journal of Medicinal Chemistry, 2013, 56, 7334-7342.	6.4	68
42	p53 regulates a mitotic transcription program and determines ploidy in normal mouse liver. Hepatology, 2013, 57, 2004-2013.	7.3	83
43	Regulation of estrogen receptor α by histone methyltransferase SMYD2-mediated protein methylation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17284-17289.	7.1	138
44	The p63 Protein Isoform ΔNp63α Inhibits Epithelial-Mesenchymal Transition in Human Bladder Cancer Cells. Journal of Biological Chemistry, 2013, 288, 3275-3288.	3.4	116
45	The Trithorax Group Protein Ash2l Is Essential for Pluripotency and Maintaining Open Chromatin in Embryonic Stem Cells. Journal of Biological Chemistry, 2013, 288, 5039-5048.	3.4	67
46	Unmet Expectations: miR-34 Plays No Role in p53-Mediated Tumor Suppression In Vivo. PLoS Genetics, 2012, 8, e1002859.	3.5	11
47	p53 Regulates Cell Cycle and MicroRNAs to Promote Differentiation of Human Embryonic Stem Cells. PLoS Biology, 2012, 10, e1001268.	5.6	207
48	Genome-Wide Location Analysis Reveals Distinct Transcriptional Circuitry by Paralogous Regulators Foxa1 and Foxa2. PLoS Genetics, 2012, 8, e1002770.	3.5	45
49	p53-Mediated regulation of hepatic lipid metabolism: Forging links between metabolism, atherogenesis, and cancer. Journal of Hepatology, 2012, 56, 518-519.	3.7	2
50	Integrative genomics: Liver regeneration and hepatocellular carcinoma. Journal of Cellular Biochemistry, 2012, 113, 2179-2184.	2.6	11
51	Inhibition of LSD1 sensitizes glioblastoma cells to histone deacetylase inhibitors. Neuro-Oncology, 2011, 13, 894-903.	1.2	122
52	Cascades of transcription regulation during liver regeneration. International Journal of Biochemistry and Cell Biology, 2011, 43, 189-197.	2.8	46
53	HDAC3 at the Fulcrum of an Epithelial-Mesenchymal Balance. Molecular Cell, 2011, 43, 697-698.	9.7	4
54	Neuronal transcriptional repressor REST suppresses an Atoh7-independent program for initiating retinal ganglion cell development. Developmental Biology, 2011, 349, 90-99.	2.0	28

#	Article	IF	CITATIONS
55	Ubp8 and SAGA Regulate Snf1 AMP Kinase Activity. Molecular and Cellular Biology, 2011, 31, 3126-3135.	2.3	36
56	Direct activation of forkhead box O3 by tumor suppressors p53 and p73 is disrupted during liver regeneration in mice. Hepatology, 2010, 52, 1023-1032.	7.3	29
57	TRIM24 links a non-canonical histone signature to breast cancer. Nature, 2010, 468, 927-932.	27.8	374
58	Foxa1 Functions as a Pioneer Transcription Factor at Transposable Elements to Activate Afp during Differentiation of Embryonic Stem Cells. Journal of Biological Chemistry, 2010, 285, 16135-16144.	3.4	65
59	Making sense of ubiquitin ligases that regulate p53. Cancer Biology and Therapy, 2010, 10, 665-672.	3.4	53
60	Hierarchies of Transcriptional Regulation During Liver Regeneration. Progress in Molecular Biology and Translational Science, 2010, 97, 201-227.	1.7	4
61	Ronin/Hcf-1 binds to a hyperconserved enhancer element and regulates genes involved in the growth of embryonic stem cells. Genes and Development, 2010, 24, 1479-1484.	5.9	106
62	p53., 2010, , 345-357.		1
63	Functions and conrol of p53 in embryonic stem cells. FASEB Journal, 2010, 24, 172.5.	0.5	Ο
64	Trim24 targets endogenous p53 for degradation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11612-11616.	7.1	238
65	Xenopus δ-catenin is essential in early embryogenesis and is functionally linked to cadherins and small GTPases. Journal of Cell Science, 2009, 122, 4049-4061.	2.0	30
66	Regulation of p53: TRIM24 enters the RING. Cell Cycle, 2009, 8, 3668-3674.	2.6	65
67	Analysis of epigenetic alterations to chromatin during development. Genesis, 2009, 47, 559-572.	1.6	42
68	Hypoxia induces a novel signature of chromatin modifications and global repression of transcription. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 640, 174-179.	1.0	221
69	The APC Tumor Suppressor Inhibits DNA Replication by Directly Binding to DNA via Its Carboxyl Terminus. Gastroenterology, 2008, 135, 152-162.	1.3	35
70	p53-Targeted LSD1 Functions in Repression of Chromatin Structure and Transcription In Vivo. Molecular and Cellular Biology, 2008, 28, 5139-5146.	2.3	63
71	Chromatin-Bound p53 Anchors Activated Smads and the mSin3A Corepressor To Confer Transforming Growth Factor Î ² -Mediated Transcription Repression. Molecular and Cellular Biology, 2008, 28, 1988-1998.	2.3	41
72	Zinc finger protein ZBTB20 is a key repressor of alpha-fetoprotein gene transcription in liver. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10859-10864.	7.1	116

#	Article	IF	CITATIONS
73	Tumor Suppressors p53 and TCFÎ ² Converge to Regulate the Alpha-Fetoprotein Oncodevelopmental Tumor Marker. , 2008, , 309-320.		2
74	Caspase cleavage of the APC tumor suppressor and release of an amino-terminal domain is required for the transcription-independent function of APC in apoptosis. Oncogene, 2007, 26, 4872-4876.	5.9	17
75	Hypoxia-induced and stress-specific changes in chromatin structure and function. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2007, 618, 149-162.	1.0	76
76	Influences along the path to maturity: Regulation of cellular levels of RNA. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2006, 1759, 385-387.	2.4	0
77	Deregulation of cyclin E meets dysfunction in p53: Closing the escape hatch on breast cancer. Journal of Cellular Physiology, 2006, 209, 686-694.	4.1	23
78	Chromatin and Regulation of Gene Expression. , 2006, , 95-109.		1
79	Widespread, Exceptionally High Levels of Histone H3 Lysine 4 Trimethylation Largely Mediate "Privileged―Gene Expression. Gene Expression, 2006, 13, 271-282.	1.2	6
80	A Direct Intersection between p53 and Transforming Growth Factor Î ² Pathways Targets Chromatin Modification and Transcription Repression of the α-Fetoprotein Gene. Molecular and Cellular Biology, 2005, 25, 1200-1212.	2.3	74
81	Family Members p53 and p73 Act Together in Chromatin Modification and Direct Repression of α-Fetoprotein Transcription. Journal of Biological Chemistry, 2005, 280, 39152-39160.	3.4	45
82	The APC Tumor Suppressor Promotes Transcription-Independent Apoptosis In vitro11NIH CA 63517 (J.) Tj ETQqQ Research, 2005, 3, 78-89.	0 0 rgBT 3.4	/Overlock 10 28
83	Transcription Factor Interactions and Chromatin Modifications Associated with p53-Mediated, Developmental Repression of the Alpha-Fetoprotein Gene. Molecular and Cellular Biology, 2005, 25, 2147-2157.	2.3	56
84	Repair of psoralen interstrand cross-links in Xenopus laevis egg extracts is highly mutagenic. Biochemical and Biophysical Research Communications, 2005, 336, 69-75.	2.1	6
85	Kaiso/p120-Catenin and TCF/β-Catenin Complexes Coordinately Regulate Canonical Wnt Gene Targets. Developmental Cell, 2005, 8, 843-854.	7.0	206
86	Kaiso/p120-Catenin and TCF/β-Catenin Complexes Coordinately Regulate Canonical Wnt Gene Targets. Developmental Cell, 2005, 9, 305.	7.0	0
87	Hypoxia Actively Represses Transcription by Inducing Negative Cofactor 2 (Dr1/DrAP1) and Blocking Preinitiation Complex Assembly. Journal of Biological Chemistry, 2003, 278, 5744-5749.	3.4	43
88	Microarray analysis of hepatic-regulated gene expression: Specific applications and nonspecific problems. Hepatology, 2002, 35, 727-729.	7.3	9
89	Chromatin alteration, transcription and replication: What's the opening line to the story?. Oncogene, 2001, 20, 3094-3099.	5.9	16
90	p53 Targets Chromatin Structure Alteration to Repress α-Fetoprotein Gene Expression. Journal of Biological Chemistry, 2001, 276, 42057-42062.	3.4	41

#	Article	IF	CITATIONS
91	Hepatitis B Viral Transactivator HBx Alleviates p53-mediated Repression of α-Fetoprotein Gene Expression. Journal of Biological Chemistry, 2000, 275, 27806-27814.	3.4	56
92	S-Phase Progression Mediates Activation of a Silenced Gene in Synthetic Nuclei. Molecular and Cellular Biology, 2000, 20, 4169-4180.	2.3	9
93	Hepatocyte Nuclear Factor 3 Relieves Chromatin-mediated Repression of the α-Fetoprotein Gene. Journal of Biological Chemistry, 1999, 274, 25113-25120.	3.4	61
94	von Hippel-Lindau Protein Induces Hypoxia-regulated Arrest of Tyrosine Hydroxylase Transcript Elongation in Pheochromocytoma Cells. Journal of Biological Chemistry, 1999, 274, 30109-30114.	3.4	47
95	An optional laboratory in molecular techniques as an aid in the teaching of medical biochemistry. Biochemical Education, 1999, 27, 150-152.	0.1	0
96	Functional Analysis of Chromatin Assembled in Synthetic Nuclei. Methods, 1999, 17, 173-187.	3.8	10
97	In vitro reconstitution of nuclei for replication and transcription. Methods in Enzymology, 1999, 304, 63-76.	1.0	7
98	p53-Mediated Repression of Alpha-Fetoprotein Gene Expression by Specific DNA Binding. Molecular and Cellular Biology, 1999, 19, 1279-1288.	2.3	165
99	Uncoupling of S-Phase and Mitosis by Recombinant Cytotoxic Necrotizing Factor 2 (CNF2). Experimental Cell Research, 1997, 234, 132-138.	2.6	9
100	Distal enhancer regulation by promoter derepression in topologically constrained DNA in vitro. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 7257-7262.	7.1	25
101	Regulated gene expression in reconstituted chromatin and synthetic nuclei. Methods in Enzymology, 1996, 274, 299-312.	1.0	7
102	Site-directed, recombination-mediated mutagenesis of a complex gene locus. Nucleic Acids Research, 1990, 18, 7349-7355.	14.5	28
103	Estrogen Regulation of Gene Transcription and mRNA Stability. , 1989, 45, 29-64.		27
104	Coordinate estrogen induction of vitellogenin and a small serum protein mRNA in Xenopus laevis liver. Molecular and Cellular Endocrinology, 1985, 39, 91-98.	3.2	9