Riccardo Aversano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4330739/publications.pdf

Version: 2024-02-01

59 papers

1,748 citations

257450 24 h-index 302126 39 g-index

59 all docs 59 docs citations

59 times ranked

2475 citing authors

#	Article	IF	Citations
1	Multi-omics data integration provides insights into the post-harvest biology of a long shelf-life tomato landrace. Horticulture Research, 2022, 9, .	6.3	12
2	DNA-Based Technologies for Grapevine Biodiversity Exploitation: State of the Art and Future Perspectives. Agronomy, 2022, 12, 491.	3.0	14
3	Genomic Designing for Biotic Stress Resistance in Potato. , 2022, , 37-63.		2
4	Analysis of Cytosine Methylation in Genomic DNA of Solanum $\tilde{A}-$ michoacanum (+) S. tuberosum Somatic Hybrids. Agronomy, 2021, 11, 845.	3.0	6
5	Whole-Genome Doubling Affects Pre-miRNA Expression in Plants. Plants, 2021, 10, 1004.	3.5	1
6	Coexpression gene network analysis of coldâ€tolerant Solanum commersonii reveals new insights in response to low temperatures. Crop Science, 2021, 61, 3538-3550.	1.8	11
7	Potential for Lager Beer Production from Saccharomyces cerevisiae Strains Isolated from the Vineyard Environment. Processes, 2021, 9, 1628.	2.8	6
8	The Solanum Commersonii Genome Sequence. Compendium of Plant Genomes, 2021, , 167-180.	0.5	0
9	Transcriptional, metabolic and DNA methylation changes underpinning the response of Arundo donax ecotypes to NaCl excess. Planta, 2020, 251, 34.	3.2	8
10	Inferring RPW8-NLRs's evolution patterns in seed plants: case study in Vitis vinifera. Planta, 2020, 251, 32.	3.2	13
11	Genetic and epigenetic dynamics affecting anthocyanin biosynthesis in potato cell culture. Plant Science, 2020, 298, 110597.	3.6	13
12	Discrimination of Potato (Solanum tuberosum L.) Accessions Collected in Majella National Park (Abruzzo, Italy) Using Mid-Infrared Spectroscopy and Chemometrics Combined with Morphological and Molecular Analysis. Applied Sciences (Switzerland), 2020, 10, 1630.	2.5	12
13	Comparative Phytochemical Characterization, Genetic Profile, and Antiproliferative Activity of Polyphenol-Rich Extracts from Pigmented Tubers of Different Solanum tuberosum Varieties. Molecules, 2020, 25, 233.	3.8	29
14	WRKY genes family study reveals tissue-specific and stress-responsive TFs in wild potato species. Scientific Reports, 2020, 10, 7196.	3.3	27
15	Genome-Wide HMG Family Investigation and Its Role in Glycoalkaloid Accumulation in Wild Tuber-Bearing Solanum commersonii. Life, 2020, 10, 37.	2.4	7
16	Anti-cancer activity of grape seed semi-polar extracts in human mesothelioma cell lines. Journal of Functional Foods, 2019, 61, 103515.	3.4	25
17	LTR-TEs abundance, timing and mobility in Solanum commersonii and S. tuberosum genomes following cold-stress conditions. Planta, 2019, 250, 1781-1787.	3.2	25
18	High-throughput genotyping in onion reveals structure of genetic diversity and informative SNPs useful for molecular breeding. Molecular Breeding, 2019, 39, 1.	2.1	20

#	Article	IF	CITATIONS
19	Transcriptome reprogramming, epigenetic modifications and alternative splicing orchestrate the tomato root response to the beneficial fungus Trichoderma harzianum. Horticulture Research, 2019, 6, 5.	6.3	113
20	The antioxidant properties of plant flavonoids: their exploitation by molecular plant breeding. Phytochemistry Reviews, 2018, 17, 611-625.	6.5	91
21	Whole-genome re-sequencing of two Italian tomato landraces reveals sequence variations in genes associated with stress tolerance, fruit quality and long shelf-life traits. DNA Research, 2018, 25, 149-160.	3.4	68
22	Subfunctionalization of duplicate MYB genes in <scp><i>Solanum commersonii</i></scp> generated the coldâ€induced <i>ScAN2</i> and the anthocyanin regulator <i>ScAN1</i> Plant, Cell and Environment, 2018, 41, 1038-1051.	5.7	45
23	Microstructure and tuber properties of potato varieties with different genetic profiles. Food Chemistry, 2018, 239, 789-796.	8.2	26
24	Dicer-like and RNA-dependent RNA polymerase gene family identification and annotation in the cultivated Solanum tuberosum and its wild relative S. commersonii. Planta, 2018, 248, 729-743.	3.2	24
25	Comparative metabolite and genome analysis of tuber-bearing potato species. Phytochemistry, 2017, 137, 42-51.	2.9	41
26	Wine varietal authentication based on phenolics, volatiles and DNA markers: State of the art, perspectives and drawbacks. Food Control, 2017, 80, 1-10.	5 . 5	64
27	Genetic and geochemical signatures to prevent frauds and counterfeit of high-quality asparagus and pistachio. Food Chemistry, 2017, 237, 545-552.	8.2	10
28	Metabolic and RNA profiling elucidates proanthocyanidins accumulation in Aglianico grape. Food Chemistry, 2017, 233, 52-59.	8.2	19
29	The Wild Side of Potato: Insights into the Genome Sequence of the Stress-Tolerant S. commersonii. Compendium of Plant Genomes, 2017, , 109-122.	0.5	1
30	SSR markers distinguish traditional Italian bean (Phaseolus vulgaris L.) landraces from Lamon. Czech Journal of Genetics and Plant Breeding, 2017, 53, 168-171.	0.8	3
31	Dating the beginning of the Roman viticultural model in the Western Mediterranean: The case study of Chianti (Central Italy). PLoS ONE, 2017, 12, e0186298.	2.5	12
32	Sexual Polyploidization in Medicago sativa L.: Impact on the Phenotype, Gene Transcription, and Genome Methylation. G3: Genes, Genomes, Genetics, 2016, 6, 925-938.	1.8	6
33	Phenotypic and molecular diversity in a collection of â€~Pomodoro di Sorrento' Italian tomato landrace. Scientia Horticulturae, 2016, 203, 143-151.	3.6	16
34	Transcriptome and metabolome of synthetic <i>Solanum</i> autotetraploids reveal key genomic stress events following polyploidization. New Phytologist, 2016, 210, 1382-1394.	7.3	67
35	Combined Use of Molecular Markers and High-Resolution Melting (HRM) to Assess Chromosome Dosage in Potato Hybrids. Journal of Heredity, 2016, 107, 187-192.	2.4	7
36	Anticancer activities of anthocyanin extract from genotyped Solanum tuberosum L. "Vitelotte― Journal of Functional Foods, 2015, 19, 584-593.	3 . 4	43

#	Article	IF	CITATIONS
37	Genotype-specific changes associated to early synthesis of autotetraploids in wild potato species. Euphytica, 2015, 202, 307-316.	1.2	21
38	The <i>Solanum commersonii</i> Genome Sequence Provides Insights into Adaptation to Stress Conditions and Genome Evolution of Wild Potato Relatives. Plant Cell, 2015, 27, 954-968.	6.6	149
39	High <i><scp>AN</scp>1</i> variability and interaction with basic helixâ€loopâ€helix coâ€factors related to anthocyanin biosynthesis in potato leaves. Plant Journal, 2014, 80, 527-540.	5.7	68
40	A DArT marker-based linkage map for wild potato Solanum bulbocastanum facilitates structural comparisons between SolanumA and B genomes. BMC Genetics, 2014, 15, 123.	2.7	11
41	Genome-wide identification and analysis of candidate genes for disease resistance in tomato. Molecular Breeding, 2014, 33, 227-233.	2.1	30
42	Use of SSR and Retrotransposon-Based Markers to Interpret the Population Structure of Native Grapevines from Southern Italy. Molecular Biotechnology, 2014, 56, 1011-1020.	2.4	25
43	Biochemical features of native red wines and genetic diversity of the corresponding grape varieties from Campania region. Food Chemistry, 2014, 143, 506-513.	8.2	38
44	Genetic diversity among potato species as revealed by phenotypic resistances and SSR markers. Plant Genetic Resources: Characterisation and Utilisation, 2013, 11, 131-139.	0.8	30
45	Stochastic changes affect Solanum wild species following autopolyploidization. Journal of Experimental Botany, 2013, 64, 625-635.	4.8	49
46	Impact of Ploidy Change on Secondary Metabolites and Photochemical Efficiency in <i>Solanum Bulbocastanum</i> . Natural Product Communications, 2013, 8, 1934578X1300801.	0.5	24
47	Molecular Tools for Exploring Polyploid Genomes in Plants. International Journal of Molecular Sciences, 2012, 13, 10316-10335.	4.1	40
48	Loss of DNA methylation affects the recombination landscape in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5880-5885.	7.1	186
49	Variation of DNA methylation and phenotypic traits following unilateral sexual polyploidization in Medicago. Euphytica, 2012, 186, 731-739.	1.2	3
50	Fertilization fitness and offspring ploidy in 3xÂ×Â2x matings in potato. Plant Biosystems, 2012, 146, 317-321.	1.6	2
51	Biological and geochemical markers of the geographical origin and genetic identity of potatoes. Journal of Geochemical Exploration, 2012, 121, 62-68.	3.2	21
52	Interspecific somatic hybrids between Solanum bulbocastanum and S. tuberosum and their haploidization for potato breeding. Biologia Plantarum, 2012, 56, 1-8.	1.9	21
53	AFLP analysis to assess genomic stability in Solanum regenerants derived from wild and cultivated species. Plant Biotechnology Reports, 2011, 5, 265-271.	1.5	12
54	Secondary Metabolite Profile in Induced Tetraploids of Wild <i>Solanum commersonii</i> <scp>Dun</scp> Chemistry and Biodiversity, 2011, 8, 2226-2237.	2.1	47

#	Article	IF	CITATIONS
55	Glycoalkaloid Profile in Potato Haploids Derived from <i>Solanum tuberosum</i> è° <i>S. bulbocastanum</i> Somatic Hybrids. Chemistry and Biodiversity, 2010, 7, 1885-1892.	2.1	3
56	Genetic stability at nuclear and plastid DNA level in regenerated plants of Solanum species and hybrids. Euphytica, 2009, 165, 353-361.	1.2	26
57	Resistance to Ralstonia solanacearum of Sexual Hybrids Between Solanum commersonii and S. tuberosum. American Journal of Potato Research, 2009, 86, 196-202.	0.9	34
58	Resistance to Frost and Tuber Soft Rot in Near-Pentaploid Solanum tuberosum-S. commersonii Hybrids. Breeding Science, 2007, 57, 145-151.	1.9	12
59	Resistance traits and AFLP characterization of diploid primitive tuber-bearing potatoes. Genetic Resources and Crop Evolution, 2007, 54, 1797-1806.	1.6	9