Bart Zijlstra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4330389/publications.pdf Version: 2024-02-01

ΒΛΟΤ 7ΙΙΙ ΟΤΟΛ

#	Article	IF	CITATIONS
1	Optimum Cu nanoparticle catalysts for CO2 hydrogenation towards methanol. Nano Energy, 2018, 43, 200-209.	16.0	133
2	Efficient Base-Metal NiMn/TiO ₂ Catalyst for CO ₂ Methanation. ACS Catalysis, 2019, 9, 7823-7839.	11.2	124
3	Understanding carbon dioxide activation and carbon–carbon coupling over nickel. Nature Communications, 2019, 10, 5330.	12.8	124
4	Theoretical Approach To Predict the Stability of Supported Single-Atom Catalysts. ACS Catalysis, 2019, 9, 3289-3297.	11.2	101
5	Influence of Carbon Deposits on the Cobalt-Catalyzed Fischer–Tropsch Reaction: Evidence of a Two-Site Reaction Model. ACS Catalysis, 2018, 8, 1580-1590.	11.2	61
6	An Active Alkali-Exchanged Faujasite Catalyst for <i>p</i> -Xylene Production via the One-Pot Diels–Alder Cycloaddition/Dehydration Reaction of 2,5-Dimethylfuran with Ethylene. ACS Catalysis, 2018, 8, 760-769.	11.2	54
7	Mechanism of Cobalt-Catalyzed CO Hydrogenation: 1. Methanation. ACS Catalysis, 2017, 7, 8050-8060.	11.2	53
8	Optimum Particle Size for Gold-Catalyzed CO Oxidation. Journal of Physical Chemistry C, 2018, 122, 8327-8340.	3.1	45
9	Improved Pd/CeO ₂ Catalysts for Low-Temperature NO Reduction: Activation of CeO ₂ Lattice Oxygen by Fe Doping. ACS Catalysis, 2021, 11, 5614-5627.	11.2	44
10	Mechanism of Carbon Monoxide Dissociation on a Cobalt Fischer–Tropsch Catalyst. ChemCatChem, 2018, 10, 136-140.	3.7	39
11	Coverage Effects in CO Dissociation on Metallic Cobalt Nanoparticles. ACS Catalysis, 2019, 9, 7365-7372.	11.2	37
12	The Vital Role of Step-Edge Sites for Both CO Activation and Chain Growth on Cobalt Fischer–Tropsch Catalysts Revealed through First-Principles-Based Microkinetic Modeling Including Lateral Interactions. ACS Catalysis, 2020, 10, 9376-9400.	11.2	37
13	Quantum-Chemical DFT Study of Direct and H- and C-Assisted CO Dissociation on the I‡-Fe ₅ C ₂ HÃgg Carbide. Journal of Physical Chemistry C, 2018, 122, 9929-9938.	3.1	34
14	First-principles microkinetics simulations of electrochemical reduction of CO2 over Cu catalysts. Electrochimica Acta, 2020, 335, 135665.	5.2	32
15	First-principles based microkinetic modeling of transient kinetics of CO hydrogenation on cobalt catalysts. Catalysis Today, 2020, 342, 131-141.	4.4	29
16	Enumerating Active Sites on Metal Nanoparticles: Understanding the Size Dependence of Cobalt Particles for CO Dissociation. ACS Catalysis, 2021, 11, 8484-8492.	11.2	26
17	A theoretical study of the reverse waterâ€gas shift reaction on Ni(111) and Ni(311) surfaces. Canadian Journal of Chemical Engineering, 2020, 98, 740-748.	1.7	25
18	Kinetic aspects of chain growth in Fischer–Tropsch synthesis. Faraday Discussions, 2017, 197, 153-164.	3.2	18

BART ZIJLSTRA

#	Article	IF	CITATIONS
19	A quantum-chemical study of the CO dissociation mechanism on low-index Miller planes of Ï´-Fe3C. Catalysis Today, 2020, 342, 152-160.	4.4	15
20	A quantum-chemical DFT study of CO dissociation on Fe-promoted stepped Rh surfaces. Catalysis Today, 2016, 275, 111-118.	4.4	12
21	Quantum-chemical-based microkinetics simulations of syngas conversion over MoS2(1 0 0) surface. Chemical Engineering Science, 2019, 198, 166-183.	3.8	5
22	Mechanism of Carbon Monoxide Dissociation on a Cobalt Fischer-Tropsch Catalyst. ChemCatChem, 2018, 10, 5-5.	3.7	1