Yanfei Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4329778/publications.pdf

Version: 2024-02-01

147801 182427 2,984 82 31 51 citations h-index g-index papers 82 82 82 1680 docs citations all docs times ranked citing authors

#	Article	IF	Citations
1	Study on combustion and emission characteristics of Polyoxymethylene Dimethyl Ethers/diesel blends in light-duty and heavy-duty diesel engines. Applied Energy, 2017, 185, 1393-1402.	10.1	157
2	Performance, combustion and emission characteristics of a diesel engine fueled with polyoxymethylene dimethyl ethers (PODE3-4)/ diesel blends. Energy, 2015, 88, 793-800.	8.8	144
3	Homogeneous charge compression ignition (HCCI) combustion of polyoxymethylene dimethyl ethers (PODE). Fuel, 2016, 183, 206-213.	6.4	132
4	Combustion and emission characteristics of diesel engine fueled with biodiesel/PODE blends. Applied Energy, 2017, 206, 425-431.	10.1	127
5	Improvement of emission characteristics and thermal efficiency in diesel engines by fueling gasoline/diesel/PODEn blends. Energy, 2016, 97, 105-112.	8.8	126
6	Combustion and emission characteristics of a direct injection diesel engine fueled with biodiesel and PODE/biodiesel fuel blends. Fuel, 2017, 209, 62-68.	6.4	125
7	Combustion and emissions of compression ignition in a direct injection diesel engine fueled with pentanol. Energy, 2015, 80, 575-581.	8.8	120
8	Effect of flash boiling on microscopic and macroscopic spray characteristics in optical GDI engine. Fuel, 2017, 190, 79-89.	6.4	100
9	A chemical kinetic mechanism for the low- and intermediate-temperature combustion of Polyoxymethylene Dimethyl Ether 3 (PODE3). Fuel, 2018, 212, 223-235.	6.4	100
10	Comparison of spray collapses at elevated ambient pressure and flash boiling conditions using multi-hole gasoline direct injector. Fuel, 2017, 199, 125-134.	6.4	95
11	Comparative study of combustion and emissions of kerosene (RP-3), kerosene-pentanol blends and diesel in a compression ignition engine. Applied Energy, 2017, 203, 91-100.	10.1	93
12	Characterisation of waste derived intermediate pyrolysis oils for use as diesel engine fuels. Fuel, 2013, 103, 247-257.	6.4	87
13	Recent progress in the application in compression ignition engines and the synthesis technologies of polyoxymethylene dimethyl ethers. Applied Energy, 2019, 233-234, 599-611.	10.1	87
14	Morphology analysis on multi-jet flash-boiling sprays under wide ambient pressures. Fuel, 2018, 211, 38-47.	6.4	67
15	An exploration on collapse mechanism of multi-jet flash-boiling sprays. Applied Thermal Engineering, 2018, 134, 20-28.	6.0	66
16	Spray morphology transformation of propane, n-hexane and iso-octane under flash-boiling conditions. Fuel, 2019, 236, 677-685.	6.4	55
17	Exploiting new combustion regime using multiple premixed compression ignition (MPCI) fueled with gasoline/diesel/PODE (GDP). Fuel, 2016, 186, 639-647.	6.4	54
18	Effects of gasoline research octane number on premixed low-temperature combustion of wide distillation fuel by gasoline/diesel blend. Fuel, 2014, 134, 381-388.	6.4	53

#	Article	IF	CITATIONS
19	Characterizing external flashing jet from single-hole GDI injector. International Journal of Heat and Mass Transfer, 2018, 121, 924-932.	4.8	52
20	Knowledge Implementation and Transfer With an Adaptive Learning Network for Real-Time Power Management of the Plug-in Hybrid Vehicle. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 5298-5308.	11.3	52
21	Recent Progress in Automotive Gasoline Direct Injection Engine Technology. Automotive Innovation, 2018, 1, 95-113.	5.1	50
22	Radial expansion of flash boiling jet and its relationship with spray collapse in gasoline direct injection engine. Applied Thermal Engineering, 2019, 146, 515-525.	6.0	50
23	Methanol as an octane booster for gasoline fuels. Fuel, 2019, 248, 76-84.	6.4	47
24	Droplet dynamics of DI spray from sub-atmospheric to elevated ambient pressure. Fuel, 2016, 179, 25-35.	6.4	45
25	Sensitivity analysis of fuel types and operational parameters on the particulate matter emissions from an aviation piston engine burning heavy fuels. Fuel, 2017, 202, 520-528.	6.4	42
26	Numerical investigation on flashing jet behaviors of single-hole GDI injector. International Journal of Heat and Mass Transfer, 2019, 130, 50-59.	4.8	42
27	Transferable representation modelling for real-time energy management of the plug-in hybrid vehicle based on k-fold fuzzy learning and Gaussian process regression. Applied Energy, 2022, 305, 117853.	10.1	42
28	Microscopic and macroscopic characterization of spray impingement under flash boiling conditions with the application of split injection strategy. Fuel, 2018, 212, 315-325.	6.4	39
29	Microscopic level study on the spray impingement process and characteristics. Applied Energy, 2017, 197, 114-123.	10.1	36
30	Spray Characteristics Study of DMF Using Phase Doppler Particle Analyzer. SAE International Journal of Passenger Cars - Mechanical Systems, 0, 3, 948-958.	0.4	35
31	Experimental investigation on the macroscopic and microscopic spray characteristics of dieseline fuel. Fuel, 2017, 199, 478-487.	6.4	35
32	Experimental study on primary breakup of diesel spray under cold start conditions. Fuel, 2016, 183, 617-626.	6.4	32
33	Nozzle internal flow and spray primary breakup with the application of closely coupled split injection strategy. Fuel, 2018, 228, 187-196.	6.4	32
34	Interaction between under-expanded flashing jets: A numerical study. International Journal of Heat and Mass Transfer, 2019, 137, 990-1000.	4.8	32
35	Experimental study of temporal evolution of initial stage diesel spray under varied conditions. Fuel, 2016, 171, 44-53.	6.4	29
36	Influence of deposit on spray behaviour under flash boiling condition with the application of closely coupled split injection strategy. Fuel, 2017, 190, 67-78.	6.4	29

#	Article	IF	Citations
37	Initial dynamic development of fuel spray analyzed by ultra high speed imaging. Fuel, 2016, 169, 99-110.	6.4	28
38	Impact of injector tip deposits on gasoline direct injection engine combustion, fuel economy and emissions. Applied Energy, 2020, 262, 114538.	10.1	23
39	Combustion and emission characteristics of direct injection compression ignition engine fueled with Full Distillation Fuel (FDF). Fuel, 2015, 140, 561-567.	6.4	22
40	Optical study of throttleless and EGR-controlled stoichiometric dual-fuel compression ignition combustion. Fuel, 2016, 182, 272-283.	6.4	22
41	An experimental investigation on thermal efficiency of a compression ignition engine fueled with five gasoline-like fuels. Fuel, 2017, 207, 56-63.	6.4	22
42	An experimental investigation into combustion characteristics of HVO compared with TME and ULSD at varied blend ratios. Fuel, 2019, 255, 115757.	6.4	22
43	Nucleation mode particle evolution in a gasoline direct injection engine with/without a three-way catalyst converter. Applied Energy, 2020, 259, 114211.	10.1	22
44	Microscopic investigation of near-field spray characteristics of 2-methylfuran, ethanol and isooctane under flash boiling conditions. Fuel, 2018, 215, 142-152.	6.4	21
45	Characteristics of trans-critical propane spray discharged from multi-hole GDI injector. Experimental Thermal and Fluid Science, 2018, 99, 446-457.	2.7	19
46	Modified Particle Swarm Optimization With Chaotic Attraction Strategy for Modular Design of Hybrid Powertrains. IEEE Transactions on Transportation Electrification, 2021, 7, 616-625.	7.8	19
47	Hydrogen formation from methane rich combustion under high pressure and high temperature conditions. International Journal of Hydrogen Energy, 2017, 42, 14301-14311.	7.1	18
48	Microscopic study on the mechanisms for formation of the initial spray morphology. Fuel, 2019, 235, 715-722.	6.4	18
49	Macroscopic spray characteristics of iso-octane, ethanol, gasoline and methanol from a multi-hole injector under flash boiling conditions. Fuel, 2022, 307, 121820.	6.4	18
50	An exploration of utilizing low-pressure diesel injection for natural gas dual-fuel low-temperature combustion. Energy, 2018, 153, 248-255.	8.8	14
51	Combustion and emission characteristics of a compression ignition engine burning a wide range of conventional hydrocarbon and alternative fuels. Energy, 2022, 250, 123717.	8.8	13
52	Cold and Warm Start Characteristics using HVO and RME Blends in a V6 Diesel Engine. SAE International Journal of Fuels and Lubricants, 0, 6, 478-485.	0.2	12
53	Near-nozzle microscopic characterization of diesel spray under cold start conditions with split injection strategy. Fuel, 2016, 181, 366-375.	6.4	11
54	MACROSCOPIC AND MICROSCOPIC CHARACTERISTICS OF GASOLINE AND BUTANOL SPRAY ATOMIZATION UNDER ELEVATED AMBIENT PRESSURES. Atomization and Sprays, 2018, 28, 779-795.	0.8	11

#	Article	IF	CITATIONS
55	An experimental study on particle evolution in the exhaust gas of a direct injection SI engine. Applied Energy, 2020, 260, 114220.	10.1	11
56	Explosion characteristics of hydrous bio-ethanol in oxygen-enriched air. Fuel, 2020, 271, 117604.	6.4	11
57	The Comparative Study of Gasoline and n-butanol on Spray Characteristics. , 0, , .		10
58	Experimental and numerical investigation on H2/CO formation and their effects on combustion characteristics in a natural gas SI engine. Energy, 2018, 143, 597-605.	8.8	10
59	Dynamic spray development of 2-methylfuran compared to ethanol and isooctane under ultra-high injection pressure. Fuel, 2018, 234, 581-591.	6.4	10
60	Optimization of piston bowl and valve system in compression ignition engine fueled with gasoline/diesel/polyoxymethylene dimethyl ethers for high efficiency. International Journal of Engine Research, 2021, 22, 468-478.	2.3	9
61	Auto-ignition characteristics of end-gas in a rapid compression machine under super-knock conditions. Combustion and Flame, 2019, 205, 378-388.	5. 2	8
62	Comparative Study on Gasoline HCCI and DICI Combustion in High Load Range with High Compression Ratio for Passenger Cars Application. SAE International Journal of Fuels and Lubricants, 0, 10, .	0.2	7
63	Numerical Investigation on the Effect of Fuel Temperature on Spray Collapse and Mixture Formation Characteristics in GDI Engines. , 2018, , .		7
64	Characterizing Propane Flash Boiling Spray fromÂMulti-Hole GDI Injector. , 0, , .		7
65	The effect of bubbles on primary breakup of diesel spray. Fuel, 2020, 263, 116664.	6.4	7
66	Combustion characteristics and engine performance of 2-methylfuran compared to gasoline and ethanol in a direct injection spark ignition engine. Fuel, 2021, 299, 120825.	6.4	6
67	Comparative Experimental Study on Microscopic Spray Characteristics of RME, GTL and Diesel., 0,,.		5
68	Characterizing combustion performance and PM emissions of an aviation compression ignition engine by fueling RP-3 kerosene and RP-3/pentanol blends. International Journal of Engine Research, 2023, 24, 1312-1326.	2.3	5
69	High Speed Imaging Study on the Spray Characteristics of Dieseline at Elevated Temperatures and Back Pressures. SAE International Journal of Fuels and Lubricants, 0, 7, 159-166.	0.2	4
70	Effects of component proportions on multi-jet instant expansion of binary solutions under flash boiling conditions. Fuel, 2022, 308, 122018.	6.4	4
71	Development of a Turbulence-induced Breakup Model for Gasoline Spray Simulation. , 0, , .		3
72	An Experimental Study on the Effects of Split Injection in Stoichiometric Dual-Fuel Compression Ignition (SDCI) Combustion. , 2015, , .		3

#	Article	IF	CITATIONS
73	Experimental Study of Effect of Nozzle Diameter on Near-Field Spray Behavior of Diesel Sprays in Non-Evaporating Conditions. , 0, , .		2
74	Combustion and Emission Characteristics of Polyoxymethylene Dimethyl Ethers (PODE)/ Wide Distillation Fuel (WDF) Blends in Diesel Engine. , 2018, , .		2
75	Measurement of soot distribution in two cross-sections in a gasoline direct injection engine using laser-induced incandescence with the laser extinction method. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233, 211-223.	1.9	2
76	Accelerating Laminar Flame Speed of Hydrous Ethanol via Oxygen-Rich Combustion. Bioenergy Research, 2021, 14, 634-644.	3.9	2
77	QUANTIFYING THE EFFECTS OF FUEL COMPOSITIONS AND PROCESS VARIABLES ON PLANAR SURFACE AREA AND SPRAY NONUNIFORMITY VIA COMBINED MIXTURE-PROCESS DESIGN OF EXPERIMENT. Atomization and Sprays, 2017, 27, 707-722.	0.8	2
78	A Turbulence and Cavitation Induced Breakup Model for Fuel Spray Modeling. , 0, , .		1
79	Experimental Study on Diesel Spray Characteristics Using Different Ambient Gases. , 2016, , .		1
80	Experimental Study of Lean Mixture Combustion atÂUltra-High Compression Ratios in a Rapid Compression Machine. , 2018, , .		1
81	Study of Near Nozzle Spray Characteristics of Ethanol under Different Saturation Ratios. , 2016, , .		0
82	Transferable Representation Model Driven by Gaussion Process Regression for Real-time Energy Management of Plug-in Hybrid Vehicles., 2021,,.		0