Anireddy S N Reddy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4329290/publications.pdf Version: 2024-02-01

9

#	Article	IF	CITATIONS
1	An in-frame deletion mutation in the degron tail of auxin coreceptor <i>IAA2</i> confers resistance to the herbicide 2,4-D in <i>Sisymbrium orientale</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	19
2	RODAN: a fully convolutional architecture for basecalling nanopore RNA sequencing data. BMC Bioinformatics, 2022, 23, 142.	2.6	7
3	The Rice Serine/Arginine Splicing Factor RS33 Regulates Pre-mRNA Splicing during Abiotic Stress Responses. Cells, 2022, 11, 1796.	4.1	14
4	Drought induces epitranscriptome and proteome changes in stem-differentiating xylem of <i>Populus trichocarpa</i> . Plant Physiology, 2022, 190, 459-479.	4.8	18
5	Differential nucleosome occupancy modulates alternative splicing in <i>Arabidopsis thaliana</i> . New Phytologist, 2021, 229, 1937-1945.	7.3	19
6	The Landscape of RNA-Protein Interactions in Plants: Approaches and Current Status. International Journal of Molecular Sciences, 2021, 22, 2845.	4.1	17
7	Alternative splicing dynamics and evolutionary divergence during embryogenesis in wheat species. Plant Biotechnology Journal, 2021, 19, 1624-1643.	8.3	23
8	Genomeâ€wide profiling of circular RNAs, alternative splicing, and Râ€loops in stemâ€differentiating xylem of <i>Populus trichocarpa</i> . Journal of Integrative Plant Biology, 2021, 63, 1294-1308.	8.5	14
9	Stress-Induced Changes in Alternative Splicing Landscape in Rice: Functional Significance of Splice Isoforms in Stress Tolerance. Biology, 2021, 10, 309.	2.8	45
10	Overlapping roles of spliceosomal components SF3B1 and PHF5A in rice splicing regulation. Communications Biology, 2021, 4, 529.	4.4	8
11	PSDX: A Comprehensive Multi-Omics Association Database of Populus trichocarpa With a Focus on the Secondary Growth in Response to Stresses. Frontiers in Plant Science, 2021, 12, 655565.	3.6	2
12	Quantitative profiling of N6-methyladenosine at single-base resolution in stem-differentiating xylem of Populus trichocarpa using Nanopore direct RNA sequencing. Genome Biology, 2021, 22, 22.	8.8	88
13	Salt-Induced Stability of <i>SR1/CAMTA3</i> mRNA Is Mediated by Reactive Oxygen Species and Requires the 3' End of Its Open Reading Frame. Plant and Cell Physiology, 2020, 61, 748-760.	3.1	7
14	Wideâ€ranging transcriptome remodelling mediated by alternative polyadenylation in response to abiotic stresses in <i>Sorghum</i> . Plant Journal, 2020, 102, 916-930.	5.7	24
15	Phytophthora Effectors Modulate Genome-wide Alternative Splicing of Host mRNAs to Reprogram Plant Immunity. Molecular Plant, 2020, 13, 1470-1484.	8.3	49
16	Profiling of circular RNA N ⁶ â€methyladenosine in moso bamboo (<i>Phyllostachys) Tj ETQqO 0 0 rgE 1823-1838.</i>	8T /Overloo 8.5	ck 10 Tf 50 1 35
17	Transcriptome Analysis of Drought-Resistant and Drought-Sensitive Sorghum (Sorghum bicolor) Genotypes in Response to PEG-Induced Drought Stress. International Journal of Molecular Sciences, 2020, 21, 772.	4.1	79

18Decoding co-/post-transcriptional complexities of plant transcriptomes and epitranscriptome using
next-generation sequencing technologies. Biochemical Society Transactions, 2020, 48, 2399-2414.3.4

ANIREDDY S N REDDY

#	Article	IF	CITATIONS
19	Multiplex CRISPR Mutagenesis of the Serine/Arginine-Rich (SR) Gene Family in Rice. Genes, 2019, 10, 596.	2.4	23
20	A Ca2+/CaM-regulated transcriptional switch modulates stomatal development in response to water deficit. Scientific Reports, 2019, 9, 12282.	3.3	19
21	Genome-Wide Identification of Splicing Quantitative Trait Loci (sQTLs) in Diverse Ecotypes of Arabidopsis thaliana. Frontiers in Plant Science, 2019, 10, 1160.	3.6	19
22	The interplay between microRNA and alternative splicing of linear and circular RNAs in eleven plant species. Bioinformatics, 2019, 35, 3119-3126.	4.1	18
23	Alternative Splicing and Protein Diversity: Plants Versus Animals. Frontiers in Plant Science, 2019, 10, 708.	3.6	136
24	Perspective on Alternative Splicing and Proteome Complexity in Plants. Trends in Plant Science, 2019, 24, 496-506.	8.8	129
25	Analysis of Transcriptome and Epitranscriptome in Plants Using PacBio Iso-Seq and Nanopore-Based Direct RNA Sequencing. Frontiers in Genetics, 2019, 10, 253.	2.3	127
26	Serine/Arginine-rich protein family of splicing regulators: New approaches to study splice isoform functions. Plant Science, 2019, 283, 127-134.	3.6	27
27	The Arabidopsis splicing regulator SR45 confers salt tolerance in a splice isoform-dependent manner. Plant Molecular Biology, 2019, 100, 379-390.	3.9	46
28	Does co-transcriptional regulation of alternative splicing mediate plant stress responses?. Nucleic Acids Research, 2019, 47, 2716-2726.	14.5	86
29	Vascular Plant One-Zinc-Finger (VOZ) Transcription Factors Are Positive Regulators of Salt Tolerance in Arabidopsis. International Journal of Molecular Sciences, 2018, 19, 3731.	4.1	21
30	Abiotic Stresses Modulate Landscape of Poplar Transcriptome via Alternative Splicing, Differential Intron Retention, and Isoform Ratio Switching. Frontiers in Plant Science, 2018, 9, 5.	3.6	122
31	Development of an in vitro pre-mRNA splicing assay using plant nuclear extract. Plant Methods, 2018, 14, 1.	4.3	121
32	Exploring the relationship between intron retention and chromatin accessibility in plants. BMC Genomics, 2018, 19, 21.	2.8	61
33	Global gene expression analysis using RNA-seq uncovered a new role for SR1/CAMTA3 transcription factor in salt stress. Scientific Reports, 2016, 6, 27021.	3.3	37
34	Production of Phloroglucinol, a Platform Chemical, in Arabidopsis using a Bacterial Gene. Scientific Reports, 2016, 6, 38483.	3.3	17
35	A survey of the sorghum transcriptome using single-molecule long reads. Nature Communications, 2016, 7, 11706.	12.8	496
36	Differential Recruitment of Splice Variants from SR Pre-mRNAs to Polysomes During Development and in Response to Stresses. Plant and Cell Physiology, 2015, 56, 421-427.	3.1	24

ANIREDDY S N REDDY

#	Article	IF	CITATIONS
37	Transcriptome-Wide Identification of RNA Targets of Arabidopsis SERINE/ARGININE-RICH45 Uncovers the Unexpected Roles of This RNA Binding Protein in RNA Processing. Plant Cell, 2015, 27, 3294-3308.	6.6	107
38	A pollen-specific calmodulin-binding protein, NPG1, interacts with putative pectate lyases. Scientific Reports, 2014, 4, 5263.	3.3	18
39	Complexity of the Alternative Splicing Landscape in Plants Â. Plant Cell, 2013, 25, 3657-3683.	6.6	731
40	Localization and Dynamics of Nuclear Speckles in Plants. Plant Physiology, 2012, 158, 67-77.	4.8	74
41	Identification of an intronic splicing regulatory element involved in autoâ€regulation of alternative splicing of <i>SCL33</i> preâ€mRNA. Plant Journal, 2012, 72, 935-946.	5.7	71
42	Deciphering the Plant Splicing Code: Experimental and Computational Approaches for Predicting Alternative Splicing and Splicing Regulatory Elements. Frontiers in Plant Science, 2012, 3, 18.	3.6	78
43	Plant serine/arginineâ€rich proteins: roles in precursor messenger RNA splicing, plant development, and stress responses. Wiley Interdisciplinary Reviews RNA, 2011, 2, 875-889.	6.4	111
44	Coping with Stresses: Roles of Calcium- and Calcium/Calmodulin-Regulated Gene Expression Â. Plant Cell, 2011, 23, 2010-2032.	6.6	624
45	Incorporation of gap characters and lineage-specific regions into phylogenetic analyses of gene families from divergent clades: an example from the kinesin superfamily across eukaryotes. Cladistics, 2008, 24, 372-384.	3.3	7
46	Alternative Splicing of Pre-Messenger RNAs in Plants in the Genomic Era. Annual Review of Plant Biology, 2007, 58, 267-294.	18.7	465
47	Organâ€specific, developmental, hormonal and stress regulation of expression of putative pectate lyase genes in Arabidopsis. New Phytologist, 2007, 174, 537-550.	7.3	75
48	Analysis of Calcium/Calmodulin Regulation of a Plant Kinesin Using Co-Sedimentation and ATPase Assays. Methods in Molecular Biology, 2007, 392, 23-36.	0.9	2
49	Plant serine/arginine-rich proteins and their role in pre-mRNA splicing. Trends in Plant Science, 2004, 9, 541-547.	8.8	97
50	Arabidopsis U1 snRNP 70K protein and its interacting proteins: nuclear localization and in vivo dynamics of a novel plant-specific serine/arginine-rich protein. Symposia of the Society for Experimental Biology, 2004, , 279-95.	0.0	0
51	Isolation and Characterization of a Novel Calmodulin-binding Protein from Potato. Journal of Biological Chemistry, 2002, 277, 4206-4214.	3.4	36
52	The Kinesin-like Calmodulin Binding Protein Is Differentially Involved in Cell Division. Plant Cell, 2000, 12, 979-990.	6.6	110
53	Characterization of Microtubule Binding Domains in the Arabidopsis Kinesin-like Calmodulin Binding Protein. Plant Cell, 1998, 10, 957-965.	6.6	101
54	The Plant U1 Small Nuclear Ribonucleoprotein Particle 70K Protein Interacts with Two Novel Serine/Arginine–Rich Proteins. Plant Cell, 1998, 10, 1637-1647.	6.6	74