Xiu-Fang Xin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4328792/publications.pdf Version: 2024-02-01

XILL-FANC XIN

#	Article	IF	CITATIONS
1	Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature, 2021, 592, 105-109.	27.8	590
2	<i>Pseudomonas syringae</i> pv. <i>tomato</i> DC3000: A Model Pathogen for Probing Disease Susceptibility and Hormone Signaling in Plants. Annual Review of Phytopathology, 2013, 51, 473-498.	7.8	535
3	Pseudomonas syringae: what it takes to be a pathogen. Nature Reviews Microbiology, 2018, 16, 316-328.	28.6	501
4	PTI-ETI crosstalk: an integrative view of plant immunity. Current Opinion in Plant Biology, 2021, 62, 102030.	7.1	373
5	Bacteria establish an aqueous living space in plants crucial for virulence. Nature, 2016, 539, 524-529.	27.8	358
6	A plant genetic network for preventing dysbiosis in the phyllosphere. Nature, 2020, 580, 653-657.	27.8	304
7	Allelic diversity in an NLR gene <i>BPH9</i> enables rice to combat planthopper variation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12850-12855.	7.1	196
8	Regulation of growth–defense balance by the JASMONATE ZIMâ€DOMAIN (JAZ)â€MYC transcriptional module. New Phytologist, 2017, 215, 1533-1547.	7.3	182
9	<i>Pseudomonas syringae</i> Effector Avirulence Protein E Localizes to the Host Plasma Membrane and Down-Regulates the Expression of the <i>NONRACE-SPECIFIC DISEASE RESISTANCE1/HARPIN-INDUCED1-LIKE13</i> Gene Required for Antibacterial Immunity in Arabidopsis. Plant Physiology. 2015. 169. 793-802.	4.8	71
10	Phyllosphere microbiota: Community dynamics and its interaction with plant hosts. Journal of Integrative Plant Biology, 2021, 63, 297-304.	8.5	61
11	Bacterial effectors manipulate plant abscisic acid signaling for creation of an aqueous apoplast. Cell Host and Microbe, 2022, 30, 518-529.e6.	11.0	61
12	Host target modification as a strategy to counter pathogen hijacking of the jasmonate hormone receptor. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14354-14359.	7.1	51
13	Induction and Suppression of PEN3 Focal Accumulation During <i>Pseudomonas syringae</i> pv. <i>tomato</i> DC3000 Infection of <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2013, 26, 861-867.	2.6	43
14	A bacterial kinase phosphorylates OSK1 to suppress stomatal immunity in rice. Nature Communications, 2021, 12, 5479.	12.8	24
15	Regulation and integration of plant jasmonate signaling: a comparative view of monocot and dicot. Journal of Genetics and Genomics, 2022, 49, 704-714.	3.9	20
16	Bacterial Infection and Hypersensitive Response Assays in Arabidopsis-Pseudomonas syringae Pathosystem. Bio-protocol, 2021, 11, e4268.	0.4	4