
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4328791/publications.pdf Version: 2024-02-01

DALL FLASKO

#	Article	IF	CITATIONS
1	The broader phenotypic spectrum of congenital caudal abnormalities associated with mutations in the caudal type homeobox 2 gene. Clinical Genetics, 2022, 101, 183-189.	1.0	4
2	Investigating rare and ultrarare epilepsy syndromes with Drosophila models. Faculty Reviews, 2021, 10, 10.	1.7	5
3	Drosophila melanogaster: a fruitful model for oncohistones. Fly, 2021, 15, 28-37.	0.9	0
4	Transgenes of genetically modified animals detected non-invasively via environmental DNA. PLoS ONE, 2021, 16, e0249439.	1.1	0
5	Ectoderm to mesoderm transition by down-regulation of actomyosin contractility. PLoS Biology, 2021, 19, e3001060.	2.6	14
6	Histone H3.3 K27M and K36M mutations de-repress transposable elements through perturbation of antagonistic chromatin marks. Molecular Cell, 2021, 81, 4876-4890.e7.	4.5	26
7	Ectoderm to mesoderm transition by down-regulation of actomyosin contractility. , 2021, 19, e3001060.		0
8	Ectoderm to mesoderm transition by down-regulation of actomyosin contractility. , 2021, 19, e3001060.		0
9	Ectoderm to mesoderm transition by down-regulation of actomyosin contractility. , 2021, 19, e3001060.		0
10	Ectoderm to mesoderm transition by down-regulation of actomyosin contractility. , 2021, 19, e3001060.		0
11	Ectoderm to mesoderm transition by down-regulation of actomyosin contractility. , 2021, 19, e3001060.		0
12	Ectoderm to mesoderm transition by down-regulation of actomyosin contractility. , 2021, 19, e3001060.		0
13	Ectoderm to mesoderm transition by down-regulation of actomyosin contractility. , 2021, 19, e3001060.		0
14	Ectoderm to mesoderm transition by down-regulation of actomyosin contractility. , 2021, 19, e3001060.		0
15	Unorthodox Mechanisms to Initiate Translation Open Novel Paths for Gene Expression. Journal of Molecular Biology, 2020, 432, 166702.	2.0	14
16	Patterning the <i>Drosophila</i> embryo: A paradigm for RNAâ€based developmental genetic regulation. Wiley Interdisciplinary Reviews RNA, 2020, 11, e1610.	3.2	14
17	Makorin 1 controls embryonic patterning by alleviating Bruno1-mediated repression of oskar translation. PLoS Genetics, 2020, 16, e1008581.	1.5	11
18	The Undiagnosed Diseases Network International: Five years and more!. Molecular Genetics and Metabolism, 2020, 129, 243-254.	0.5	25

#	Article	IF	CITATIONS
19	A ribosomal protein S5 isoform is essential for oogenesis and interacts with distinct RNAs in Drosophila melanogaster. Scientific Reports, 2019, 9, 13779.	1.6	31
20	ldentification of genes functionally involved in the detrimental effects of mutant histone H3.3-K27M in Drosophila melanogaster. Neuro-Oncology, 2019, 21, 628-639.	0.6	5
21	Pervasive H3K27 Acetylation Leads to ERV Expression and a Therapeutic Vulnerability in H3K27M Gliomas. Cancer Cell, 2019, 35, 782-797.e8.	7.7	143
22	Progress in Rare Diseases Research 2010–2016: An IRDiRC Perspective. Clinical and Translational Science, 2018, 11, 11-20.	1.5	104
23	DIPG-06. IDENTIFICATION OF GENES FUNCTIONALLY INVOLVED IN THE DETRIMENTAL EFFECTS OF MUTANT HISTONE K27M-H3.3 USING DROSOPHILA MELANOGASTER. Neuro-Oncology, 2018, 20, i50-i50.	0.6	0
24	Recent Developments in Using Drosophila as a Model for Human Genetic Disease. International Journal of Molecular Sciences, 2018, 19, 2041.	1.8	18
25	†ÎRDiRC Recognized Resources': a new mechanism to support scientists to conduct efficient, high-quality research for rare diseases. European Journal of Human Genetics, 2017, 25, 162-165.	1.4	30
26	mRNAs on the Move after Lunch. Developmental Cell, 2017, 42, 439-440.	3.1	0
27	Dueling RNA-binding proteins promote translational activation. Nature Structural and Molecular Biology, 2017, 24, 609-610.	3.6	0
28	Multiple Functions of the DEAD-Box Helicase Vasa in Drosophila Oogenesis. Results and Problems in Cell Differentiation, 2017, 63, 127-147.	0.2	15
29	The International Rare Diseases Research Consortium: Policies and Guidelines to maximize impact. European Journal of Human Genetics, 2017, 25, 1293-1302.	1.4	62
30	Improved Diagnosis and Care for Rare Diseases through Implementation of Precision Public Health Framework. Advances in Experimental Medicine and Biology, 2017, 1031, 55-94.	0.8	20
31	The translation factors of <i>Drosophila melanogaster</i> . Fly, 2017, 11, 65-74.	0.9	18
32	Initiating an undiagnosed diseases program in the Western Australian public health system. Orphanet Journal of Rare Diseases, 2017, 12, 83.	1.2	24
33	Loss of function of the <i>Drosophila</i> Ninein-related centrosomal protein Bsg25D causes mitotic defects and impairs embryonic development. Biology Open, 2016, 5, 1040-1051.	0.6	25
34	C-terminal residues specific to Vasa among DEAD-box helicases are required for its functions in piRNA biogenesis and embryonic patterning. Development Genes and Evolution, 2016, 226, 401-412.	0.4	24
35	The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery. Cell, 2016, 167, 1145-1149.	13.5	404
36	Drosophila 4EHP is essential for the larval–pupal transition and required in the prothoracic gland for ecdysone biosynthesis. Developmental Biology, 2016, 410, 14-23.	0.9	16

#	Article	IF	CITATIONS
37	Loss-of-Function Analysis Reveals Distinct Requirements of the Translation Initiation Factors eIF4E, eIF4E-3, eIF4G and eIF4G2 in Drosophila Spermatogenesis. PLoS ONE, 2015, 10, e0122519.	1.1	37
38	Global implementation of genomic medicine: We are not alone. Science Translational Medicine, 2015, 7, 290ps13.	5.8	146
39	<i>In vivo</i> mapping of the functional regions of the DEAD-box helicase Vasa. Biology Open, 2015, 4, 450-462.	0.6	26
40	Analysis of RNA Interference Lines Identifies New Functions of Maternally-Expressed Genes Involved in Embryonic Patterning in Drosophila melanogaster. G3: Genes, Genomes, Genetics, 2015, 5, 1025-1034.	0.8	7
41	Undiagnosed Diseases Network International (UDNI): White paper for global actions to meet patient needs. Molecular Genetics and Metabolism, 2015, 116, 223-225.	0.5	69
42	Glycolytic enzymes localize to ribonucleoprotein granules in <i>Drosophila</i> germ cells, bind Tudor and protect from transposable elements. EMBO Reports, 2015, 16, 379-386.	2.0	14
43	Cytoplasmic Polyadenylation Element Binding Proteins in Development, Health, and Disease. Annual Review of Cell and Developmental Biology, 2014, 30, 393-415.	4.0	201
44	Relationship between genome and epigenome - challenges and requirements for future research. BMC Genomics, 2014, 15, 487.	1.2	24
45	Rare Diseases: How Genomics has Transformed Thinking, Diagnoses and Hope for Affected Families. Communications in Medical and Care Compunetics, 2014, , 27-38.	0.2	0
46	Mextli Is a Novel Eukaryotic Translation Initiation Factor 4E-Binding Protein That Promotes Translation in <i>Drosophila melanogaster</i> . Molecular and Cellular Biology, 2013, 33, 2854-2864.	1.1	23
47	Autism-related deficits via dysregulated elF4E-dependent translational control. Nature, 2013, 493, 371-377.	13.7	451
48	Development: New Wrinkles on Genetic Control of the MBT. Current Biology, 2013, 23, R65-R67.	1.8	6
49	The DEAD-box helicase Vasa: Evidence for a multiplicity of functions in RNA processes and developmental biology. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 810-816.	0.9	112
50	The CCR4-NOT Complex Mediates Deadenylation and Degradation of Stem Cell mRNAs and Promotes Planarian Stem Cell Differentiation. PLoS Genetics, 2013, 9, e1004003.	1.5	29
51	Eukaryotic initiation factor 4E-3 is essential for meiotic chromosome segregation, cytokinesis and male fertility in <i>Drosophila</i> . Development (Cambridge), 2012, 139, 3211-3220.	1.2	31
52	The Distribution of elF4E-Family Members across Insecta. Comparative and Functional Genomics, 2012, 2012, 1-15.	2.0	13
53	The Bic-C Family of Developmental Translational Regulators. Comparative and Functional Genomics, 2012, 2012, 1-23.	2.0	21
54	mRNA Localization and Translational Control in Drosophila Oogenesis. Cold Spring Harbor Perspectives in Biology, 2012, 4, a012294-a012294.	2.3	109

#	Article	IF	CITATIONS
55	Translational control in cellular and developmental processes. Nature Reviews Genetics, 2012, 13, 383-394.	7.7	169
56	mRNA helicases: the tacticians of translational control. Nature Reviews Molecular Cell Biology, 2011, 12, 235-245.	16.1	279
57	Posttranscriptional regulation in <i>Drosophila</i> oocytes and early embryos. Wiley Interdisciplinary Reviews RNA, 2011, 2, 408-416.	3.2	53
58	Translational Control in Oocyte Development. Cold Spring Harbor Perspectives in Biology, 2011, 3, a002758-a002758.	2.3	101
59	Origins and evolution of the mechanisms regulating translation initiation in eukaryotes. Trends in Biochemical Sciences, 2010, 35, 63-73.	3.7	57
60	Tudor Domain. Current Biology, 2010, 20, R666-R667.	1.8	33
61	Reduced cul-5 Activity Causes Aberrant Follicular Morphogenesis and Germ Cell Loss in Drosophila Oogenesis. PLoS ONE, 2010, 5, e9048.	1.1	13
62	Arginine methylation of Aubergine mediates Tudor binding and germ plasm localization. Rna, 2010, 16, 70-78.	1.6	113
63	Regulation of <i>Drosophila</i> Vasa <i>In Vivo</i> through Paralogous Cullin-RING E3 Ligase Specificity Receptors. Molecular and Cellular Biology, 2010, 30, 1769-1782.	1.1	37
64	Translational Control in Invertebrate Development. , 2010, , 2323-2328.		0
65	Stochastic variation: From single cells to superorganisms. HFSP Journal, 2009, 3, 379-385.	2.5	26
66	Vasa promotes <i>Drosophila</i> germline stem cell differentiation by activating <i>mei-P26</i> translation by directly interacting with a (U)-rich motif in its 3′ UTR. Genes and Development, 2009, 23, 2742-2752.	2.7	93
67	Chapter 6 Translational Control During Early Development. Progress in Molecular Biology and Translational Science, 2009, 90, 211-254.	0.9	19
68	Localization, anchoring and translational control of <i>oskar</i> , <i>gurken</i> , <i>bicoid</i> and <i>nanos</i> mRNA during Drosophila oogenesis. Fly, 2009, 3, 15-28.	0.9	146
69	Vasa protein is localized in the germ cells and in the oocyte-associated pyriform follicle cells during early oogenesis in the lizard Podarcis sicula. Development Genes and Evolution, 2009, 219, 361-367.	0.4	13
70	Hsp90 Regulates the Function of Argonaute 2 and Its Recruitment to Stress Granules and P-Bodies. Molecular Biology of the Cell, 2009, 20, 3273-3284.	0.9	122
71	Bicaudal-C associates with a Trailer Hitch/Me31B complex and is required for efficient Gurken secretion. Developmental Biology, 2009, 328, 160-172.	0.9	36
72	Spoltud-1 is a chromatoid body component required for planarian long-term stem cell self-renewal. Developmental Biology, 2009, 328, 410-421.	0.9	83

#	Article	IF	CITATIONS
73	Bruno negatively regulates germ cell-less expression in a BRE-independent manner. Mechanisms of Development, 2009, 126, 503-516.	1.7	11
74	Breaking the A chain: regulating mRNAs in development through CCR4 deadenylase. F1000 Biology Reports, 2009, 1, 20.	4.0	2
75	Drosophila Pgc protein inhibits P-TEFb recruitment to chromatin in primordial germ cells. Nature, 2008, 451, 730-733.	13.7	186
76	Isolation of new polar granule components in Drosophila reveals P body and ER associated proteins. Mechanisms of Development, 2008, 125, 865-873.	1.7	97
77	The Development of Germline Stem Cells in Drosophila. Methods in Molecular Biology, 2008, 450, 3-26.	0.4	94
78	RanBPM regulates cell shape, arrangement, and capacity of the female germline stem cell niche in <i>Drosophila melanogaster </i> . Journal of Cell Biology, 2008, 182, 963-977.	2.3	28
79	Drosophila melanogaster Thor and Response to Candida albicans Infection. Eukaryotic Cell, 2007, 6, 658-663.	3.4	25
80	Investigating Translation Initiation Using Drosophila Molecular Genetics. Methods in Enzymology, 2007, 429, 227-242.	0.4	0
81	Coordinated transcriptional and translational control in metabolic homeostasis in flies. Genes and Development, 2007, 21, 235-237.	2.7	8
82	Bicaudal-C Recruits CCR4-NOT Deadenylase to Target mRNAs and Regulates Oogenesis, Cytoskeletal Organization, and Its Own Expression. Developmental Cell, 2007, 13, 691-704.	3.1	135
83	Genetic maps of the proximal half of chromosome arm 2L of Drosophila melanogaster. Genome, 2007, 50, 137-141.	0.9	1
84	Drosophila RNA Binding Proteins. International Review of Cytology, 2006, 248, 43-139.	6.2	23
85	Bent out of Shape: RNA Unwinding by the DEAD-Box Helicase Vasa. Cell, 2006, 125, 219-221.	13.5	56
86	Cap-Dependent Translational Inhibition Establishes Two Opposing Morphogen Gradients in Drosophila Embryos. Current Biology, 2006, 16, 2035-2041.	1.8	136
87	A new model for translational regulation of specific mRNAs. Trends in Biochemical Sciences, 2006, 31, 607-610.	3.7	8
88	Murine homologues of the Drosophila gustavus gene are expressed in ovarian granulosa cells. Reproduction, 2006, 131, 905-915.	1.1	17
89	Contrasting mechanisms of regulating translation of specific <i>Drosophila</i> germline mRNAs at the level of 5′-cap structure binding. Biochemical Society Transactions, 2005, 33, 1544-1546.	1.6	4
90	Contrasting mechanisms of regulating translation of specific Drosophila germline mRNAs at the level of 5′-cap structure binding. Biochemical Society Transactions, 2005, 33, 1544.	1.6	8

#	Article	IF	CITATIONS
91	Tudor and its domains: germ cell formation from a Tudor perspective. Cell Research, 2005, 15, 281-291.	5.7	72
92	Starvation and oxidative stress resistance in Drosophila are mediated through the eIF4E-binding protein, d4E-BP. Genes and Development, 2005, 19, 1840-1843.	2.7	160
93	A New Paradigm for Translational Control: Inhibition via 5′-3′ mRNA Tethering by Bicoid and the elF4E Cognate 4EHP. Cell, 2005, 121, 411-423.	13.5	232
94	Belle is a Drosophila DEAD-box protein required for viability and in the germ line. Developmental Biology, 2005, 277, 92-101.	0.9	108
95	The Drosophila Poly(A) Binding Protein-Interacting Protein, dPaip2, Is a Novel Effector of Cell Growth. Molecular and Cellular Biology, 2004, 24, 1143-1154.	1.1	34
96	Drosophilatudor is essential for polar granule assembly and pole cell specification, but not for posterior patterning. Genesis, 2004, 40, 164-170.	0.8	88
97	Map positions of third chromosomal female sterile and lethal mutations of Drosophila melanogaster. Genome, 2004, 47, 832-838.	0.9	2
98	Interaction with eIF5B is essential for Vasa function during development. Development (Cambridge), 2004, 131, 4167-4178.	1.2	127
99	Characterization of the Drosophila protein arginine methyltransferases DART1 and DART4. Biochemical Journal, 2004, 379, 283-289.	1.7	62
100	Fat Facets Interacts with Vasa in the Drosophila Pole Plasm and Protects It from Degradation. Current Biology, 2003, 13, 1905-1909.	1.8	41
101	Signaling from Akt to FRAP/TOR Targets both 4E-BP andS6K in Drosophilamelanogaster. Molecular and Cellular Biology, 2003, 23, 9117-9126.	1.1	122
102	Ribosomes Rule. Developmental Cell, 2003, 5, 671-672.	3.1	9
103	kep1 interacts genetically with dredd/Caspase-8, and kep1 mutants alter the balance of dredd isoforms. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1814-1819.	3.3	22
104	Nonmuscle Myosin Promotes Cytoplasmic Localization of PBX. Molecular and Cellular Biology, 2003, 23, 3636-3645.	1.1	36
105	Cup-ling oskar RNA localization and translational control. Journal of Cell Biology, 2003, 163, 1189-1191.	2.3	9
106	Gene Regulation at the RNA Layer: RNA Binding Proteins in Intercellular Signaling Networks. Science Signaling, 2003, 2003, re6-re6.	1.6	31
107	Translational Control in Invertebrate Development. , 2003, , 327-330.		0
108	Phosphorylation of Eukaryotic Translation Initiation Factor 4E Is Critical for Growth. Molecular and Cellular Biology, 2002, 22, 1656-1663.	1.1	175

#	Article	IF	CITATIONS
109	Nuclear Retention of MBP mRNAs in the Quaking Viable Mice. Neuron, 2002, 36, 815-829.	3.8	152
110	VASA Localization Requires the SPRY-Domain and SOCS-Box Containing Protein, GUSTAVUS. Developmental Cell, 2002, 3, 865-876.	3.1	71
111	Diabetic flies? Using Drosophila melanogaster to understand the causes of monogenic and genetically complex diseases. Clinical Genetics, 2002, 62, 358-367.	1.0	24
112	The translational inhibitor 4E-BP is an effector of PI(3)K/Akt signalling and cell growth in Drosophila. Nature Cell Biology, 2001, 3, 596-601.	4.6	202
113	Translational Regulation and RNA Localization inDrosophilaOocytes and Embryos. Annual Review of Genetics, 2001, 35, 365-406.	3.2	295
114	Map Position and Expression of the Genes in the 38 Region of Drosophila. Genetics, 2001, 158, 1597-1614.	1.2	11
115	Postsynaptic translation affects the efficacy and morphology of neuromuscular junctions. Nature, 2000, 405, 1062-1065.	13.7	154
116	The Genome Sequence of Drosophila melanogaster. Science, 2000, 287, 2185-2195.	6.0	5,566
117	The Drosophila melanogaster Genome. Journal of Cell Biology, 2000, 150, F51-F56.	2.3	120
118	VASA Mediates Translation through Interaction with a Drosophila yIF2 Homolog. Molecular Cell, 2000, 5, 181-187.	4.5	159
119	ABSTRACT Translational control in the Drosophila germ line. Biochemistry and Cell Biology, 2000, 78, 645.	0.9	0
120	RNA sorting in <i>Drosophila</i> oocytes and embryos. FASEB Journal, 1999, 13, 421-433.	0.2	72
121	Localized RNAs and translational control in <i>Drosophila</i> oogenesis. Biochemistry and Cell Biology, 1999, 77, 405.	0.9	1
122	The Identification of Two Drosophila K Homology Domain Proteins. Journal of Biological Chemistry, 1998, 273, 30122-30130.	1.6	40
123	Premature Translation of <i>oskar</i> in Oocytes Lacking the RNA-Binding Protein Bicaudal-C. Molecular and Cellular Biology, 1998, 18, 4855-4862.	1.1	99
124	Translational repressor <i>bruno</i> plays multiple roles in development and is widely conserved. Genes and Development, 1997, 11, 2510-2521.	2.7	211
125	Self-Association of the Single-KH-Domain Family Members Sam68, GRP33, GLD-1, and Qk1: Role of the KH Domain. Molecular and Cellular Biology, 1997, 17, 5707-5718.	1.1	176
126	Localized Bicaudal-C RNA encodes a protein containing a KH domain, the RNA binding motif of FMR1. EMBO Journal, 1997, 16, 4152-4152.	3.5	34

#	Article	IF	CITATIONS
127	A New Enhancer of Position-Effect Variegation in <i>Drosophila melanogaster</i> Encodes a Putative RNA Helicase That Binds Chromosomes and Is Regulated by the Cell Cycle. Genetics, 1997, 146, 951-963.	1.2	36
128	A Drosophila melanogaster homologue of the human DEAD-box gene DDX1. Gene, 1996, 171, 225-229.	1.0	10
129	Requirement for a Noncoding RNA in Drosophila Polar Granules for Germ Cell Establishment. Science, 1996, 274, 2075-2079.	6.0	178
130	Alternatively Spliced Transcripts from the Gene Produce Two Different Cap-binding Proteins. Journal of Biological Chemistry, 1996, 271, 16393-16398.	1.6	30
131	Cell-cell signalling, microtubule organization and RNA localization: Is PKA a link?. BioEssays, 1995, 17, 105-107.	1.2	5
132	Localized Bicaudal-C RNA encodes a protein containing a KH domain, the RNA binding motif of FMR1 EMBO Journal, 1995, 14, 2043-2055.	3.5	109
133	Dbp45A encodes a Drosophila DEAD box protein with similarity to a putative yeast helicase involved in ribosome assembly. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1993, 1216, 140-144.	2.4	4
134	Dbp73D, aDrosophilagene expressed in ovary, encodes a novel D-E-A-D box protein. Nucleic Acids Research, 1992, 20, 3063-3067.	6.5	13
135	Molecular movements in oocyte patterning and pole cell differentiation. BioEssays, 1992, 14, 507-512.	1.2	19
136	Posterior localization of vasa protein correlates with, but is not sufficient for, pole cell development Genes and Development, 1990, 4, 905-921.	2.7	372
137	The genetics of a small autosomal region of Drosophila melanogaster containing the structural gene for alcohol dehydrogenase. VII. Characterization of the region around the snail and cactus loci Genetics, 1990, 126, 679-694.	1.2	91
138	Characterization of the gene for mp20: a Drosophila muscle protein that is not found in asynchronous oscillatory flight muscle. Journal of Cell Biology, 1989, 108, 521-531.	2.3	81
139	Homeosis and the interaction of zeste and white in Drosophila. Molecular Genetics and Genomics, 1989, 218, 559-564.	2.4	117
140	Birth of the D-E-A-D box. Nature, 1989, 337, 121-122.	13.7	745
141	The product of the Drosophila gene vasa is very similar to eukaryotic initiation factor-4A. Nature, 1988, 335, 611-617.	13.7	602
142	Proline transport in Saccharomyces cerevisiae. Journal of Bacteriology, 1981, 148, 241-247.	1.0	116
143	Ribosomal Protein S5b is Essential for Oogenesis and is Required to Maintain Mitochondrial Integrity and Function in Drosophila Melanogaster. SSRN Electronic Journal, 0, , .	0.4	0