Paul F Lasko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4328791/publications.pdf

Version: 2024-02-01

143 papers 15,873 citations

54 h-index 17055 122 g-index

197 all docs

197 docs citations

197 times ranked

17674 citing authors

#	Article	IF	CITATIONS
1	The Genome Sequence of Drosophila melanogaster. Science, 2000, 287, 2185-2195.	6.0	5,566
2	Birth of the D-E-A-D box. Nature, 1989, 337, 121-122.	13.7	745
3	The product of the Drosophila gene vasa is very similar to eukaryotic initiation factor-4A. Nature, 1988, 335, 611-617.	13.7	602
4	Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature, 2013, 493, 371-377.	13.7	451
5	The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery. Cell, 2016, 167, 1145-1149.	13.5	404
6	Posterior localization of vasa protein correlates with, but is not sufficient for, pole cell development Genes and Development, 1990, 4, 905-921.	2.7	372
7	Translational Regulation and RNA Localization inDrosophilaOocytes and Embryos. Annual Review of Genetics, 2001, 35, 365-406.	3.2	295
8	mRNA helicases: the tacticians of translational control. Nature Reviews Molecular Cell Biology, 2011, 12, 235-245.	16.1	279
9	A New Paradigm for Translational Control: Inhibition via 5′-3′ mRNA Tethering by Bicoid and the eIF4E Cognate 4EHP. Cell, 2005, 121, 411-423.	13.5	232
10	Translational repressor <i>bruno</i> plays multiple roles in development and is widely conserved. Genes and Development, 1997, 11, 2510-2521.	2.7	211
11	The translational inhibitor 4E-BP is an effector of PI(3)K/Akt signalling and cell growth in Drosophila. Nature Cell Biology, 2001, 3, 596-601.	4.6	202
12	Cytoplasmic Polyadenylation Element Binding Proteins in Development, Health, and Disease. Annual Review of Cell and Developmental Biology, 2014, 30, 393-415.	4.0	201
13	Drosophila Pgc protein inhibits P-TEFb recruitment to chromatin in primordial germ cells. Nature, 2008, 451, 730-733.	13.7	186
14	Requirement for a Noncoding RNA in Drosophila Polar Granules for Germ Cell Establishment. Science, 1996, 274, 2075-2079.	6.0	178
15	Self-Association of the Single-KH-Domain Family Members Sam68, GRP33, GLD-1, and Qk1: Role of the KH Domain. Molecular and Cellular Biology, 1997, 17, 5707-5718.	1.1	176
16	Phosphorylation of Eukaryotic Translation Initiation Factor 4E Is Critical for Growth. Molecular and Cellular Biology, 2002, 22, 1656-1663.	1.1	175
17	Translational control in cellular and developmental processes. Nature Reviews Genetics, 2012, 13, 383-394.	7.7	169
18	Starvation and oxidative stress resistance in Drosophila are mediated through the eIF4E-binding protein, d4E-BP. Genes and Development, 2005, 19, 1840-1843.	2.7	160

#	Article	lF	Citations
19	VASA Mediates Translation through Interaction with a Drosophila yIF2 Homolog. Molecular Cell, 2000, 5, 181-187.	4. 5	159
20	Postsynaptic translation affects the efficacy and morphology of neuromuscular junctions. Nature, 2000, 405, 1062-1065.	13.7	154
21	Nuclear Retention of MBP mRNAs in the Quaking Viable Mice. Neuron, 2002, 36, 815-829.	3.8	152
22	Localization, anchoring and translational control of <i>oskar</i> , <i>gurken</i> , <i>bicoid</i> and <i>nanos</i> mRNA during Drosophila oogenesis. Fly, 2009, 3, 15-28.	0.9	146
23	Global implementation of genomic medicine: We are not alone. Science Translational Medicine, 2015, 7, 290ps13.	5.8	146
24	Pervasive H3K27 Acetylation Leads to ERV Expression and a Therapeutic Vulnerability in H3K27M Gliomas. Cancer Cell, 2019, 35, 782-797.e8.	7.7	143
25	Cap-Dependent Translational Inhibition Establishes Two Opposing Morphogen Gradients in Drosophila Embryos. Current Biology, 2006, 16, 2035-2041.	1.8	136
26	Bicaudal-C Recruits CCR4-NOT Deadenylase to Target mRNAs and Regulates Oogenesis, Cytoskeletal Organization, and Its Own Expression. Developmental Cell, 2007, 13, 691-704.	3.1	135
27	Interaction with eIF5B is essential for Vasa function during development. Development (Cambridge), 2004, 131, 4167-4178.	1.2	127
28	Signaling from Akt to FRAP/TOR Targets both 4E-BP and S6K in Drosophilamelanogaster. Molecular and Cellular Biology, 2003, 23, 9117-9126.	1.1	122
29	Hsp90 Regulates the Function of Argonaute 2 and Its Recruitment to Stress Granules and P-Bodies. Molecular Biology of the Cell, 2009, 20, 3273-3284.	0.9	122
30	The Drosophila melanogaster Genome. Journal of Cell Biology, 2000, 150, F51-F56.	2.3	120
31	Homeosis and the interaction of zeste and white in Drosophila. Molecular Genetics and Genomics, 1989, 218, 559-564.	2.4	117
32	Proline transport in Saccharomyces cerevisiae. Journal of Bacteriology, 1981, 148, 241-247.	1.0	116
33	Arginine methylation of Aubergine mediates Tudor binding and germ plasm localization. Rna, 2010, 16, 70-78.	1.6	113
34	The DEAD-box helicase Vasa: Evidence for a multiplicity of functions in RNA processes and developmental biology. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 810-816.	0.9	112
35	Localized Bicaudal-C RNA encodes a protein containing a KH domain, the RNA binding motif of FMR1 EMBO Journal, 1995, 14, 2043-2055.	3.5	109
36	mRNA Localization and Translational Control in Drosophila Oogenesis. Cold Spring Harbor Perspectives in Biology, 2012, 4, a012294-a012294.	2.3	109

#	Article	IF	CITATIONS
37	Belle is a Drosophila DEAD-box protein required for viability and in the germ line. Developmental Biology, 2005, 277, 92-101.	0.9	108
38	Progress in Rare Diseases Research 2010–2016: An IRDiRC Perspective. Clinical and Translational Science, 2018, 11, 11-20.	1.5	104
39	Translational Control in Oocyte Development. Cold Spring Harbor Perspectives in Biology, 2011, 3, a002758-a002758.	2.3	101
40	Premature Translation of <i>oskar</i> in Oocytes Lacking the RNA-Binding Protein Bicaudal-C. Molecular and Cellular Biology, 1998, 18, 4855-4862.	1.1	99
41	Isolation of new polar granule components in Drosophila reveals P body and ER associated proteins. Mechanisms of Development, 2008, 125, 865-873.	1.7	97
42	The Development of Germline Stem Cells in Drosophila. Methods in Molecular Biology, 2008, 450, 3-26.	0.4	94
43	Vasa promotes <i>Drosophila</i> germline stem cell differentiation by activating <i>mei-P26</i> translation by directly interacting with a (U)-rich motif in its 3′ UTR. Genes and Development, 2009, 23, 2742-2752.	2.7	93
44	The genetics of a small autosomal region of Drosophila melanogaster containing the structural gene for alcohol dehydrogenase. VII. Characterization of the region around the snail and cactus loci Genetics, 1990, 126, 679-694.	1.2	91
45	Drosophilatudor is essential for polar granule assembly and pole cell specification, but not for posterior patterning. Genesis, 2004, 40, 164-170.	0.8	88
46	Spoltud-1 is a chromatoid body component required for planarian long-term stem cell self-renewal. Developmental Biology, 2009, 328, 410-421.	0.9	83
47	Characterization of the gene for mp20: a Drosophila muscle protein that is not found in asynchronous oscillatory flight muscle Journal of Cell Biology, 1989, 108, 521-531.	2.3	81
48	RNA sorting in <i>Drosophila</i> oocytes and embryos. FASEB Journal, 1999, 13, 421-433.	0.2	72
49	Tudor and its domains: germ cell formation from a Tudor perspective. Cell Research, 2005, 15, 281-291.	5.7	72
50	VASA Localization Requires the SPRY-Domain and SOCS-Box Containing Protein, GUSTAVUS. Developmental Cell, 2002, 3, 865-876.	3.1	71
51	Undiagnosed Diseases Network International (UDNI): White paper for global actions to meet patient needs. Molecular Genetics and Metabolism, 2015, 116, 223-225.	0.5	69
52	Characterization of the Drosophila protein arginine methyltransferases DART1 and DART4. Biochemical Journal, 2004, 379, 283-289.	1.7	62
53	The International Rare Diseases Research Consortium: Policies and Guidelines to maximize impact. European Journal of Human Genetics, 2017, 25, 1293-1302.	1.4	62
54	Origins and evolution of the mechanisms regulating translation initiation in eukaryotes. Trends in Biochemical Sciences, 2010, 35, 63-73.	3.7	57

#	Article	IF	Citations
55	Bent out of Shape: RNA Unwinding by the DEAD-Box Helicase Vasa. Cell, 2006, 125, 219-221.	13.5	56
56	Posttranscriptional regulation in <i>Drosophila</i> oocytes and early embryos. Wiley Interdisciplinary Reviews RNA, 2011, 2, 408-416.	3.2	53
57	Fat Facets Interacts with Vasa in the Drosophila Pole Plasm and Protects It from Degradation. Current Biology, 2003, 13, 1905-1909.	1.8	41
58	The Identification of Two Drosophila K Homology Domain Proteins. Journal of Biological Chemistry, 1998, 273, 30122-30130.	1.6	40
59	Regulation of <i>Drosophila</i> Vasa <i>In Vivo</i> through Paralogous Cullin-RING E3 Ligase Specificity Receptors. Molecular and Cellular Biology, 2010, 30, 1769-1782.	1.1	37
60	Loss-of-Function Analysis Reveals Distinct Requirements of the Translation Initiation Factors eIF4E, eIF4E-3, eIF4G and eIF4G2 in Drosophila Spermatogenesis. PLoS ONE, 2015, 10, e0122519.	1.1	37
61	Nonmuscle Myosin Promotes Cytoplasmic Localization of PBX. Molecular and Cellular Biology, 2003, 23, 3636-3645.	1.1	36
62	Bicaudal-C associates with a Trailer Hitch/Me31B complex and is required for efficient Gurken secretion. Developmental Biology, 2009, 328, 160-172.	0.9	36
63	A New Enhancer of Position-Effect Variegation in <i>Drosophila melanogaster</i> RNA Helicase That Binds Chromosomes and Is Regulated by the Cell Cycle. Genetics, 1997, 146, 951-963.	1.2	36
64	Localized Bicaudal-C RNA encodes a protein containing a KH domain, the RNA binding motif of FMR1. EMBO Journal, 1997, 16, 4152-4152.	3.5	34
65	The Drosophila Poly(A) Binding Protein-Interacting Protein, dPaip2, Is a Novel Effector of Cell Growth. Molecular and Cellular Biology, 2004, 24, 1143-1154.	1.1	34
66	Tudor Domain. Current Biology, 2010, 20, R666-R667.	1.8	33
67	Gene Regulation at the RNA Layer: RNA Binding Proteins in Intercellular Signaling Networks. Science Signaling, 2003, 2003, re6-re6.	1.6	31
68	Eukaryotic initiation factor 4E-3 is essential for meiotic chromosome segregation, cytokinesis and male fertility in <i>Drosophila</i> Development (Cambridge), 2012, 139, 3211-3220.	1.2	31
69	A ribosomal protein S5 isoform is essential for oogenesis and interacts with distinct RNAs in Drosophila melanogaster. Scientific Reports, 2019, 9, 13779.	1.6	31
70	Alternatively Spliced Transcripts from the Gene Produce Two Different Cap-binding Proteins. Journal of Biological Chemistry, 1996, 271, 16393-16398.	1.6	30
71	†IRDiRC Recognized Resources': a new mechanism to support scientists to conduct efficient, high-quality research for rare diseases. European Journal of Human Genetics, 2017, 25, 162-165.	1.4	30
72	The CCR4-NOT Complex Mediates Deadenylation and Degradation of Stem Cell mRNAs and Promotes Planarian Stem Cell Differentiation. PLoS Genetics, 2013, 9, e1004003.	1.5	29

#	Article	IF	CITATIONS
73	RanBPM regulates cell shape, arrangement, and capacity of the female germline stem cell niche in <i>Drosophila melanogaster </i> Journal of Cell Biology, 2008, 182, 963-977.	2.3	28
74	Stochastic variation: From single cells to superorganisms. HFSP Journal, 2009, 3, 379-385.	2.5	26
75	<i>In vivo</i> mapping of the functional regions of the DEAD-box helicase Vasa. Biology Open, 2015, 4, 450-462.	0.6	26
76	Histone H3.3 K27M and K36M mutations de-repress transposable elements through perturbation of antagonistic chromatin marks. Molecular Cell, 2021, 81, 4876-4890.e7.	4.5	26
77	Drosophila melanogaster Thor and Response to Candida albicans Infection. Eukaryotic Cell, 2007, 6, 658-663.	3.4	25
78	Loss of function of the <i>Drosophila </i> Ninein-related centrosomal protein Bsg25D causes mitotic defects and impairs embryonic development. Biology Open, 2016, 5, 1040-1051.	0.6	25
79	The Undiagnosed Diseases Network International: Five years and more!. Molecular Genetics and Metabolism, 2020, 129, 243-254.	0.5	25
80	Diabetic flies? Using Drosophila melanogaster to understand the causes of monogenic and genetically complex diseases. Clinical Genetics, 2002, 62, 358-367.	1.0	24
81	Relationship between genome and epigenome - challenges and requirements for future research. BMC Genomics, 2014, 15, 487.	1.2	24
82	C-terminal residues specific to Vasa among DEAD-box helicases are required for its functions in piRNA biogenesis and embryonic patterning. Development Genes and Evolution, 2016, 226, 401-412.	0.4	24
83	Initiating an undiagnosed diseases program in the Western Australian public health system. Orphanet Journal of Rare Diseases, 2017, 12, 83.	1.2	24
84	Drosophila RNA Binding Proteins. International Review of Cytology, 2006, 248, 43-139.	6.2	23
85	Mextli Is a Novel Eukaryotic Translation Initiation Factor 4E-Binding Protein That Promotes Translation in <i>Drosophila melanogaster</i> Nolecular and Cellular Biology, 2013, 33, 2854-2864.	1.1	23
86	kep1 interacts genetically with dredd/Caspase-8, and kep1 mutants alter the balance of dredd isoforms. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1814-1819.	3.3	22
87	The Bic-C Family of Developmental Translational Regulators. Comparative and Functional Genomics, 2012, 2012, 1-23.	2.0	21
88	Improved Diagnosis and Care for Rare Diseases through Implementation of Precision Public Health Framework. Advances in Experimental Medicine and Biology, 2017, 1031, 55-94.	0.8	20
89	Molecular movements in oocyte patterning and pole cell differentiation. BioEssays, 1992, 14, 507-512.	1.2	19
90	Chapter 6 Translational Control During Early Development. Progress in Molecular Biology and Translational Science, 2009, 90, 211-254.	0.9	19

#	Article	IF	Citations
91	The translation factors of <i>Drosophila melanogaster </i> . Fly, 2017, 11, 65-74.	0.9	18
92	Recent Developments in Using Drosophila as a Model for Human Genetic Disease. International Journal of Molecular Sciences, 2018, 19, 2041.	1.8	18
93	Murine homologues of the Drosophila gustavus gene are expressed in ovarian granulosa cells. Reproduction, 2006, 131, 905-915.	1.1	17
94	Drosophila 4EHP is essential for the larval–pupal transition and required in the prothoracic gland for ecdysone biosynthesis. Developmental Biology, 2016, 410, 14-23.	0.9	16
95	Multiple Functions of the DEAD-Box Helicase Vasa in Drosophila Oogenesis. Results and Problems in Cell Differentiation, 2017, 63, 127-147.	0.2	15
96	Glycolytic enzymes localize to ribonucleoprotein granules in <i>Drosophila</i> germ cells, bind Tudor and protect from transposable elements. EMBO Reports, 2015, 16, 379-386.	2.0	14
97	Unorthodox Mechanisms to Initiate Translation Open Novel Paths for Gene Expression. Journal of Molecular Biology, 2020, 432, 166702.	2.0	14
98	Patterning the <i>Drosophila</i> embryo: A paradigm for RNAâ€based developmental genetic regulation. Wiley Interdisciplinary Reviews RNA, 2020, 11, e1610.	3.2	14
99	Ectoderm to mesoderm transition by down-regulation of actomyosin contractility. PLoS Biology, 2021, 19, e3001060.	2.6	14
100	Dbp73D, aDrosophilagene expressed in ovary, encodes a novel D-E-A-D box protein. Nucleic Acids Research, 1992, 20, 3063-3067.	6.5	13
101	Vasa protein is localized in the germ cells and in the oocyte-associated pyriform follicle cells during early oogenesis in the lizard Podarcis sicula. Development Genes and Evolution, 2009, 219, 361-367.	0.4	13
102	Reduced cul-5 Activity Causes Aberrant Follicular Morphogenesis and Germ Cell Loss in Drosophila Oogenesis. PLoS ONE, 2010, 5, e9048.	1.1	13
103	The Distribution of elF4E-Family Members across Insecta. Comparative and Functional Genomics, 2012, 2012, 1-15.	2.0	13
104	Bruno negatively regulates germ cell-less expression in a BRE-independent manner. Mechanisms of Development, 2009, 126, 503-516.	1.7	11
105	Makorin 1 controls embryonic patterning by alleviating Bruno1-mediated repression of oskar translation. PLoS Genetics, 2020, 16, e1008581.	1.5	11
106	Map Position and Expression of the Genes in the 38 Region of Drosophila. Genetics, 2001, 158, 1597-1614.	1.2	11
107	A Drosophila melanogaster homologue of the human DEAD-box gene DDX1. Gene, 1996, 171, 225-229.	1.0	10
108	Ribosomes Rule. Developmental Cell, 2003, 5, 671-672.	3.1	9

#	Article	IF	CITATIONS
109	Cup-ling oskar RNA localization and translational control. Journal of Cell Biology, 2003, 163, 1189-1191.	2.3	9
110	Contrasting mechanisms of regulating translation of specific Drosophila germline mRNAs at the level of $5\hat{a}\in^2$ -cap structure binding. Biochemical Society Transactions, 2005, 33, 1544.	1.6	8
111	A new model for translational regulation of specific mRNAs. Trends in Biochemical Sciences, 2006, 31, 607-610.	3.7	8
112	Coordinated transcriptional and translational control in metabolic homeostasis in flies. Genes and Development, 2007, 21, 235-237.	2.7	8
113	Analysis of RNA Interference Lines Identifies New Functions of Maternally-Expressed Genes Involved in Embryonic Patterning in Drosophila melanogaster. G3: Genes, Genomes, Genetics, 2015, 5, 1025-1034.	0.8	7
114	Development: New Wrinkles on Genetic Control of the MBT. Current Biology, 2013, 23, R65-R67.	1.8	6
115	Cell-cell signalling, microtubule organization and RNA localization: Is PKA a link?. BioEssays, 1995, 17, 105-107.	1.2	5
116	Identification of genes functionally involved in the detrimental effects of mutant histone H3.3-K27M in Drosophila melanogaster. Neuro-Oncology, 2019, 21, 628-639.	0.6	5
117	Investigating rare and ultrarare epilepsy syndromes with Drosophila models. Faculty Reviews, 2021, 10, 10.	1.7	5
118	Dbp45A encodes a Drosophila DEAD box protein with similarity to a putative yeast helicase involved in ribosome assembly. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1993, 1216, 140-144.	2.4	4
119	Contrasting mechanisms of regulating translation of specific ⟨i⟩Drosophila⟨ i⟩ germline mRNAs at the level of 5′-cap structure binding. Biochemical Society Transactions, 2005, 33, 1544-1546.	1.6	4
120	The broader phenotypic spectrum of congenital caudal abnormalities associated with mutations in the caudal type homeobox 2 gene. Clinical Genetics, 2022, 101, 183-189.	1.0	4
121	Map positions of third chromosomal female sterile and lethal mutations of Drosophila melanogaster. Genome, 2004, 47, 832-838.	0.9	2
122	Breaking the A chain: regulating mRNAs in development through CCR4 deadenylase. F1000 Biology Reports, 2009, 1, 20.	4.0	2
123	Genetic maps of the proximal half of chromosome arm 2L of Drosophila melanogaster. Genome, 2007, 50, 137-141.	0.9	1
124	Localized RNAs and translational control in <i>Drosophila</i> oogenesis. Biochemistry and Cell Biology, 1999, 77, 405.	0.9	1
125	ABSTRACT Translational control in the Drosophila germ line. Biochemistry and Cell Biology, 2000, 78, 645.	0.9	O
126	Investigating Translation Initiation Using Drosophila Molecular Genetics. Methods in Enzymology, 2007, 429, 227-242.	0.4	0

#	Article	IF	Citations
127	mRNAs on the Move after Lunch. Developmental Cell, 2017, 42, 439-440.	3.1	О
128	Dueling RNA-binding proteins promote translational activation. Nature Structural and Molecular Biology, 2017, 24, 609-610.	3.6	0
129	DIPG-06. IDENTIFICATION OF GENES FUNCTIONALLY INVOLVED IN THE DETRIMENTAL EFFECTS OF MUTANT HISTONE K27M-H3.3 USING DROSOPHILA MELANOGASTER. Neuro-Oncology, 2018, 20, i50-i50.	0.6	O
130	Drosophila melanogaster: a fruitful model for oncohistones. Fly, 2021, 15, 28-37.	0.9	O
131	Transgenes of genetically modified animals detected non-invasively via environmental DNA. PLoS ONE, 2021, 16, e0249439.	1.1	0
132	Translational Control in Invertebrate Development. , 2003, , 327-330.		0
133	Translational Control in Invertebrate Development. , 2010, , 2323-2328.		0
134	Rare Diseases: How Genomics has Transformed Thinking, Diagnoses and Hope for Affected Families. Communications in Medical and Care Compunetics, 2014, , 27-38.	0.2	0
135	Ribosomal Protein S5b is Essential for Oogenesis and is Required to Maintain Mitochondrial Integrity and Function in Drosophila Melanogaster. SSRN Electronic Journal, 0, , .	0.4	0
136	Ectoderm to mesoderm transition by down-regulation of actomyosin contractility., 2021, 19, e3001060.		0
137	Ectoderm to mesoderm transition by down-regulation of actomyosin contractility. , 2021, 19, e3001060.		0
138	Ectoderm to mesoderm transition by down-regulation of actomyosin contractility., 2021, 19, e3001060.		0
139	Ectoderm to mesoderm transition by down-regulation of actomyosin contractility. , 2021, 19, e3001060.		0
140	Ectoderm to mesoderm transition by down-regulation of actomyosin contractility., 2021, 19, e3001060.		0
141	Ectoderm to mesoderm transition by down-regulation of actomyosin contractility. , 2021, 19, e3001060.		0
142	Ectoderm to mesoderm transition by down-regulation of actomyosin contractility., 2021, 19, e3001060.		0
143	Ectoderm to mesoderm transition by down-regulation of actomyosin contractility. , 2021, 19, e3001060.		0