Bryan H Bellaire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4327505/publications.pdf

Version: 2024-02-01

47 papers

4,754 citations

23 h-index 274796 44 g-index

48 all docs

48 docs citations

48 times ranked 12365 citing authors

#	Article	IF	CITATIONS
1	Automated Flow Synthesis of Peptide–PNA Conjugates. ACS Central Science, 2022, 8, 205-213.	5.3	17
2	Sprayable copper and copper–zinc nanowires inks for antiviral surface coating. RSC Advances, 2022, 12, 6093-6098.	1.7	5
3	Effective antiviral coatings for deactivating SARS-CoV-2 virus on N95 respirator masks or filters. Materials Today Advances, 2022, 14, 100228.	2.5	3
4	Induction of Potent and Durable Neutralizing Antibodies Against SARS-CoV-2 Using a Receptor Binding Domain-Based Immunogen. Frontiers in Immunology, 2021, 12, 637982.	2.2	9
5	Nanomedicines to counter microbial barriers and antimicrobial resistance. Current Opinion in Chemical Engineering, 2021, 31, 100672.	3.8	6
6	Gut Organoid as a New Platform to Study Alginate and Chitosan Mediated PLGA Nanoparticles for Drug Delivery. Marine Drugs, 2021, 19, 282.	2.2	51
7	Single-dose combination nanovaccine induces both rapid and durable humoral immunity and toxin neutralizing antibody responses against Bacillus anthracis. Vaccine, 2021, 39, 3862-3870.	1.7	12
8	Enhanced apoptosis as a possible mechanism to self-limit SARS-CoV-2 replication in porcine primary respiratory epithelial cells in contrast to human cells. Cell Death Discovery, 2021, 7, 383.	2.0	11
9	Single-dose combination nanovaccine induces both rapid and long-lived protection against pneumonic plague. Acta Biomaterialia, 2019, 100, 326-337.	4.1	22
10	Vitamin C and B $<$ sub $>$ 3 $<$ /sub $>$ as new biomaterials to alter intestinal stem cells. Journal of Biomedical Materials Research - Part A, 2019, 107, 1886-1897.	2.1	14
11	Data Analytics Approach for Rational Design of Nanomedicines with Programmable Drug Release. Molecular Pharmaceutics, 2019, 16, 1917-1928.	2.3	14
12	Nanotherapeutic provides dose sparing and improved antimicrobial activity against Brucella melitensis infections. Journal of Controlled Release, 2019, 294, 288-297.	4.8	21
13	Antiparasitic Activity of Auranofin against Pathogenic <i>Naegleria fowleri</i> . Journal of Eukaryotic Microbiology, 2019, 66, 684-688.	0.8	16
14	Intestinal organoids containing poly(lacticâ€ <i>co</i> â€glycolic acid) nanoparticles for the treatment of inflammatory bowel diseases. Journal of Biomedical Materials Research - Part A, 2018, 106, 876-886.	2.1	92
15	<i>Ex Vivo</i> Study of Telluride Nanowires in Minigut. Journal of Biomedical Nanotechnology, 2018, 14, 978-986.	0.5	19
16	Functionalization promotes pathogenâ€mimicking characteristics of polyanhydride nanoparticle adjuvants. Journal of Biomedical Materials Research - Part A, 2017, 105, 2762-2771.	2.1	14
17	Characterization of a Replicating Mammalian Orthoreovirus with Tetracysteine-Tagged \hat{l} 4NS for Live-Cell Visualization of Viral Factories. Journal of Virology, 2017, 91, .	1.5	26
18	Contrasting Lifestyles Within the Host Cell. , 2016, , 667-692.		2

#	Article	IF	Citations
19	Macrophage effector responses of horses are influenced by expression of CD154. Veterinary Immunology and Immunopathology, 2016, 180, 40-44.	0.5	2
20	Cellular Internalization Mechanisms of Polyanhydride Particles: Implications for Rational Design of Drug Delivery Vehicles. Journal of Biomedical Nanotechnology, 2016, 12, 1544-1552.	0.5	34
21	Dogs cast NETs too: Canine neutrophil extracellular traps in health and immune-mediated hemolytic anemia. Veterinary Immunology and Immunopathology, 2015, 168, 262-268.	0.5	52
22	Polyanhydride Nanoparticle Delivery Platform Dramatically Enhances Killing of Filarial Worms. PLoS Neglected Tropical Diseases, 2015, 9, e0004173.	1.3	37
23	Nano-enabled delivery of diverse payloads across complex biological barriers. Journal of Controlled Release, 2015, 219, 548-559.	4.8	54
24	Targeted extracellular signal-regulated kinase activation mediated byÂLeishmania amazonensis requires MP1 scaffold. Microbes and Infection, 2014, 16, 328-336.	1.0	14
25	An In Vitro Model of Antibody-Enhanced Killing of the Intracellular Parasite Leishmania amazonensis. PLoS ONE, 2014, 9, e106426.	1.1	19
26	Functionalization of polyanhydride microparticles with di-mannose influences uptake by and intracellular fate within dendritic cells. Acta Biomaterialia, 2013, 9, 8902-8909.	4.1	41
27	Host interferon- \hat{l}^3 inducible protein contributes to Brucella survival. Frontiers in Cellular and Infection Microbiology, 2012, 2, 55.	1.8	6
28	Differential Surface Deposition of Complement Proteins on Logarithmic and Stationary Phase < i>Leishmania chagasi < /i>Promastigotes. Journal of Parasitology, 2012, 98, 1109-1116.	0.3	8
29	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
30	Analyzing Cellular Internalization of Nanoparticles and Bacteria by Multi-spectral Imaging Flow Cytometry. Journal of Visualized Experiments, 2012, , e3884.	0.2	40
31	Mannose-Functionalized "Pathogen-like―Polyanhydride Nanoparticles Target C-Type Lectin Receptors on Dendritic Cells. Molecular Pharmaceutics, 2011, 8, 1877-1886.	2.3	118
32	Polyanhydride microparticles enhance dendritic cell antigen presentation and activation. Acta Biomaterialia, 2011, 7, 2857-2864.	4.1	111
33	Rational Design of Pathogen-Mimicking Amphiphilic Materials as Nanoadjuvants. Scientific Reports, 2011, 1, 198.	1.6	75
34	Exploring the response of Escherichia coli 0157:H7 EDL933 within Acanthamoeba castellanii by genome-wide transcriptional profiling. FEMS Microbiology Letters, 2010, 312, 15-23.	0.7	13
35	Polymer Chemistry Influences Monocytic Uptake of Polyanhydride Nanospheres. Pharmaceutical Research, 2009, 26, 683-690.	1.7	99
36	The \hat{I}^21 Integrin Activates JNK Independent of CagA, and JNK Activation Is Required for Helicobacter pylori CagA+-induced Motility of Gastric Cancer Cells. Journal of Biological Chemistry, 2008, 283, 13952-13963.	1.6	55

#	Article	IF	CITATIONS
37	Multiple Locus Variable Number Tandem Repeat (VNTR) Analysis (MLVA) of Brucella spp. Identifies Species-Specific Markers and Insights into Phylogenetic Relationships., 2008,, 47-54.		15
38	RecA and RadA Proteins of Brucella abortus Do Not Perform Overlapping Protective DNA Repair Functions following Oxidative Burst. Journal of Bacteriology, 2006, 188, 5187-5195.	1.0	11
39	Role of HdeA in acid resistance and virulence in Brucella abortus 2308. Veterinary Microbiology, 2005, 107, 307-312.	0.8	38
40	GLUT1CBP(TIP2/GIPC1) Interactions with GLUT1 and Myosin VI: Evidence Supporting an Adapter Function for GLUT1CBP. Molecular Biology of the Cell, 2005, 16, 4183-4201.	0.9	63
41	Opsonized Virulent Brucella abortus Replicates within Nonacidic, Endoplasmic Reticulum-Negative, LAMP-1-Positive Phagosomes in Human Monocytes. Infection and Immunity, 2005, 73, 3702-3713.	1.0	76
42	Adaptation of the brucellae to their intracellular niche. Molecular Microbiology, 2004, 52, 621-630.	1,2	108
43	Genetic Organization and Iron-Responsive Regulation of the Brucella abortus 2,3-Dihydroxybenzoic Acid Biosynthesis Operon, a Cluster of Genes Required for Wild-Type Virulence in Pregnant Cattle. Infection and Immunity, 2003, 71, 1794-1803.	1.0	51
44	Production of the Siderophore 2,3-Dihydroxybenzoic Acid Is Required for Wild-Type Growth of Brucella abortus in the Presence of Erythritol under Low-Iron Conditions In Vitro. Infection and Immunity, 2003, 71, 2927-2932.	1.0	44
45	Brucella abortus siderophore2,3-dihydroxybenzoic acid (DHBA) facilitatesintracellular survival of the bacteria. Microbial Pathogenesis, 2002, 32, 239-248.	1.3	46
46	The Siderophore 2,3-Dihydroxybenzoic Acid Is Not Required for Virulence of Brucella abortus in BALB/c Mice. Infection and Immunity, 1999, 67, 2615-2618.	1.0	46
47	Rapid Antibiotic Susceptibility Testing by Deuterium Labeling of Bacterial Lipids in On-Target Microdroplet Cultures. Journal of the American Society for Mass Spectrometry, 0, , .	1.2	1