Chi V Dang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4325858/publications.pdf

Version: 2024-02-01

216 papers 51,046 citations

89 h-index 208 g-index

223 all docs

223
docs citations

times ranked

223

56407 citing authors

#	Article	IF	Citations
1	Targeting cancer metabolism in the era of precision oncology. Nature Reviews Drug Discovery, 2022, 21, 141-162.	21.5	385
2	Epigenetic state determines inflammatory sensing in neuroblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	21
3	Bcl-xL Enforces a Slow-Cycling State Necessary for Survival in the Nutrient-Deprived Microenvironment of Pancreatic Cancer. Cancer Research, 2022, 82, 1890-1908.	0.4	6
4	Peer Review: Value Added and Civility. Cancer Research, 2022, 82, 1157-1158.	0.4	1
5	Tilting MYC toward cancer cell death. Trends in Cancer, 2021, 7, 982-994.	3.8	12
6	Drugging the "Undruggable―MYCN Oncogenic Transcription Factor: Overcoming Previous Obstacles to Impact Childhood Cancers. Cancer Research, 2021, 81, 1627-1632.	0.4	25
7	Measuring MYC-Mediated Metabolism in Tumorigenesis. Methods in Molecular Biology, 2021, 2318, 231-239.	0.4	5
8	Sex, life, and death in MYC-driven lymphomagenesis. Molecular Cell, 2021, 81, 3886-3887.	4.5	2
9	<i>Cancer Research Celebrates the 50th Anniversary of the National Cancer Act and a Future of Hope. Cancer Research, 2021, 81, 5781-5782.</i>	0.4	2
10	Glutamine Skipping the Q into Mitochondria. Trends in Molecular Medicine, 2020, 26, 6-7.	3.5	9
11	Pyrazole-Based Lactate Dehydrogenase Inhibitors with Optimized Cell Activity and Pharmacokinetic Properties. Journal of Medicinal Chemistry, 2020, 63, 10984-11011.	2.9	30
12	Dynamic Imaging of LDH Inhibition in Tumors Reveals Rapid InÂVivo Metabolic Rewiring and Vulnerability to Combination Therapy. Cell Reports, 2020, 30, 1798-1810.e4.	2.9	73
13	The MYC Oncogene Cooperates with Sterol-Regulated Element-Binding Protein to Regulate Lipogenesis Essential for Neoplastic Growth. Cell Metabolism, 2019, 30, 556-572.e5.	7.2	120
14	De novo synthesis of serine and glycine fuels purine nucleotide biosynthesis in human lung cancer tissues. Journal of Biological Chemistry, 2019, 294, 13464-13477.	1.6	58
15	Essentiality of non-essential amino acids for tumour cells and tumorigenesis. Nature Metabolism, 2019, 1, 847-848.	5.1	1
16	Autophagy: clocking in for the night shift. EMBO Journal, 2019, 38, .	3.5	4
17	mTOR Senses Intracellular pH through Lysosome Dispersion from RHEB. BioEssays, 2019, 41, e1800265.	1.2	9
18	Myc Regulation of a Mitochondrial Trafficking Network Mediates Tumor Cell Invasion and Metastasis. Molecular and Cellular Biology, 2019, 39, .	1.1	31

#	Article	IF	Citations
19	Myc-mediated transcriptional regulation of the mitochondrial chaperone TRAP1 controls primary and metastatic tumor growth. Journal of Biological Chemistry, 2019, 294, 10407-10414.	1.6	25
20	Transient stabilization, rather than inhibition, of MYC amplifies extrinsic apoptosis and therapeutic responses in refractory B-cell lymphoma. Leukemia, 2019, 33, 2429-2441.	3.3	24
21	Misregulation of Drosophila Myc Disrupts Circadian Behavior and Metabolism. Cell Reports, 2019, 29, 1778-1788.e4.	2.9	5
22	The role of long noncoding RNAs in cancer: the dark matter matters. Current Opinion in Genetics and Development, 2018, 48, 8-15.	1.5	122
23	MYC Targeted Long Noncoding RNA DANCR Promotes Cancer in Part by Reducing p21 Levels. Cancer Research, 2018, 78, 64-74.	0.4	87
24	A PERK–miR-211 axis suppresses circadian regulators and protein synthesis to promote cancer cell survival. Nature Cell Biology, 2018, 20, 104-115.	4.6	86
25	Exploiting Metabolic Vulnerabilities of Cancer with Precision and Accuracy. Trends in Cell Biology, 2018, 28, 201-212.	3.6	94
26	Shedding Light on the Dark Cancer Genomes: Long Noncoding RNAs as Novel Biomarkers and Potential Therapeutic Targets for Cancer. Molecular Cancer Therapeutics, 2018, 17, 1816-1823.	1.9	30
27	MYC-induced metabolic stress and tumorigenesis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1870, 43-50.	3.3	30
28	Acid Suspends the Circadian Clock in Hypoxia through Inhibition of mTOR. Cell, 2018, 174, 72-87.e32.	13.5	172
29	IRE1α RNase–dependent lipid homeostasis promotes survival in Myc-transformed cancers. Journal of Clinical Investigation, 2018, 128, 1300-1316.	3.9	96
30	Correspondence: Oncogenic MYC persistently upregulates the molecular clock component REV-ERBα. Nature Communications, 2017, 8, 14862.	5.8	17
31	c―MYC mRNA tail tale about glutamine control of transcription. EMBO Journal, 2017, 36, 1806-1808.	3.5	4
32	Drugging the 'undruggable' cancer targets. Nature Reviews Cancer, 2017, 17, 502-508.	12.8	620
33	Treatment of Pancreatic Cancer Patient–Derived Xenograft Panel with Metabolic Inhibitors Reveals Efficacy of Phenformin. Clinical Cancer Research, 2017, 23, 5639-5647.	3.2	76
34	Clock Regulation of Metabolites Reveals Coupling between Transcription and Metabolism. Cell Metabolism, 2017, 25, 961-974.e4.	7.2	162
35	Pancreatic Cancer: "A Riddle Wrapped in a Mystery inside an Enigma― Clinical Cancer Research, 2017, 23, 1629-1637.	3.2	38
36	Repression of BET activity sensitizes homologous recombination–proficient cancers to PARP inhibition. Science Translational Medicine, 2017, 9, .	5.8	180

#	Article	IF	CITATIONS
37	Feeding frenzy for cancer cells. Science, 2017, 358, 862-863.	6.0	8
38	Discovery and Optimization of Potent, Cell-Active Pyrazole-Based Inhibitors of Lactate Dehydrogenase (LDH). Journal of Medicinal Chemistry, 2017, 60, 9184-9204.	2.9	98
39	MUC-king with HIF May Rewire Pyrimidine Biosynthesis and Curb Gemcitabine Resistance in Pancreatic Cancer. Cancer Cell, 2017, 32, 3-5.	7.7	7
40	BETting on combination to overcome PARPi resistance. Oncotarget, 2017, 8, 84630-84631.	0.8	1
41	EGF induces epithelial-mesenchymal transition and cancer stem-like cell properties in human oral cancer cells via promoting Warburg effect. Oncotarget, 2017, 8, 9557-9571.	0.8	82
42	Warburg Effect. , 2017, , 4845-4849.		0
43	A Time for MYC: Metabolism and Therapy. Cold Spring Harbor Symposia on Quantitative Biology, 2016, 81, 79-83.	2.0	49
44	Long noncoding RNA LINP1 regulates repair of DNA double-strand breaks in triple-negative breast cancer. Nature Structural and Molecular Biology, 2016, 23, 522-530.	3.6	231
45	From Krebs to clinic: glutamine metabolism to cancer therapy. Nature Reviews Cancer, 2016, 16, 619-634.	12.8	1,367
46	MYC, Metabolic Synthetic Lethality, and Cancer. Recent Results in Cancer Research, 2016, 207, 73-91.	1.8	31
47	Hepatocellular carcinoma redirects to ketolysis for progression under nutrition deprivation stress. Cell Research, 2016, 26, 1112-1130.	5 . 7	112
48	Turning publicly available gene expression data into discoveries using gene set context analysis. Nucleic Acids Research, 2016, 44, e8-e8.	6.5	11
49	The Ketogenic Diet Does Not Affect Growth of Hedgehog Pathway Medulloblastoma in Mice. PLoS ONE, 2015, 10, e0133633.	1.1	30
50	Web of the Extended Myc Network Captures Metabolism for Tumorigenesis. Cancer Cell, 2015, 27, 160-162.	7.7	14
51	Therapeutic Targeting of the Warburg Effect in Pancreatic Cancer Relies on an Absence of p53 Function. Cancer Research, 2015, 75, 3355-3364.	0.4	129
52	MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6539-6544.	3.3	211
53	Targeting Glutamine Metabolism in Breast Cancer with Aminooxyacetate. Clinical Cancer Research, 2015, 21, 3263-3273.	3.2	129
54	A metabolic perspective of Peto's paradox and cancer. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140223.	1.8	27

#	Article	IF	CITATIONS
55	An Epigenetic Pathway Regulates Sensitivity of Breast Cancer Cells to HER2 Inhibition via FOXO/c-Myc Axis. Cancer Cell, 2015, 28, 472-485.	7.7	74
56	Comprehensive Genomic Characterization of Long Non-coding RNAs across Human Cancers. Cancer Cell, 2015, 28, 529-540.	7.7	601
57	Splicing and Dicing MYC-Mediated Synthetic Lethality. Cancer Cell, 2015, 28, 405-406.	7.7	10
58	MYC and metabolism on the path to cancer. Seminars in Cell and Developmental Biology, 2015, 43, 11-21.	2.3	253
59	MYC Disrupts the Circadian Clock and Metabolism in Cancer Cells. Cell Metabolism, 2015, 22, 1009-1019.	7.2	217
60	MYC, Metabolism, and Cancer. Cancer Discovery, 2015, 5, 1024-1039.	7.7	919
61	MYC Regulation of Metabolism and Cancer. , 2015, , 101-122.		1
62	Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. Journal of Clinical Investigation, 2015, 125, 2293-2306.	3.9	319
63	Q-ing tumor glutaminase therapy. Oncotarget, 2015, 6, 38440-38441.	0.8	3
64	Tumorigenicity of hypoxic respiring cancer cells revealed by a hypoxia–cell cycle dual reporter. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12486-12491.	3.3	48
65	Inhibition of glutaminase selectively suppresses the growth of primary acute myeloid leukemia cells with IDH mutations. Experimental Hematology, 2014, 42, 247-251.	0.2	125
66	Blocking Lactate Export by Inhibiting the Myc Target MCT1 Disables Glycolysis and Glutathione Synthesis. Cancer Research, 2014, 74, 908-920.	0.4	291
67	Fine-tuned amplification in cells. Nature, 2014, 511, 417-418.	13.7	26
68	Isotopically nonstationary 13C flux analysis of Myc-induced metabolic reprogramming in B-cells. Metabolic Engineering, 2013, 15, 206-217.	3.6	81
69	Stress eating and tuning out: Cancer cells re-wire metabolism to counter stress. Critical Reviews in Biochemistry and Molecular Biology, 2013, 48, 609-619.	2.3	32
70	MYC, Metabolism, Cell Growth, and Tumorigenesis. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a014217-a014217.	2.9	494
71	MicroRNA deregulation in polycythemia vera and essential thrombocythemia patients. Blood Cells, Molecules, and Diseases, 2013, 50, 190-195.	0.6	21
72	Role of aerobic glycolysis in genetically engineered mouse models of cancer. BMC Biology, 2013, 11, 3.	1.7	12

#	Article	IF	CITATIONS
73	A Nontranscriptional Role for HIF- $1\hat{l}_{\pm}$ as a Direct Inhibitor of DNA Replication. Science Signaling, 2013, 6, ra10.	1.6	95
74	Evaluation of LDH-A and Glutaminase Inhibition <i>In Vivo</i> by Hyperpolarized 13C-Pyruvate Magnetic Resonance Spectroscopy of Tumors. Cancer Research, 2013, 73, 4190-4195.	0.4	61
75	ChIP-PED enhances the analysis of ChIP-seq and ChIP-chip data. Bioinformatics, 2013, 29, 1182-1189.	1.8	12
76	Studying Myc's Role in Metabolism Regulation. Methods in Molecular Biology, 2013, 1012, 213-219.	0.4	24
77	Conceptual Framework for Cutting the Pancreatic Cancer Fuel Supply. Clinical Cancer Research, 2012, 18, 4285-4290.	3.2	52
78	Cancer Cell Metabolism: There Is No ROS for the Weary. Cancer Discovery, 2012, 2, 304-307.	7.7	22
79	Old and fat, oncogenes make you. Cell Cycle, 2012, 11, 1272-1272.	1.3	0
80	Design, Synthesis, and Pharmacological Evaluation of Bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl Sulfide 3 (BPTES) Analogs as Glutaminase Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 10551-10563.	2.9	163
81	MYC on the Path to Cancer. Cell, 2012, 149, 22-35.	13.5	2,577
82	Glucose-Independent Glutamine Metabolism via TCA Cycling for Proliferation and Survival in B Cells. Cell Metabolism, 2012, 15, 110-121.	7.2	923
83	Links between metabolism and cancer. Genes and Development, 2012, 26, 877-890.	2.7	846
84	Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8983-8988.	3.3	399
85	Normal and cancer cell metabolism: lymphocytes and lymphoma. FEBS Journal, 2012, 279, 2598-2609.	2.2	53
86	Array-Based Nuclear Run-On Analysis. Methods in Molecular Biology, 2012, 809, 505-517.	0.4	7
87	Alterations in Nucleolar Structure and Gene Expression Programs in Prostatic Neoplasia Are Driven by the MYC Oncogene. American Journal of Pathology, 2011, 178, 1824-1834.	1.9	113
88	Control of TH17/Treg Balance by Hypoxia-Inducible Factor 1. Cell, 2011, 146, 772-784.	13.5	1,304
89	Cell-Type Independent MYC Target Genes Reveal a Primordial Signature Involved in Biomass Accumulation. PLoS ONE, 2011, 6, e26057.	1.1	147
90	Otto Warburg's contributions to current concepts of cancer metabolism. Nature Reviews Cancer, 2011, 11, 325-337.	12.8	2,566

#	Article	IF	Citations
91	Metabolic and electrochemical mechanisms of dimeric naphthoquinones cytotoxicity in breast cancer cells. Bioorganic and Medicinal Chemistry, 2011, 19, 7057-7062.	1.4	12
92	Therapeutic targeting of cancer cell metabolism. Journal of Molecular Medicine, 2011, 89, 205-212.	1.7	151
93	Warburg Effect. , 2011, , 3941-3945.		0
94	Targeting Mitochondrial Glutaminase Activity Inhibits Oncogenic Transformation. Cancer Cell, 2010, 18, 207-219.	7.7	707
95	Targeting Mitochondrial Glutaminase Activity Inhibits Oncogenic Transformation. Cancer Cell, 2010, 18, 397.	7.7	9
96	Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal-renal ciliopathy. Nature Genetics, 2010, 42, 840-850.	9.4	295
97	p32 (C1QBP) and Cancer Cell Metabolism: Is the Warburg Effect a Lot of Hot Air?. Molecular and Cellular Biology, 2010, 30, 1300-1302.	1.1	37
98	MYC and Prostate Cancer. Genes and Cancer, 2010, 1, 617-628.	0.6	245
99	Rethinking the Warburg Effect with Myc Micromanaging Glutamine Metabolism. Cancer Research, 2010, 70, 859-862.	0.4	353
100	Glutaminolysis: Supplying carbon or nitrogen or both for cancer cells?. Cell Cycle, 2010, 9, 3884-3886.	1.3	209
101	Enigmatic MYC Conducts an Unfolding Systems Biology Symphony. Genes and Cancer, 2010, 1, 526-531.	0.6	56
102	Induction of ectopic Myc target gene JAG2 augments hypoxic growth and tumorigenesis in a human B-cell model. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3534-3539.	3.3	47
103	Inhibition of Glutaminase Preferentially Slows Growth of Glioma Cells with Mutant IDH1. Cancer Research, 2010, 70, 8981-8987.	0.4	439
104	Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2037-2042.	3.3	1,150
105	MYC Overexpression Induces Prostatic Intraepithelial Neoplasia and Loss of Nkx3.1 in Mouse Luminal Epithelial Cells. PLoS ONE, 2010, 5, e9427.	1.1	113
106	Time-Dependent c-Myc Transactomes Mapped by Array-Based Nuclear Run-On Reveal Transcriptional Modules in Human B Cells. PLoS ONE, 2010, 5, e9691.	1.1	37
107	Myc and Control of Tumor Neovascularization. , 2010, , 167-187.		1
108	Differential Regulation of MicroRNA Expression In Polycythemia Vera CD34+ Cells. Blood, 2010, 116, 4785-4785.	0.6	0

#	Article	IF	Citations
109	Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3384-3389.	3.3	355
110	MYC, microRNAs and glutamine addiction in cancers. Cell Cycle, 2009, 8, 3243-3245.	1.3	68
111	MYC-Induced Cancer Cell Energy Metabolism and Therapeutic Opportunities. Clinical Cancer Research, 2009, 15, 6479-6483.	3.2	738
112	PKM2 Tyrosine Phosphorylation and Glutamine Metabolism Signal a Different View of the Warburg Effect. Science Signaling, 2009, 2, pe75.	1.6	60
113	Edging toward New Therapeutics with Cyclin D1 Egl'ng on Cancer. Cancer Cell, 2009, 16, 361-362.	7.7	0
114	Micro-managing and restraining pluripotent stem cells by MYC. EMBO Journal, 2009, 28, 3065-3066.	3.5	6
115	c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 2009, 458, 762-765.	13.7	1,801
116	Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood, 2009, 114, 5473-5480.	0.6	364
117	Myoglobin tames tumor growth and spread. Journal of Clinical Investigation, 2009, 119, 766-768.	3.9	4
118	Widespread microRNA repression by Myc contributes to tumorigenesis. Nature Genetics, 2008, 40, 43-50.	9.4	1,203
119	The interplay between MYC and HIF in cancer. Nature Reviews Cancer, 2008, 8, 51-56.	12.8	535
120	Muscle Fatigue from Losing Your PHD. Cell Metabolism, 2008, 7, 191-192.	7.2	1
121	Digoxin and other cardiac glycosides inhibit HIF- $1\hat{l}\pm$ synthesis and block tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19579-19586.	3.3	568
122	Antimalarial therapy prevents Myc-induced lymphoma. Journal of Clinical Investigation, 2008, 118, 15-17.	3.9	24
123	Global Regulation of Nucleotide Biosynthetic Genes by c-Myc. PLoS ONE, 2008, 3, e2722.	1.1	239
124	Unexpected antitumorigenic effect of fenbendazole when combined with supplementary vitamins. Journal of the American Association for Laboratory Animal Science, 2008, 47, 37-40.	0.6	89
125	The c-Myc Target Gene Rcl (C6orf108) Encodes a Novel Enzyme, Deoxynucleoside 5′-monophosphate N-Glycosidase. Journal of Biological Chemistry, 2007, 282, 8150-8156.	1.6	36
126	Hypoxia-Inducible Factor 1 and Dysregulated c-Myc Cooperatively Induce Vascular Endothelial Growth Factor and Metabolic Switches Hexokinase 2 and Pyruvate Dehydrogenase Kinase 1. Molecular and Cellular Biology, 2007, 27, 7381-7393.	1.1	540

#	Article	IF	Citations
127	Biology and treatment of Burkittʽs lymphoma. Current Opinion in Hematology, 2007, 14, 375-381.	1.2	74
128	HIF-1 Regulates Cytochrome Oxidase Subunits to Optimize Efficiency of Respiration in Hypoxic Cells. Cell, 2007, 129, 111-122.	13.5	1,068
129	Discovering robust protein biomarkers for disease from relative expression reversals in 2-D DIGE data Proteomics, 2007, 7, 1197-1207.	1.3	21
130	HIF-1 Inhibits Mitochondrial Biogenesis and Cellular Respiration in VHL-Deficient Renal Cell Carcinoma by Repression of C-MYC Activity. Cancer Cell, 2007, 11, 407-420.	7.7	760
131	HIF-Dependent Antitumorigenic Effect of Antioxidants In Vivo. Cancer Cell, 2007, 12, 230-238.	7.7	466
132	Isolation of Bone Marrow–Derived Stem Cells using Density-Gradient Separation. Experimental Hematology, 2007, 35, 335-341.	0.2	47
133	Effects of hypoxia on tumor metabolism. Cancer and Metastasis Reviews, 2007, 26, 291-298.	2.7	123
134	HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metabolism, 2006, 3, 177-185.	7.2	3,112
135	Cancer's Molecular Sweet Tooth and the Warburg Effect: Figure 1 Cancer Research, 2006, 66, 8927-8930.	0.4	1,086
136	The c-Myc target gene network. Seminars in Cancer Biology, 2006, 16, 253-264.	4.3	989
137	Conditional Deletion of c-myc Does Not Impair Liver Regeneration. Cancer Research, 2006, 66, 5608-5612.	0.4	40
138	Activation of Transferrin Receptor 1 by c-Myc Enhances Cellular Proliferation and Tumorigenesis. Molecular and Cellular Biology, 2006, 26, 2373-2386.	1.1	210
139	Global mapping of c-Myc binding sites and target gene networks in human B cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17834-17839.	3.3	462
140	c-Myc Overexpression Causes Anaplasia in Medulloblastoma. Cancer Research, 2006, 66, 673-681.	0.4	111
141	Acute promyelocytic leukemia: recent advances in therapy and molecular basis of response to arsenic therapies. Current Opinion in Hematology, 2005, 12, 1-6.	1.2	74
142	Arsenic suppresses gene expression in promyelocytic leukemia cells partly through Sp1 oxidation. Blood, 2005, 106, 304-310.	0.6	74
143	c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 2005, 435, 839-843.	13.7	2,618
144	The great MYC escape in tumorigenesis. Cancer Cell, 2005, 8, 177-178.	7.7	99

#	Article	IF	Citations
145	Multifaceted roles of glycolytic enzymes. Trends in Biochemical Sciences, 2005, 30, 142-150.	3.7	570
146	Stimulation of Myc transactivation by the TATA binding protein in promoter-reporter assays. BMC Biochemistry, 2005, 6, 7.	4.4	11
147	The Myc Target Gene JPO1/CDCA7 Is Frequently Overexpressed in Human Tumors and Has Limited Transforming Activity In vivo. Cancer Research, 2005, 65, 5620-5627.	0.4	53
148	Myc Stimulates Nuclearly Encoded Mitochondrial Genes and Mitochondrial Biogenesis. Molecular and Cellular Biology, 2005, 25, 6225-6234.	1.1	527
149	Could MYC Induction of Mitochondrial Biogenesis be linked to ROS Production and Genomic Instability?. Cell Cycle, 2005, 4, 1465-1466.	1.3	57
150	Oncogenic alterations of metabolism and the Warburg effect. Drug Discovery Today Disease Mechanisms, 2005, 2, 233-238.	0.8	20
151	In silico identification of transcriptional regulators associated with c-Myc. Nucleic Acids Research, 2004, 32, 4955-4961.	6.5	26
152	Role of NADPH oxidase in arsenic-induced reactive oxygen species formation and cytotoxicity in myeloid leukemia cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4578-4583.	3.3	207
153	Histopathological and Molecular Prognostic Markers in Medulloblastoma. Journal of Neuropathology and Experimental Neurology, 2004, 63, 441-449.	0.9	203
154	Evaluation of Myc E-Box Phylogenetic Footprints in Glycolytic Genes by Chromatin Immunoprecipitation Assays. Molecular and Cellular Biology, 2004, 24, 5923-5936.	1.1	312
155	hTERT Gene Amplification and Increased mRNA Expression in Central Nervous System Embryonal Tumors. American Journal of Pathology, 2003, 162, 1763-1769.	1.9	66
156	Identification and characterization of the novel centrosome-associated protein CCCAP. Gene, 2003, 303, 35-46.	1.0	27
157	An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets. Genome Biology, 2003, 4, R69.	13.9	433
158	Development of Human Protein Reference Database as an Initial Platform for Approaching Systems Biology in Humans. Genome Research, 2003, 13, 2363-2371.	2.4	954
159	Unique conformation of cancer autoantigen B23 in hepatoma: A mechanism for specificity in the autoimmune response. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12361-12366.	3.3	63
160	Anoxic Fibroblasts Activate a Replication Checkpoint That Is Bypassed By E1a. Molecular and Cellular Biology, 2003, 23, 9032-9045.	1.1	21
161	Increased Expression of TATA-Binding Protein, the Central Transcription Factor, Can Contribute to Oncogenesis. Molecular and Cellular Biology, 2003, 23, 3043-3051.	1.1	62
162	A strategy for identifying transcription factor binding sites reveals two classes of genomic c-Myc target sites. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5313-5318.	3.3	99

#	Article	IF	CITATIONS
163	Celebrating the physician-scientist. Journal of Clinical Investigation, 2003, 112, S1-2.	3.9	2
164	The c-Myc target gene PRDX3 is required for mitochondrial homeostasis and neoplastic transformation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6649-6654.	3.3	179
165	c-myc Protooncogene., 2002,, 555-561.		10
166	Evidence for involvement of calpain in c-Myc proteolysis in vivo. Archives of Biochemistry and Biophysics, 2002, 400, 151-161.	1.4	32
167	Characterization of Nucleophosmin (B23) as a Myc Target by Scanning Chromatin Immunoprecipitation. Journal of Biological Chemistry, 2001, 276, 48285-48291.	1.6	108
168	A Novel c-Myc- responsive Gene, JPO1, Participates in Neoplastic Transformation. Journal of Biological Chemistry, 2001, 276, 48276-48284.	1.6	51
169	A Strategy to Identify Differentially Expressed Genes Using Representational Difference Analysis and cDNA Arrays. Analytical Biochemistry, 2001, 288, 141-148.	1.1	20
170	Translocations involving c-myc and c-myc function. Oncogene, 2001, 20, 5595-5610.	2.6	440
171	c-myc box II mutations in Burkitt's lymphoma-derived alleles reduce cell-transformation activity and lower response to broad apoptotic stimuli. Oncogene, 2001, 20, 6084-6094.	2.6	19
172	Hypoxia Inhibits G1/S Transition through Regulation of p27 Expression. Journal of Biological Chemistry, 2001, 276, 7919-7926.	1.6	322
173	Arsenic inhibition of telomerase transcription leads to genetic instability. Journal of Clinical Investigation, 2001, 108, 1541-1547.	3.9	101
174	Deregulation of Glucose Transporter 1 and Glycolytic Gene Expression by c-Myc. Journal of Biological Chemistry, 2000, 275, 21797-21800.	1.6	708
175	c-Myc Target Genes Involved in Cell Growth, Apoptosis, and Metabolism. Molecular and Cellular Biology, 1999, 19, 1-11.	1.1	1,501
176	Cancer genetics: Tumor suppressor meets oncogene. Current Biology, 1999, 9, R62-R65.	1.8	31
177	Oncogenic alterations of metabolism. Trends in Biochemical Sciences, 1999, 24, 68-72.	3.7	989
178	Function of the c-Myc Oncogenic Transcription Factor. Experimental Cell Research, 1999, 253, 63-77.	1.2	332
179	c-Myc Overexpression Uncouples DNA Replication from Mitosis. Molecular and Cellular Biology, 1999, 19, 5339-5351.	1.1	119
180	Neoplastic Transformation of RK3E by Mutant \hat{l}^2 -Catenin Requires Deregulation of Tcf/Lef Transcription but Not Activation of c- <i>myc</i> Expression. Molecular and Cellular Biology, 1999, 19, 5696-5706.	1.1	287

#	Article	IF	CITATIONS
181	Elevated Extracellular Calcium Can Prevent Apoptosis via the Calcium-Sensing Receptor. Biochemical and Biophysical Research Communications, 1998, 249, 325-331.	1.0	96
182	Identification of a large Myc-binding protein that contains RCC1-like repeats. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9172-9177.	3.3	125
183	Pancytopenia Secondary to Oxalosis in a 23-Year-Old Woman. Blood, 1998, 91, 4394-4394.	0.6	5
184	$17\hat{l}^2$ -Estradiol Inhibits Apoptosis of Endothelial Cells. Biochemical and Biophysical Research Communications, 1997, 237, 372-381.	1.0	120
185	Mammalian BUB1 Protein Kinases: Map Positions andin VivoExpression. Genomics, 1997, 46, 379-388.	1.3	38
186	Role of Oncogenic Transcription Factor c-Myc in Cell Cycle Regulation, Apoptosis and Metabolism. Journal of Biomedical Science, 1997, 4, 269-278.	2.6	1
187	Oncogenes in tumor metabolism, tumorigenesis, and apoptosis. Journal of Bioenergetics and Biomembranes, 1997, 29, 345-354.	1.0	105
188	Role of oncogenic transcription factor c-Myc in cell cycle regulation, apoptosis and metabolism. Journal of Biomedical Science, 1997, 4, 269-278.	2.6	31
189	Genomic Organization of HumanMXI1, a Putative Tumor Suppressor Gene. Genomics, 1996, 32, 466-470.	1.3	31
190	Human T-cell Leukemia Virus Type I Tax Masks c-Myc Function through a cAMP-dependent Pathway. Journal of Biological Chemistry, 1996, 271, 9730-9738.	1.6	29
191	c-Myc Is Glycosylated at Threonine 58, a Known Phosphorylation Site and a Mutational Hot Spot in Lymphomas. Journal of Biological Chemistry, 1995, 270, 18961-18965.	1.6	365
192	Cyclin A Links c-Myc to Adhesion-independent Cell Proliferation. Journal of Biological Chemistry, 1995, 270, 15923-15925.	1.6	42
193	Myc Target Genes in Cell Proliferation and Programmed Cell Death. Medical Intelligence Unit, 1995, , 171-192.	0.2	0
194	Max Association with Myc. Medical Intelligence Unit, 1995, , 151-163.	0.2	0
195	Properties of the c-Myc Protein. Medical Intelligence Unit, 1995, , 109-118.	0.2	0
196	Localization of the Human Mxi1 Transcription Factor Gene (MXI1) to Chromosome 10q24-q25. Genomics, 1994, 21, 669-672.	1.3	32
197	Function of the câ€Myc oncoprotein. FASEB Journal, 1992, 6, 3065-3072.	0.2	155
198	c-Myc oncoprotein function. Biochimica Et Biophysica Acta: Reviews on Cancer, 1991, 1072, 103-113.	3.3	32

#	Article	IF	Citations
199	Involvement of the 'leucine zipper' region in the oligomerization and transforming activity of human c-myc protein. Nature, 1989, 337, 664-666.	13.7	214
200	The Normal and Morbid Biology of Fibrinogen. American Journal of Medicine, 1989, 87, 567-576.	0.6	57
201	Detection and use of recombinant staphylococcal protein A fusion proteins to localize nucleic-acid-binding domains of proteins. Analytical Biochemistry, 1988, 174, 313-317.	1.1	4
202	Heparin requirement for the quantitation of fibrinogen production by primary hepatocyte cultures. Analytical Biochemistry, 1988, 170, 456-462.	1.1	2
203	Histidyl-tRNA synthetase, the myositis Jo-1 antigen, is cytoplasmic and unassociated with the cytoskeletal framework. Experimental Cell Research, 1986, 164, 261-266.	1.2	14
204	Application of a nitrocellulose immunoassay for quantitation of proteins secreted in culture media. Analytical Biochemistry, 1986, 158, 262-267.	1.1	15
205	Interactions of aminoacyl-tRNA synthetases in high-molecular-weight multienzyme complexes from rat liver. BBA - Proteins and Proteomics, 1985, 829, 319-326.	2.1	20
206	Intranuclear location of the myositis-specific Jo-1 antigen: Hopping histidyl-tRNA synthetase?. Arthritis and Rheumatism, 1985, 28, 839-840.	6.7	1
207	A case of agnogenic myeloid metaplasia evolving into acute myelogenous leukemia associated with the development of trisomy 11 in bone marrow cells. American Journal of Hematology, 1985, 19, 285-288.	2.0	7
208	Protective effect of divalent cations in the plasmin degradation of fibrinogen. Archives of Biochemistry and Biophysics, 1985, 238, 452-457.	1.4	11
209	Rat liver histidyl-tRNA synthetase. Purification and inhibition by the myositis-specific anti-Jo-1 autoantibody. Biochemical and Biophysical Research Communications, 1984, 120, 15-21.	1.0	36
210	Multienzyme complexes of eukaryotic aminoacyl-tRNA synthetases. Bioscience Reports, 1983, 3, 527-538.	1.1	27
211	Hydrodynamic properties and structure of the rat liver 12 S arginyl- and lysyl-tRNA synthetase complex. Biochemical and Biophysical Research Communications, 1983, 117, 464-469.	1.0	8
212	High molecular weight complex formation of rat liver lysyl-tRNA synthetase reduces enzyme lability to thermal inactivation. Biochemical and Biophysical Research Communications, 1982, 106, 44-47.	1.0	11
213	High molecular mass amino acyl-tRNA synthetase complexes in eukaryotes. FEBS Letters, 1982, 142, 1-6.	1.3	54
214	High molecular weight complexes of eukaryotic aminoacyl-trna synthetases. International Journal of Biochemistry & Cell Biology, 1982, 14, 539-543.	0.8	30
215	Tobacco-alcohol amblyopia: A proposed biochemical basis for pathogenesis. Medical Hypotheses, 1981, 7, 1317-1328.	0.8	25
216	ORGANIZATION OF MAMMALIAN AMINOACYL-tRNA SYNTHETASES. , 1978, , 575-580.		1