Horacio Cabral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4325397/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Accumulation of sub-100Ânm polymeric micelles in poorly permeable tumours depends on size. Nature Nanotechnology, 2011, 6, 815-823.	31.5	2,114
2	Block Copolymer Micelles in Nanomedicine Applications. Chemical Reviews, 2018, 118, 6844-6892.	47.7	925
3	Progress of drug-loaded polymeric micelles into clinical studies. Journal of Controlled Release, 2014, 190, 465-476.	9.9	708
4	Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Research, 2003, 63, 8977-83.	0.9	486
5	A pH-activatable nanoparticle with signal-amplification capabilities for non-invasive imaging of tumour malignancy. Nature Nanotechnology, 2016, 11, 724-730.	31.5	411
6	Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nature Reviews Clinical Oncology, 2020, 17, 251-266.	27.6	408
7	Cyclic RGD-Linked Polymeric Micelles for Targeted Delivery of Platinum Anticancer Drugs to Glioblastoma through the Blood–Brain Tumor Barrier. ACS Nano, 2013, 7, 8583-8592.	14.6	397
8	Highly cited research articles in Journal of Controlled Release: Commentaries and perspectives by authors. Journal of Controlled Release, 2014, 190, 29-74.	9.9	394
9	Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery. Nature Nanotechnology, 2016, 11, 533-538.	31.5	338
10	Charge onversional Polyionic Complex Micelles—Efficient Nanocarriers for Protein Delivery into Cytoplasm. Angewandte Chemie - International Edition, 2009, 48, 5309-5312.	13.8	311
11	Phenylboronic Acid-Installed Polymeric Micelles for Targeting Sialylated Epitopes in Solid Tumors. Journal of the American Chemical Society, 2013, 135, 15501-15507.	13.7	286
12	Supramolecular Nanodevices: From Design Validation to Theranostic Nanomedicine. Accounts of Chemical Research, 2011, 44, 999-1008.	15.6	278
13	Improving Drug Potency and Efficacy by Nanocarrier-Mediated Subcellular Targeting. Science Translational Medicine, 2011, 3, 64ra2.	12.4	231
14	Ligandâ€Installed Nanocarriers toward Precision Therapy. Advanced Materials, 2020, 32, e1902604.	21.0	189
15	Preparation and biological properties of dichloro(1,2-diaminocyclohexane)platinum(II) (DACHPt)-loaded polymeric micelles. Journal of Controlled Release, 2005, 101, 223-232.	9.9	187
16	Assessment of Tumor Metastasis by the Direct Determination of Cellâ€Membrane Sialic Acid Expression. Angewandte Chemie - International Edition, 2010, 49, 5494-5497.	13.8	181
17	Polyion Complex Vesicles for Photoinduced Intracellular Delivery of Amphiphilic Photosensitizer. Journal of the American Chemical Society, 2014, 136, 157-163.	13.7	171
18	Optimization of (1,2-diamino-cyclohexane)platinum(II)-loaded polymeric micelles directed to improved tumor targeting and enhanced antitumor activity. Journal of Controlled Release, 2007, 121, 146-155.	9.9	153

#	Article	IF	CITATIONS
19	Bundled Assembly of Helical Nanostructures in Polymeric Micelles Loaded with Platinum Drugs Enhancing Therapeutic Efficiency against Pancreatic Tumor. ACS Nano, 2014, 8, 6724-6738.	14.6	141
20	Visible Drug Delivery by Supramolecular Nanocarriers Directing to Single-Platformed Diagnosis and Therapy of Pancreatic Tumor Model. Cancer Research, 2010, 70, 7031-7041.	0.9	132
21	Antibody fragment-conjugated polymeric micelles incorporating platinum drugs for targeted therapy of pancreatic cancer. Biomaterials, 2015, 39, 23-30.	11.4	125
22	Hybrid Calcium Phosphate-Polymeric Micelles Incorporating Gadolinium Chelates for Imaging-Guided Gadolinium Neutron Capture Tumor Therapy. ACS Nano, 2015, 9, 5913-5921.	14.6	119
23	Systemic Targeting of Lymph Node Metastasis through the Blood Vascular System by Using Size-Controlled Nanocarriers. ACS Nano, 2015, 9, 4957-4967.	14.6	118
24	TGF-β inhibition combined with cytotoxic nanomedicine normalizes triple negative breast cancer microenvironment towards anti-tumor immunity. Theranostics, 2020, 10, 1910-1922.	10.0	110
25	Systemic siRNA delivery to a spontaneous pancreatic tumor model in transgenic mice by PEGylated calcium phosphate hybrid micelles. Journal of Controlled Release, 2014, 178, 18-24.	9.9	108
26	cRGD peptide-installed epirubicin-loaded polymeric micelles for effective targeted therapy against brain tumors. Journal of Controlled Release, 2017, 258, 56-66.	9.9	104
27	Gd-DTPA-loaded polymer–metal complex micelles with high relaxivity for MRÂcancer imaging. Biomaterials, 2013, 34, 492-500.	11.4	103
28	Hydrothermally synthesized PEGylated calcium phosphate nanoparticles incorporating Gd-DTPA for contrast enhanced MRI diagnosis of solid tumors. Journal of Controlled Release, 2014, 174, 63-71.	9.9	102
29	Interplay of EMT and CSC in Cancer and the Potential Therapeutic Strategies. Frontiers in Pharmacology, 2020, 11, 904.	3.5	99
30	Dexamethasone Increases Cisplatin-Loaded Nanocarrier Delivery and Efficacy in Metastatic Breast Cancer by Normalizing the Tumor Microenvironment. ACS Nano, 2019, 13, 6396-6408.	14.6	97
31	Light-Induced Cytosolic Activation of Reduction-Sensitive Camptothecin-Loaded Polymeric Micelles for Spatiotemporally Controlled <i>in Vivo</i> Chemotherapy. ACS Nano, 2014, 8, 11591-11602.	14.6	94
32	Targeted therapy of spontaneous murine pancreatic tumors by polymeric micelles prolongs survival and prevents peritoneal metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11397-11402.	7.1	91
33	Nanomedicine-Based Approaches for mRNA Delivery. Molecular Pharmaceutics, 2020, 17, 3654-3684.	4.6	88
34	Enhanced in vivo Magnetic Resonance Imaging of Tumors by PEGylated Ironâ€Oxide–Gold Core–Shell Nanoparticles with Prolonged Blood Circulation Properties. Macromolecular Rapid Communications, 2010, 31, 1521-1528.	3.9	84
35	Intracellular Delivery of Charge-Converted Monoclonal Antibodies by Combinatorial Design of Block/Homo Polyion Complex Micelles. Biomacromolecules, 2016, 17, 446-453.	5.4	82
36	Glucose-linked sub-50-nm unimer polyion complex-assembled gold nanoparticles for targeted siRNA delivery to glucose transporter 1-overexpressing breast cancer stem-like cells. Journal of Controlled Release, 2019, 295, 268-277.	9.9	82

#	Article	IF	CITATIONS
37	Bioactive Polymeric Metallosomes Self-Assembled through Block Copolymer–Metal Complexation. Journal of the American Chemical Society, 2012, 134, 13172-13175.	13.7	81
38	Multicompartment Micelles with Adjustable Poly(ethylene glycol) Shell for Efficient <i>in Vivo</i> Photodynamic Therapy. ACS Nano, 2014, 8, 1161-1172.	14.6	78
39	siRNA delivery from triblock copolymer micelles with spatially-ordered compartments of PEG shell, siRNA-loaded intermediate layer, and hydrophobic core. Biomaterials, 2014, 35, 4548-4556.	11.4	76
40	A Photo-Activated Targeting Chemotherapy Using Glutathione Sensitive Camptothecin-Loaded Polymeric Micelles. Pharmaceutical Research, 2009, 26, 82-92.	3.5	72
41	Polyplex Micelles with Phenylboronate/Gluconamide Cross-Linking in the Core Exerting Promoted Gene Transfection through Spatiotemporal Responsivity to Intracellular pH and ATP Concentration. Journal of the American Chemical Society, 2017, 139, 18567-18575.	13.7	71
42	Block copolymer-boron cluster conjugate for effective boron neutron capture therapy of solid tumors. Journal of Controlled Release, 2017, 254, 1-9.	9.9	70
43	Micellization of cisplatin (NC-6004) reduces its ototoxicity in guinea pigs. Journal of Controlled Release, 2012, 157, 112-117.	9.9	69
44	Secondary‧tructureâ€Driven Selfâ€Assembly of Reactive Polypept(o)ides: Controlling Size, Shape, and Function of Core Crossâ€Linked Nanostructures. Angewandte Chemie - International Edition, 2017, 56, 9608-9613.	13.8	69
45	Polymeric micelles incorporating (1,2-diaminocyclohexane)platinum (II) suppress the growth of orthotopic scirrhous gastric tumors and their lymph node metastasis. Journal of Controlled Release, 2012, 159, 189-196.	9.9	67
46	Selective intracellular delivery of proteasome inhibitors through pH-sensitive polymeric micelles directed to efficient antitumor therapy. Journal of Controlled Release, 2014, 188, 67-77.	9.9	67
47	MR imaging techniques for nano-pathophysiology and theranostics. Advanced Drug Delivery Reviews, 2014, 74, 75-94.	13.7	66
48	Multifunctional nanoassemblies of block copolymers for future cancer therapy. Science and Technology of Advanced Materials, 2010, 11, 014109.	6.1	63
49	Nanomedicines Eradicating Cancer Stem-like Cells <i>in Vivo</i> by pH-Triggered Intracellular Cooperative Action of Loaded Drugs. ACS Nano, 2016, 10, 5643-5655.	14.6	63
50	Direct and instantaneous observation of intravenously injected substances using intravital confocal micro-videography. Biomedical Optics Express, 2010, 1, 1209.	2.9	62
51	Tumor-Targeted Nanomedicine for Immunotherapy. Accounts of Chemical Research, 2020, 53, 2765-2776.	15.6	62
52	Nanomedicine for brain cancer. Advanced Drug Delivery Reviews, 2022, 182, 114115.	13.7	57
53	Glucose transporter 1-mediated vascular translocation of nanomedicines enhances accumulation and efficacy in solid tumors. Journal of Controlled Release, 2019, 301, 28-41.	9.9	56
54	Tumor hypoxia-activated combinatorial nanomedicine triggers systemic antitumor immunity to effectively eradicate advanced breast cancer. Biomaterials, 2021, 273, 120847.	11.4	55

#	Article	IF	CITATIONS
55	Epirubicin-loaded polymeric micelles effectively treat axillary lymph nodes metastasis of breast cancer through selective accumulation and pH-triggered drug release. Journal of Controlled Release, 2018, 292, 130-140.	9.9	53
56	In vivo rendezvous of small nucleic acid drugs with charge-matched block catiomers to target cancers. Nature Communications, 2019, 10, 1894.	12.8	53
57	Structure–Properties Relationship of Short Jute Fiber-reinforced Polypropylene Composites. Journal of Composite Materials, 2005, 39, 51-65.	2.4	52
58	Normalizing the Microenvironment Overcomes Vessel Compression and Resistance to Nanoâ€immunotherapy in Breast Cancer Lung Metastasis. Advanced Science, 2021, 8, 2001917.	11.2	52
59	Nanopolymeric Therapeutics. MRS Bulletin, 2009, 34, 422-431.	3.5	51
60	Induced packaging of mRNA into polyplex micelles by regulated hybridization with a small number of cholesteryl RNA oligonucleotides directed enhanced in vivo transfection. Biomaterials, 2019, 197, 255-267.	11.4	50
61	Heterocyclic boronic acids display sialic acid selective binding in a hypoxic tumor relevant acidic environment. Chemical Science, 2017, 8, 6165-6170.	7.4	48
62	Polymeric micelles for targeted tumor therapy of platinum anticancer drugs. Expert Opinion on Drug Delivery, 2017, 14, 1423-1438.	5.0	47
63	Translational Nanomedicine Boosts Anti-PD1 Therapy to Eradicate Orthotopic PTEN-Negative Glioblastoma. ACS Nano, 2020, 14, 10127-10140.	14.6	47
64	Hydroxychloroquine-conjugated gold nanoparticles for improved siRNA activity. Biomaterials, 2016, 90, 62-71.	11.4	46
65	Polymeric micelles loaded with platinum anticancer drugs target preangiogenic micrometastatic niches associated with inflammation. Journal of Controlled Release, 2014, 189, 1-10.	9.9	43
66	Engineering fibrotic tissue in pancreatic cancer: A novel three-dimensional model to investigate nanoparticle delivery. Biochemical and Biophysical Research Communications, 2012, 419, 32-37.	2.1	40
67	Bundling mRNA Strands to Prepare Nanoâ€Assemblies with Enhanced Stability Towards RNase for Inâ€Vivo Delivery. Angewandte Chemie - International Edition, 2019, 58, 11360-11363.	13.8	40
68	In vivo evaluation of neutron capture therapy effectivity using calcium phosphate-based nanoparticles as Gd-DTPA delivery agent. Journal of Cancer Research and Clinical Oncology, 2016, 142, 767-775.	2.5	39
69	PEG-detachable cationic polyaspartamide derivatives bearing stearoyl moieties for systemic siRNA delivery toward subcutaneous BxPC3 pancreatic tumor. Journal of Drug Targeting, 2012, 20, 33-42.	4.4	38
70	A chemically unmodified agonistic DNA with growth factor functionality for in vivo therapeutic application. Science Advances, 2020, 6, eaay2801.	10.3	38
71	mRNA loading into ATP-responsive polyplex micelles with optimal density of phenylboronate ester crosslinking to balance robustness in the biological milieu and intracellular translational efficiency. Journal of Controlled Release, 2021, 330, 317-328.	9.9	37
72	Antimicrobial Activity Enhancers: Towards Smart Delivery of Antimicrobial Agents. Antibiotics, 2022, 11, 412.	3.7	37

#	Article	IF	CITATIONS
73	Polymeric Micelles Loading Proteins through Concurrent Ion Complexation and pHâ€Cleavable Covalent Bonding for In Vivo Delivery. Macromolecular Bioscience, 2020, 20, e1900161.	4.1	36
74	Supramolecularly enabled pH- triggered drug action at tumor microenvironment potentiates nanomedicine efficacy against glioblastoma. Biomaterials, 2021, 267, 120463.	11.4	36
75	A Nanoparticle Platform To Evaluate Bioconjugation and Receptor-Mediated Cell Uptake Using Cross-Linked Polyion Complex Micelles Bearing Antibody Fragments. Biomacromolecules, 2016, 17, 1818-1833.	5.4	35
76	Molecular Cancer Imaging with Polymeric Nanoassemblies: From Tumor Detection to Theranostics. Macromolecular Bioscience, 2017, 17, 1600305.	4.1	35
77	Bundling of mRNA strands inside polyion complexes improves mRNA delivery efficiency in vitro and in vivo. Biomaterials, 2020, 261, 120332.	11.4	35
78	Single-Stranded DNA-Packaged Polyplex Micelle as Adeno-Associated-Virus-Inspired Compact Vector to Systemically Target Stroma-Rich Pancreatic Cancer. ACS Nano, 2019, 13, 12732-12742.	14.6	34
79	Clinical Translation of Selfâ€Assembled Cancer Nanomedicines. Advanced Therapeutics, 2021, 4, .	3.2	34
80	Robust Polyion Complex Vesicles (PICsomes) under Physiological Conditions Reinforced by Multiple Hydrogen Bond Formation Derived by Guanidinium Groups. Biomacromolecules, 2018, 19, 4113-4121.	5.4	33
81	Polymeric Nanocarriers with Controlled Chain Flexibility Boost mRNA Delivery In Vivo through Enhanced Structural Fastening. Advanced Healthcare Materials, 2020, 9, e2000538.	7.6	33
82	Conjugation of glucosylated polymer chains to checkpoint blockade antibodies augments their efficacy and specificity for glioblastoma. Nature Biomedical Engineering, 2021, 5, 1274-1287.	22.5	33
83	cRGD peptide installation on cisplatin-loaded nanomedicines enhances efficacy against locally advanced head and neck squamous cell carcinoma bearing cancer stem-like cells. Journal of Controlled Release, 2017, 261, 275-286.	9.9	31
84	Nanodevices for studying nano-pathophysiology. Advanced Drug Delivery Reviews, 2014, 74, 35-52.	13.7	30
85	Nanoprobe-Based Magnetic Resonance Imaging of Hypoxia Predicts Responses to Radiotherapy, Immunotherapy, and Sensitizing Treatments in Pancreatic Tumors. ACS Nano, 2021, 15, 13526-13538.	14.6	30
86	cRGD-installed polymeric micelles loading platinum anticancer drugs enable cooperative treatment against lymph node metastasis. Journal of Controlled Release, 2015, 220, 783-791.	9.9	29
87	Effective treatment of drug resistant recurrent breast tumors harboring cancer stem-like cells by staurosporine/epirubicin co-loaded polymeric micelles. Journal of Controlled Release, 2017, 264, 127-135.	9.9	29
88	Controlled Fab installation onto polymeric micelle nanoparticles for tuned bioactivity. Science and Technology of Advanced Materials, 2017, 18, 666-680.	6.1	23
89	Lipid- and polyion complex-based micelles as agonist platforms for TNFR superfamily receptors. Journal of Controlled Release, 2016, 234, 104-114.	9.9	21
90	Increased fibrosis and impaired intratumoral accumulation of macromolecules in a murine model of pancreatic cancer co-administered with FGF-2. Journal of Controlled Release, 2016, 230, 109-115.	9.9	21

#	Article	IF	CITATIONS
91	Multifunctional polymeric micelle-based nucleic acid delivery: Current advances and future perspectives. Applied Materials Today, 2021, 25, 101217.	4.3	21
92	Polymeric Micelle Platform for Multimodal Tomographic Imaging to Detect Scirrhous Gastric Cancer. ACS Biomaterials Science and Engineering, 2015, 1, 1067-1076.	5.2	20
93	Molecular Network Profiling in Intestinal- and Diffuse-Type Gastric Cancer. Cancers, 2020, 12, 3833.	3.7	20
94	Guanidine-phosphate interactions stabilize polyion complex micelles based on flexible catiomers to improve mRNA delivery. European Polymer Journal, 2020, 140, 110028.	5.4	18
95	Structural Control of Boronic Acid Ligands Enhances Intratumoral Targeting of Sialic Acid To Eradicate Cancer Stem-like Cells. ACS Applied Bio Materials, 2020, 3, 5030-5039.	4.6	18
96	Eradication of CD44-variant positive population in head and neck tumors through controlled intracellular navigation of cisplatin-loaded nanomedicines. Journal of Controlled Release, 2016, 230, 26-33.	9.9	17
97	PEG-OligoRNA Hybridization of mRNA for Developing Sterically Stable Lipid Nanoparticles toward In Vivo Administration. Molecules, 2019, 24, 1303.	3.8	17
98	Abnormal Glycosylation of Cancer Stem Cells and Targeting Strategies. Frontiers in Oncology, 2021, 11, 649338.	2.8	17
99	Bridging mRNA and Polycation Using RNA Oligonucleotide Derivatives Improves the Robustness of Polyplex Micelles for Efficient mRNA Delivery. Advanced Healthcare Materials, 2022, 11, e2102016.	7.6	17
100	Efficacy of pH-Sensitive Nanomedicines in Tumors with Different c-MYC Expression Depends on the Intratumoral Activation Profile. ACS Nano, 2021, 15, 5545-5559.	14.6	16
101	Remodeling tumor microenvironment with nanomedicines. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1730.	6.1	16
102	Enhanced efficacy against cervical carcinomas through polymeric micelles physically incorporating the proteasome inhibitor MG 132. Cancer Science, 2016, 107, 773-781.	3.9	13
103	PEG-Poly(1-Methyl-I-Tryptophan)-Based Polymeric Micelles as Enzymatically Activated Inhibitors of Indoleamine 2,3-Dioxygenase. Nanomaterials, 2019, 9, 719.	4.1	13
104	Boronic Acid Ligands Can Target Multiple Subpopulations of Pancreatic Cancer Stem Cells via pH-Dependent Glycan-Terminal Sialic Acid Recognition. ACS Applied Bio Materials, 2021, 4, 6647-6651.	4.6	13
105	SekundÄ r strukturbildung als Triebkraft fļr die Selbstorganisation reaktiver Polypept(o)ide: Steuerung von GrĶğe, Form und Funktion kernvernetzter Nanostrukturen. Angewandte Chemie, 2017, 129, 9737-9742.	2.0	12
106	Clinical Utility of Histological and Radiological Evaluations of Tumor Necrosis for Predicting Prognosis in Pancreatic Cancer. Pancreas, 2020, 49, 634-641.	1.1	12
107	MRI-detectable polymeric micelles incorporating platinum anticancer drugs enhance survival in an advanced hepatocellular carcinoma model. International Journal of Nanomedicine, 2015, 10, 4137.	6.7	11
108	PEGylation of mRNA by Hybridization of Complementary PEG-RNA Oligonucleotides Stabilizes mRNA without Using Cationic Materials. Pharmaceutics, 2021, 13, 800.	4.5	11

#	Article	IF	CITATIONS
109	Vascular Bursts Act as a Versatile Tumor Vessel Permeation Route for Bloodâ€Borne Particles and Cells. Small, 2021, 17, e2103751.	10.0	11
110	Nanomedicine strategies for addressing major needs in neglected tropical diseases. Annual Reviews in Control, 2019, 48, 423-441.	7.9	10
111	Effect of Mixing Ratio of Oppositely Charged Block Copolymers on Polyion Complex Micelles for In Vivo Application. Polymers, 2021, 13, 5.	4.5	10
112	Polymeric Micelles with pH-Responsive Cross-Linked Core Enhance In Vivo mRNA Delivery. Pharmaceutics, 2022, 14, 1205.	4.5	10
113	Proteasome Inhibitor–Loaded Micelles Enhance Antitumor Activity Through Macrophage Reprogramming by NF-κB Inhibition. Journal of Pharmaceutical Sciences, 2017, 106, 2438-2446.	3.3	9
114	Nanomedicines blocking adaptive signals in cancer cells overcome tumor TKI resistance. Journal of Controlled Release, 2020, 321, 132-144.	9.9	9
115	Manipulating dynamic tumor vessel permeability to enhance polymeric micelle accumulation. Journal of Controlled Release, 2021, 329, 63-75.	9.9	9
116	Recombinant Thrombomodulin Attenuates Preeclamptic Symptoms by Inhibiting High-Mobility Group Box 1 in Mice. Endocrinology, 2021, 162, .	2.8	9
117	Apoptotic Cell-Inspired Polymeric Particles for Controlling Microglial Inflammation toward Neurodegenerative Disease Treatment. ACS Biomaterials Science and Engineering, 2019, 5, 5705-5713.	5.2	8
118	Targeting ability of self-assembled nanomedicines in rat acute limb ischemia model is affected by size. Journal of Controlled Release, 2018, 286, 394-401.	9.9	7
119	One-Pot Synthesis of PEG–Poly(amino acid) Block Copolymers Assembling Polymeric Micelles with PEG-Detachable Functionality. ACS Biomaterials Science and Engineering, 2019, 5, 5727-5733.	5.2	7
120	Fluorescent polymeric nanoparticle for ratiometric temperature sensing allows real-time monitoring in influenza virus-infected cells. Journal of Colloid and Interface Science, 2021, 601, 825-832.	9.4	7
121	A proton/macromolecule-sensing approach distinguishes changes in biological membrane permeability during polymer/lipid-based nucleic acid delivery. Journal of Materials Chemistry B, 2021, 9, 4298-4302.	5.8	7
122	Heparinâ€Derived Theranostic Nanoprobes Overcome the Blood–Brain Barrier and Target Glioma in Murine Model. Advanced Therapeutics, 2022, 5, .	3.2	7
123	Inside Cover: Charge-Conversional Polyionic Complex Micelles-Efficient Nanocarriers for Protein Delivery into Cytoplasm (Angew. Chem. Int. Ed. 29/2009). Angewandte Chemie - International Edition, 2009, 48, 5220-5220.	13.8	6
124	Ligandâ€Installed Nanocarriers: Ligandâ€Installed Nanocarriers toward Precision Therapy (Adv. Mater.) Tj ETQqC	0001gBT	Overlock 10
125	Block catiomer with flexible cationic segment enhances complexation with siRNA and the delivery performance in vitro. Science and Technology of Advanced Materials, 2021, 22, 850-863.	6.1	6

126	Enhanced MRIâ€Guided Gadolinium (III) Neutron Capture Therapy by Polymeric Nanocarriers Promoting Tumor Accumulation and Intracellular Delivery. ChemNanoMat, 2020, 6, 412-419.	2.8	6
-----	--	-----	---

#	Article	IF	CITATIONS
127	Cell Cycle Regulation and DNA Damage Response Networks in Diffuse- and Intestinal-Type Gastric Cancers, 2021, 13, 5786.	3.7	6
128	Bundling mRNA Strands to Prepare Nanoâ€Assemblies with Enhanced Stability Towards RNase for Inâ€Vivo Delivery. Angewandte Chemie, 2019, 131, 11482-11485.	2.0	5
129	Self-assembled molecular gate field effect transistor for label free sialic acid detection at cell membrane. Procedia Engineering, 2010, 5, 926-929.	1.2	4
130	Erythrocyte depletion lifts nanoparticle half-lives. Nature Biomedical Engineering, 2020, 4, 670-671.	22.5	4
131	Thrombomodulin promotes placental function by up-regulating placental growth factor via inhibition of high-mobility-group box 1 and hypoxia-inducible factor 11±. Placenta, 2021, 111, 1-9.	1.5	4
132	Microglial Immunoregulation by Apoptotic Cellular Membrane Mimetic Polymeric Particles. ACS Macro Letters, 2022, 11, 270-275.	4.8	4
133	mRNA Delivery: Polymeric Nanocarriers with Controlled Chain Flexibility Boost mRNA Delivery In Vivo through Enhanced Structural Fastening (Adv. Healthcare Mater. 16/2020). Advanced Healthcare Materials, 2020, 9, 2070054.	7.6	3
134	Bio-inspired nanomaterials for biomedical innovation. Science and Technology of Advanced Materials, 2020, 21, 420-421.	6.1	2
135	Development of Flexible Polycation-Based mRNA Delivery Systems for In Vivo Applications. Materials Proceedings, 2020, 4, .	0.2	2
136	Histological tumor necrosis in pancreatic cancer after neoadjuvant therapy. Oncology Reports, 2022, 48, .	2.6	2
137	Bridging Polymer Science and Medicine Through Supramolecular Nanoassemblies. Advances in Polymer Science, 2013, , 249-262.	0.8	1
138	Novel MR imaging and theranostics using Nano-DDS. Drug Delivery System, 2015, 30, 47-53.	0.0	1
139	Real-Time Assessment of Extracellular Vesicles by Intravital Microscopy Imaging. IFAC-PapersOnLine, 2018, 51, 22-23.	0.9	1
140	Strategies for ligand-installed nanocarriers. , 2021, , 633-655.		1
141	Phosphorylcholine-Installed Nanocarriers Target Pancreatic Cancer Cells through the Phospholipid Transfer Protein. ACS Biomaterials Science and Engineering, 2021, 7, 4439-4445.	5.2	1
142	Intravital Real-Time Confocal Laser Scanning Microscopy for the In Situ Evaluation of Nanocarriers. , 2013, , 607-620.		1
143	mRNA Structuring for Stabilizing mRNA Nanocarriers and Improving Their Delivery Efficiency. Materials Proceedings, 2020, 4, .	0.2	1
144	Molecular network analysis of RNA viral infection pathway in diffuse- and intestinal-type gastric cancer. Fundamental Toxicological Sciences, 2022, 9, 37-46.	0.6	1

#	Article	IF	CITATIONS
145	Mechanically interlocked molecular architectures of valinomycin as cancer targeted prodrugs. Nano Select, 0, , .	3.7	1
146	Label free potentiometric sialic acid detection applicable to living cell diagnosis. , 2009, , .		0
147	Smart Nanoassemblies of Block Copolymers for Drug and Gene Delivery. , 0, , 91-110.		Ο
148	Happy Birthday Kataoka-sensei!. Macromolecular Bioscience, 2017, 17, 1600455.	4.1	0
149	Engineered Nanomedicine Targets Intractable Cancers. Materials Proceedings, 2021, 4, 84.	0.2	Ο
150	Mechanistic Analyses of Polymer/Lipid-Based Gene Transfection Processes through Membrane Integrity Assay Using Proton Sensing Transistor. Materials Proceedings, 2020, 4, .	0.2	0
151	Effect of PEG-Polycation Chain Flexibility on siRNA Loaded Polyion Complex Micelles Assembly and Performance. Materials Proceedings, 2020, 4, .	0.2	Ο