Fei Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4325089/publications.pdf

Version: 2024-02-01

136950 155660 3,423 55 82 32 citations h-index g-index papers 91 91 91 5517 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	<i>Epg5</i> deficiency leads to primary ovarian insufficiency due to WT1 accumulation in mouse granulosa cells. Autophagy, 2023, 19, 644-659.	9.1	12
2	Somatic cellâ€derived BMPs induce premature meiosis in male germ cells during the embryonic stage by upregulating <i>Dazl</i> expression. FASEB Journal, 2022, 36, e22131.	0.5	1
3	Role of <i>Cyp19a1</i> in the female pathway of a freshwater turtle species (<i>Mauremys reevesii</i>) with temperature-dependent sex determination. Zoological Research, 2022, 43, 81-84.	2.1	7
4	Mutations of MSH5 in nonobstructive azoospermia (NOA) and rescued via in vivo gene editing. Signal Transduction and Targeted Therapy, 2022, 7, 1.	17.1	193
5	Obesity modulates cell-cell interactions during ovarian folliculogenesis. IScience, 2022, 25, 103627.	4.1	12
6	The functions of <i>Wt1</i> in mouse gonad development and somatic cells differentiation. Biology of Reproduction, 2022, 107, 269-274.	2.7	9
7	Evolutionarily conservative and non-conservative regulatory networks during primate interneuron development revealed by single-cell RNA and ATAC sequencing. Cell Research, 2022, 32, 425-436.	12.0	25
8	The Regulation of Gonadal Somatic Cell Differentiation in Humans. Genomics, Proteomics and Bioinformatics, 2022, 20, 219-222.	6.9	0
9	CCDC38 is required for sperm flagellum biogenesis and male fertility in mice. Development (Cambridge), 2022, 149, .	2.5	17
10	<i>Fancb</i> deficiency causes premature ovarian insufficiency in mice. Biology of Reproduction, 2022, 107, 790-799.	2.7	5
11	Genomic Basis of Occurrence of Cryptic Resistance among Oxacillin- and Cefoxitin-Susceptible <i>mecA</i> -Positive Staphylococcus aureus. Microbiology Spectrum, 2022, 10, .	3.0	4
12	Brain-specific Wt1 deletion leads to depressive-like behaviors in mice via the recruitment of Tet2 to modulate Epo expression. Molecular Psychiatry, 2021, 26, 4221-4233.	7.9	15
13	Proteasome subunit $\hat{l}\pm 4s$ is essential for formation of spermatoproteasomes and histone degradation during meiotic DNA repair in spermatocytes. Journal of Biological Chemistry, 2021, 296, 100130.	3.4	14
14	Paternal <i>USP26</i> mutations raise Klinefelter syndrome risk in the offspring of mice and humans. EMBO Journal, 2021, 40, e106864.	7.8	11
15	PRMT5 Is Involved in Spermatogonial Stem Cells Maintenance by Regulating Plzf Expression via Modulation of Lysine Histone Modifications. Frontiers in Cell and Developmental Biology, 2021, 9, 673258.	3.7	6
16	FANCI plays an essential role in spermatogenesis and regulates meiotic histone methylation. Cell Death and Disease, 2021, 12, 780.	6.3	10
17	PRMT5 regulates ovarian follicle development by facilitating Wt1 translation. ELife, 2021, 10, .	6.0	10
18	Active Surveillance, Drug Resistance, and Genotypic Profiling of Staphylococcus aureus Among School-Age Children in China. Frontiers in Medicine, 2021, 8, 701494.	2.6	8

#	Article	IF	CITATIONS
19	The potential risk factors of placenta increta and the role of octamethylcyclotetrasiloxane. Archives of Gynecology and Obstetrics, 2021 , , 1 .	1.7	O
20	Tracing the origin of the placental trophoblast cells in mouse embryo developmentâ€. Biology of Reproduction, 2020, 102, 598-606.	2.7	8
21	PRMT7 is involved in regulation of germ cell proliferation during embryonic stage. Biochemical and Biophysical Research Communications, 2020, 533, 938-944.	2.1	8
22	Loss of GM130 does not impair oocyte meiosis and embryo development in mice. Biochemical and Biophysical Research Communications, 2020, 532, 336-340.	2.1	4
23	Systematic analysis of gut microbiota in pregnant women and its correlations with individual heterogeneity. Npj Biofilms and Microbiomes, 2020, 6, 32.	6.4	61
24	Prevalence, Characterization, and Drug Resistance of Staphylococcus Aureus in Feces From Pediatric Patients in Guangzhou, China. Frontiers in Medicine, 2020, 7, 127.	2.6	11
25	Effects of Different Biomaterials and Cellular Status on Testicular Cell Selfâ€Organization. Advanced Biology, 2020, 4, e1900292.	3.0	8
26	Inactivation of Wt1 causes pre-granulosa cell to steroidogenic cell transformation and defect of ovary developmentâ€. Biology of Reproduction, 2020, 103, 60-69.	2.7	15
27	Predominance of III/ST19 and Ib/ST10 Lineages With High Multidrug Resistance in Fluoroquinolone-Resistant Group B Streptococci Isolates in Which a New Integrative and Conjugative Element Was Identified. Frontiers in Microbiology, 2020, 11, 609526.	3.5	3
28	Oral administration of recombinant Bacillus subtilis spores expressing mutant staphylococcal enterotoxin B provides potent protection against lethal enterotoxin challenge. AMB Express, 2020, 10, 215.	3.0	4
29	Abnormal Meiosis Initiation in Germ Cell Caused by Aberrant Differentiation of Gonad Somatic Cell. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-8.	4.0	3
30	Molecular characteristics of group B Streptococcus isolates from infants in southern mainland China. BMC Infectious Diseases, 2019, 19, 812.	2.9	15
31	Oral administration of recombinant <i>Bacillus subtilis</i> spores expressing <i>Helicobacter pylori</i> neutrophilâ€activating protein suppresses peanut allergy via upâ€regulation of Tregs. Clinical and Experimental Allergy, 2019, 49, 1605-1614.	2.9	10
32	WDR62 is involved in spindle assembly by interacting with CEP170 in spermatogenesis. Development (Cambridge), 2019, 146, .	2.5	16
33	The HMGA2-IMP2 Pathway Promotes Granulosa Cell Proliferation in Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 1049-1059.	3.6	38
34	<i>Mir223</i> restrains autophagy and promotes CNS inflammation by targeting ATG16L1. Autophagy, 2019, 15, 478-492.	9.1	104
35	TMCO1 is essential for ovarian follicle development by regulating ER Ca2+ store of granulosa cells. Cell Death and Differentiation, 2018, 25, 1686-1701.	11.2	49
36	Autophagy regulates testosterone synthesis by facilitating cholesterol uptake in Leydig cells. Journal of Cell Biology, 2018, 217, 2103-2119.	5.2	136

#	Article	IF	CITATIONS
37	Wilms' Tumor 1 Overexpression in Granulosa Cells Is Associated with Polycystic Ovaries in Polycystic Ovary Syndrome Patients. Gynecologic and Obstetric Investigation, 2018, 83, 241-246.	1.6	4
38	Globozoospermia and lack of acrosome formation in GM130-deficient mice. Cell Death and Disease, 2018, 8, e2532-e2532.	6.3	57
39	Association of maternal serum homocysteine concentration levels in late stage of pregnancy with preterm births: a nested case–control study. Journal of Maternal-Fetal and Neonatal Medicine, 2018, 31, 2673-2677.	1.5	8
40	An increasing trend of neonatal invasive multidrug-resistant group B streptococcus infections in southern China, 2011–2017. Infection and Drug Resistance, 2018, Volume 11, 2561-2569.	2.7	16
41	cTAGE5/MEA6 plays a critical role in neuronal cellular components trafficking and brain development. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9449-E9458.	7.1	18
42	Wdr62 is involved in female meiotic initiation via activating JNK signaling and associated with POI in humans. PLoS Genetics, 2018, 14, e1007463.	3.5	30
43	Sirt1 regulates acrosome biogenesis by modulating autophagic flux during spermiogenesis in mice. Development (Cambridge), 2017, 144, 441-451.	2.5	73
44	<i>Wt1</i> directs the lineage specification of sertoli and granulosa cells by repressing <i>Sf1</i> expression. Development (Cambridge), 2017, 144, 44-53.	2.5	52
45	BCAS2 is involved in alternative mRNA splicing in spermatogonia and the transition to meiosis. Nature Communications, 2017, 8, 14182.	12.8	53
46	High autophagic flux guards ESC identity through coordinating autophagy machinery gene program by FOXO1. Cell Death and Differentiation, 2017, 24, 1672-1680.	11.2	52
47	Loss of the golgin GM130 causes Golgi disruption, Purkinje neuron loss, and ataxia in mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 346-351.	7.1	96
48	The role of fructose-1,6-bisphosphatase 1 in abnormal development of ovarian follicles caused by high testosterone concentration. Molecular Medicine Reports, 2017, 16, 6489-6498.	2.4	6
49	\hat{l}^2 -Catenin directs the transformation of testis Sertoli cells to ovarian granulosa-like cells by inducing Foxl2 expression. Journal of Biological Chemistry, 2017, 292, 17577-17586.	3.4	33
50	<i>cTAGE5</i> deletion in pancreatic \hat{l}^2 cells impairs proinsulin trafficking and insulin biogenesis in mice. Journal of Cell Biology, 2017, 216, 4153-4164.	5.2	32
51	Mutations in MSH5 in primary ovarian insufficiency. Human Molecular Genetics, 2017, 26, 1452-1457.	2.9	87
52	Essential role for SUN5 in anchoring sperm head to the tail. ELife, 2017, 6, .	6.0	84
53	Adiponectin-derived active peptide ADP355 exerts anti-inflammatory and anti-fibrotic activities in thioacetamide-induced liver injury. Scientific Reports, 2016, 6, 19445.	3.3	47
54	Changes in the morphology and protein expression of germ cells and Sertoli cells in plateau pikas testes during non-breeding season. Scientific Reports, 2016, 6, 22697.	3.3	9

#	Article	IF	Citations
55	H2B ubiquitination regulates meiotic recombination by promoting chromatin relaxation. Nucleic Acids Research, 2016, 44, gkw652.	14.5	59
56	Transcription Factor RFX2 Is a Key Regulator of Mouse Spermiogenesis. Scientific Reports, 2016, 6, 20435.	3.3	51
57	STMN1 Promotes Progesterone Production Via StAR Up-regulation in Mouse Granulosa Cells. Scientific Reports, 2016, 6, 26691.	3.3	19
58	Mea6 controls VLDL transport through the coordinated regulation of COPII assembly. Cell Research, 2016, 26, 787-804.	12.0	34
59	Mesenchymal stem cells and their secreted molecules predominantly ameliorate fulminant hepatic failure and chronic liver fibrosis in mice respectively. Journal of Translational Medicine, 2016, 14, 45.	4.4	128
60	Autophagy is required for ectoplasmic specialization assembly in sertoli cells. Autophagy, 2016, 12, 814-832.	9.1	105
61	Plumbagin protects liver against fulminant hepatic failure and chronic liver fibrosis via inhibiting inflammation and collagen production. Oncotarget, 2016, 7, 82864-82875.	1.8	29
62	Novel WT1 Missense Mutations in Han Chinese Women with Premature Ovarian Failure. Scientific Reports, 2015, 5, 13983.	3.3	33
63	Prmt5 is required for germ cell survival during spermatogenesis in mice. Scientific Reports, 2015, 5, 11031.	3.3	39
64	Histone Arginine Methylation by PRMT7 Controls Germinal Center Formation via Regulating <i>Bcl6</i> Transcription. Journal of Immunology, 2015, 195, 1538-1547.	0.8	55
65	Protein Arginine Methyltransferase 5 (Prmt5) Is Required for Germ Cell Survival During Mouse Embryonic Development1. Biology of Reproduction, 2015, 92, 104.	2.7	15
66	Reprogramming of Sertoli cells to fetal-like Leydig cells by <i>Wt1</i> ablation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4003-4008.	7.1	79
67	High levels of testosterone inhibit ovarian follicle development by repressing the FSH signaling pathway. Journal of Huazhong University of Science and Technology [Medical Sciences], 2015, 35, 723-729.	1.0	17
68	CSB-PGBD3 Mutations Cause Premature Ovarian Failure. PLoS Genetics, 2015, 11, e1005419.	3.5	70
69	Equatorin is not essential for acrosome biogenesis but is required for the acrosome reaction. Biochemical and Biophysical Research Communications, 2014, 444, 537-542.	2.1	27
70	Wt1 functions in ovarian follicle development by regulating granulosa cell differentiation. Human Molecular Genetics, 2014, 23, 333-341.	2.9	73
71	Generation of male germ cells from mouse induced pluripotent stem cells in vitro. Stem Cell Research, 2014, 12, 517-530.	0.7	36
72	Wt1 dictates the fate of fetal and adult Leydig cells during development in the mouse testis. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E1131-E1143.	3.5	49

#	Article	IF	CITATIONS
73	Atg7 is required for acrosome biogenesis during spermatogenesis in mice. Cell Research, 2014, 24, 852-869.	12.0	213
74	The Wilms Tumor Gene, Wt1, Is Critical for Mouse Spermatogenesis via Regulation of Sertoli Cell Polarity and Is Associated with Non-Obstructive Azoospermia in Humans. PLoS Genetics, 2013, 9, e1003645.	3.5	109
75	Disruption of genital ridge development causes aberrant primordial germ cell proliferation but does not affect their directional migration. BMC Biology, 2013, 11, 22.	3.8	22
76	Fate determination of fetal Leydig cells. Frontiers in Biology, 2011, 6, 12-18.	0.7	7
77	Wt1 ablation and Igf2 upregulation in mice result in Wilms tumors with elevated ERK1/2 phosphorylation. Journal of Clinical Investigation, 2011, 121, 174-183.	8.2	104
78	$\mbox{\sc i>Wt1negatively regulates \hat{l}^2-catenin signaling during testis development. Development (Cambridge), 2008, 135, 1875-1885.$	2.5	151
79	The Wilms tumor gene, <i>Wt1</i> , is required for <i>Sox9</i> expression and maintenance of tubular architecture in the developing testis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11987-11992.	7.1	205
80	The Wt1 +/R394W Mouse Displays Glomerulosclerosis and Early-Onset Renal Failure Characteristic of Human Denys-Drash Syndrome. Molecular and Cellular Biology, 2004, 24, 9899-9910.	2.3	63
81	Relationship between uterine expression of matrix metalloproteinases and their inhibitors and endometrial receptivity. Science in China Series C: Life Sciences, 2002, 45, 406.	1.3	4
82	Expression of Matrix Metalloproteinase-2, Tissue Inhibitors of Metalloproteinase-1, -3 at the Implantation Site of Rhesus Monkey During the Early Stage of Pregnancy. Endocrine, 2001, 16, 47-54.	2.2	15