
John Doorbar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4323852/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Biology and Life-Cycle of Human Papillomaviruses. Vaccine, 2012, 30, F55-F70.	3.8	1,042
2	Molecular biology of human papillomavirus infection and cervical cancer. Clinical Science, 2006, 110, 525-541.	4.3	802
3	The papillomavirus life cycle. Journal of Clinical Virology, 2005, 32, 7-15.	3.1	728
4	Carcinogenic human papillomavirus infection. Nature Reviews Disease Primers, 2016, 2, 16086.	30.5	615
5	Human papillomavirus molecular biology and disease association. Reviews in Medical Virology, 2015, 25, 2-23.	8.3	591
6	Human Papillomaviruses; Epithelial Tropisms, and the Development of Neoplasia. Viruses, 2015, 7, 3863-3890.	3.3	388
7	Comprehensive Control of Human Papillomavirus Infections and Related Diseases. Vaccine, 2013, 31, H1-H31.	3.8	272
8	Organization of Human Papillomavirus Productive Cycle during Neoplastic Progression Provides a Basis for Selection of Diagnostic Markers. Journal of Virology, 2003, 77, 10186-10201.	3.4	220
9	The low-risk papillomaviruses. Virus Research, 2017, 231, 119-127.	2.2	192
10	The E4 protein; structure, function and patterns of expression. Virology, 2013, 445, 80-98.	2.4	166
11	One virus, one lesion—individual components of CIN lesions contain a specific HPV type. Journal of Pathology, 2012, 227, 62-71.	4.5	161
12	Life Cycle Heterogeneity in Animal Models of Human Papillomavirus-Associated Disease. Journal of Virology, 2002, 76, 10401-10416.	3.4	154
13	Persistence of viral DNA in the epithelial basal layer suggests a model for papillomavirus latency following immune regression. Virology, 2011, 414, 153-163.	2.4	147
14	Depletion of Langerhans Cells in Human Papillomavirus Type 16-Infected Skin Is Associated with E6-Mediated Down Regulation of E-Cadherin. Journal of Virology, 2003, 77, 8378-8385.	3.4	134
15	Discovery of several thousand highly diverse circular DNA viruses. ELife, 2020, 9, .	6.0	131
16	Characterization of Events during the Late Stages of HPV16 Infectionin VivoUsing High-Affinity Synthetic Fabs to E4. Virology, 1997, 238, 40-52.	2.4	130
17	Papillomavirus Life Cycle Organization and Biomarker Selection. Disease Markers, 2007, 23, 297-313.	1.3	129
18	G2/M cell cycle arrest in the life cycle of viruses. Virology, 2007, 368, 219-226.	2.4	128

JOHN DOORBAR

#	Article	IF	CITATIONS
19	Human <i>Betaâ€papillomavirus</i> infection and keratinocyte carcinomas. Journal of Pathology, 2015, 235, 342-354.	4.5	106
20	Model systems of human papillomavirusâ€associated disease. Journal of Pathology, 2016, 238, 166-179.	4.5	102
21	Functional Analysis of the Human Papillomavirus Type 16 E1 â^§ E4 Protein Provides a Mechanism for In Vivo and In Vitro Keratin Filament Reorganization. Journal of Virology, 2004, 78, 821-833.	3.4	90
22	Human Papillomavirus Type 16 E1 â^§ E4 Contributes to Multiple Facets of the Papillomavirus Life Cycle. Journal of Virology, 2005, 79, 13150-13165.	3.4	90
23	Latent papillomavirus infections and their regulation. Current Opinion in Virology, 2013, 3, 416-421.	5.4	88
24	ldentification of a G ₂ Arrest Domain in the E1â^§E4 Protein of Human Papillomavirus Type 16. Journal of Virology, 2002, 76, 9806-9818.	3.4	87
25	Analysis of Host–Parasite Incongruence in Papillomavirus Evolution Using Importance Sampling. Molecular Biology and Evolution, 2010, 27, 1301-1314.	8.9	85
26	Sequence Close to the N-terminus of L2 Protein Is Displayed on the Surface of Bovine Papillomavirus Type 1 Virions. Virology, 1997, 227, 474-483.	2.4	79
27	Human Papillomavirus Type 16 E1 â^§ E4-Induced G 2 Arrest Is Associated with Cytoplasmic Retention of Active Cdk1/Cyclin B1 Complexes. Journal of Virology, 2005, 79, 3998-4011.	3.4	76
28	E1 â^§ E4 Protein of Human Papillomavirus Type 16 Associates with Mitochondria. Journal of Virology, 2004, 78, 7199-7207.	3.4	74
29	Host control of human papillomavirus infection and disease. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2018, 47, 27-41.	2.8	74
30	Refining our understanding of cervical neoplasia and its cellular origins. Papillomavirus Research (Amsterdam, Netherlands), 2019, 7, 176-179.	4.5	73
31	p53 controls expression of the DNA deaminase APOBEC3B to limit its potential mutagenic activity in cancer cells. Nucleic Acids Research, 2017, 45, 11056-11069.	14.5	70
32	The Viral E4 Protein Is Required for the Completion of the Cottontail Rabbit Papillomavirus Productive Cycle In Vivo. Journal of Virology, 2004, 78, 2142-2151.	3.4	68
33	Reconstruction of Human Papillomavirus Type 16-Mediated Early-Stage Neoplasia Implicates E6/E7 Deregulation and the Loss of Contact Inhibition in Neoplastic Progression. Journal of Virology, 2012, 86, 6358-6364.	3.4	67
34	The Biology of Papillomavirus Latency. The Open Virology Journal, 2012, 6, 190-197.	1.8	62
35	Stratification of HPV-induced cervical pathology using the virally encoded molecular marker E4 in combination with p16 or MCM. Modern Pathology, 2015, 28, 977-993.	5.5	60
36	The E1â^§E4 Protein of Human Papillomavirus Type 16 Associates with a Putative RNA Helicase through Sequences in Its C Terminus. Journal of Virology, 2000, 74, 10081-10095.	3.4	59

JOHN DOORBAR

#	Article	IF	CITATIONS
37	Humans with inherited TÂcell CD28 deficiency are susceptible to skin papillomaviruses but are otherwise healthy. Cell, 2021, 184, 3812-3828.e30.	28.9	53
38	Expression of Betapapillomavirus Oncogenes Increases the Number of Keratinocytes with Stem Cell-Like Properties. Journal of Virology, 2013, 87, 12158-12165.	3.4	52
39	Stabilization of HPV16 E6 protein by PDZ proteins, and potential implications for genome maintenance. Virology, 2011, 414, 137-145.	2.4	49
40	Improved detection reveals active β-papillomavirus infection in skin lesions from kidney transplant recipients. Modern Pathology, 2014, 27, 1101-1115.	5.5	45
41	E1^E4-mediated keratin phosphorylation and ubiquitylation: a mechanism for keratin depletion in HPV16-infected epithelium. Journal of Cell Science, 2010, 123, 2810-2822.	2.0	41
42	Comprehensive Control of Human Papillomavirus Infections and Related Diseases. Vaccine, 2013, 31, F1-F31.	3.8	40
43	Serine/Arginine-Rich Splicing Factor 3 and Heterogeneous Nuclear Ribonucleoprotein A1 Regulate Alternative RNA Splicing and Gene Expression of Human Papillomavirus 18 through Two Functionally Distinguishable <i>cis</i> Elements. Journal of Virology, 2016, 90, 9138-9152.	3.4	40
44	Summary from an international cancer seminar focused on human papillomavirus (HPV)-positive oropharynx cancer, convened by scientists at IARC and NCI. Oral Oncology, 2020, 108, 104736.	1.5	40
45	Interaction of the Human Papillomavirus E6 Oncoprotein with Sorting Nexin 27 Modulates Endocytic Cargo Transport Pathways. PLoS Pathogens, 2016, 12, e1005854.	4.7	39
46	Structural Analysis Reveals an Amyloid Form of the Human Papillomavirus Type 16 E1 ^{â^§} E4 Protein and Provides a Molecular Basis for Its Accumulation. Journal of Virology, 2008, 82, 8196-8203.	3.4	38
47	Modulation of basal cell fate during productive and transforming HPV-16 infection is mediated by progressive E6-driven depletion of Notch. Journal of Pathology, 2017, 242, 448-462.	4.5	38
48	HPV E4 expression and DNA hypermethylation of CADM1, MAL, and miR124-2 genes in cervical cancer and precursor lesions. Modern Pathology, 2018, 31, 1842-1850.	5.5	37
49	HPV16 and 18 genome amplification show different E4-dependence, with 16E4 enhancing E1 nuclear accumulation and replicative efficiency via its cell cycle arrest and kinase activation functions. PLoS Pathogens, 2017, 13, e1006282.	4.7	36
50	E4 Antibodies Facilitate Detection and Type-Assignment of Active HPV Infection in Cervical Disease. PLoS ONE, 2012, 7, e49974.	2.5	35
51	Intrabody strategies for the treatment of human papillomavirus-associated disease. Expert Opinion on Biological Therapy, 2007, 7, 677-689.	3.1	34
52	Investigating Diagnostic Problems of CIN1 and CIN2 Associated With High-risk HPV by Combining the Novel Molecular Biomarker PanHPVE4 With P16INK4a. American Journal of Surgical Pathology, 2015, 39, 1518-1528.	3.7	34
53	The CXCL12/CXCR4 Signaling Pathway: A New Susceptibility Factor in Human Papillomavirus Pathogenesis. PLoS Pathogens, 2016, 12, e1006039.	4.7	34
54	Comprehensive Control of Human Papillomavirus Infections and Related Diseases. Vaccine, 2013, 31, G1-G31.	3.8	33

John Doorbar

#	Article	IF	CITATIONS
55	A novel interaction between the human papillomavirus type 16 E2 and E1^E4 proteins leads to stabilization of E2. Virology, 2009, 394, 266-275.	2.4	32
56	Detection of Viral DNA and E4 Protein in Basal Keratinocytes of Experimental Canine Oral Papillomavirus Lesions. Virology, 2001, 284, 82-98.	2.4	30
57	Synthesis of Viral DNA and Late Capsid Protein L1 in Parabasal Spinous Cell Layers of Naturally Occurring Benign Warts Infected with Human Papillomavirus Type 1. Virology, 2000, 268, 281-293.	2.4	26
58	Phosphorylation of the Human Papillomavirus Type 16 E1^E4 Protein at T57 by ERK Triggers a Structural Change That Enhances Keratin Binding and Protein Stability. Journal of Virology, 2009, 83, 3668-3683.	3.4	26
59	Roles for E1-independent replication and E6-mediated p53 degradation during low-risk and high-risk human papillomavirus genome maintenance. PLoS Pathogens, 2019, 15, e1007755.	4.7	25
60	Role of Calpain in the Formation of Human Papillomavirus Type 16 E1^E4 Amyloid Fibers and Reorganization of the Keratin Network. Journal of Virology, 2011, 85, 9984-9997.	3.4	24
61	The Role of Human Papillomaviruses and Polyomaviruses in BRAF-Inhibitor Induced Cutaneous Squamous Cell Carcinoma and Benign Squamoproliferative Lesions. Frontiers in Microbiology, 2018, 9, 1806.	3.5	24
62	The high-risk HPV E6 target scribble (hScrib) is required for HPV E6 expression in cervical tumour-derived cell lines. Papillomavirus Research (Amsterdam, Netherlands), 2016, 2, 70-77.	4.5	23
63	Human papillomavirus infection and induction of neoplasia: a matter of fitness. Current Opinion in Virology, 2016, 20, 129-136.	5.4	23
64	Whole tissue cervical mapping of HPV infection: Molecular evidence for focal latent HPV infection in humans. Papillomavirus Research (Amsterdam, Netherlands), 2019, 7, 82-87.	4.5	23
65	α- and β-Papillomavirus infection in a young patient with an unclassified primary T-cell immunodeficiency and multiple mucosal and cutaneous lesions. Journal of the American Academy of Dermatology, 2014, 71, 108-115.e1.	1.2	22
66	Principles of epithelial homeostasis control during persistent human papillomavirus infection and its deregulation at the cervical transformation zone. Current Opinion in Virology, 2021, 51, 96-105.	5.4	21
67	Presence of human papillomavirus inÂsemen of healthy men isÂfirmly associated with HPV infections ofÂtheÂpenile epithelium. Fertility and Sterility, 2015, 104, 838-844.e8.	1.0	20
68	Human papillomavirus type 16 causes a defined subset of conjunctival in situ squamous cell carcinomas. Modern Pathology, 2020, 33, 74-90.	5.5	19
69	The early detection of cervical cancer. The current and changing landscape of cervical disease detection. Cytopathology, 2020, 31, 258-270.	0.7	19
70	Molecular Basis for Advances in Cervical Screening. Molecular Diagnosis and Therapy, 2005, 9, 129-142.	1.1	17
71	Dynamics of papillomavirus in vivo disease formation & susceptibility to high-level disinfection—Implications for transmission in clinical settings. EBioMedicine, 2021, 63, 103177.	6.1	17
72	Delta-Like Ligand–Notch1 Signaling Is Selectively Modulated by HPV16 E6 to Promote Squamous Cell Proliferation and Correlates with Cervical Cancer Prognosis. Cancer Research, 2021, 81, 1909-1921.	0.9	16

JOHN DOORBAR

#	ARTICLE	IF	CITATIONS
73	Human papillomavirus (HPV) can establish productive infection in dysplastic oral mucosa, but HPV status is poorly predicted by histological features and p16 expression. Histopathology, 2020, 76, 592-602.	2.9	14
74	The Reservoir of Persistent Human Papillomavirus Infection; Strategies for Elimination Using Anti-Viral Therapies. Viruses, 2022, 14, 214.	3.3	14
75	Expression of p16 and HPV E4 on biopsy samples and methylation of FAM19A4 and miR124â€2 on cervical cytology samples in the classification of cervical squamous intraepithelial lesions. Cancer Medicine, 2020, 9, 2454-2461.	2.8	13
76	Role of E6 in Maintaining the Basal Cell Reservoir during Productive Papillomavirus Infection. Journal of Virology, 2022, 96, JVI0118121.	3.4	13
77	Mutations in HPV18 E1^E4 Impact Virus Capsid Assembly, Infectivity Competence, and Maturation. Viruses, 2017, 9, 385.	3.3	8
78	Presence or Absence of Significant HPVE4 Expression in High-grade Anal Intraepithelial Neoplasia With p16/Ki-67 Positivity Indicates Distinct Patterns of Neoplasia. American Journal of Surgical Pathology, 2018, 42, 463-471.	3.7	8
79	Detection of Papillomavirus Gene Expression Patterns in Tissue Sections. Current Protocols in Microbiology, 2016, 41, 14B.7.1-14B.7.20.	6.5	7
80	Verrucous pilar cysts infected with beta human papillomavirus. Journal of Cutaneous Pathology, 2020, 47, 381-386.	1.3	6
81	Characterization of cervical biopsies of women with HIV and HPV co-infection using p16ink4a, ki-67 and HPV E4 immunohistochemistry and DNA methylation. Modern Pathology, 2020, 33, 1968-1978.	5.5	6
82	Evidence of latent <scp>HPV</scp> infection in older Danish women with a previous history of cervical dysplasia. Acta Obstetricia Et Gynecologica Scandinavica, 2022, 101, 608-615.	2.8	5
83	Mouse Papillomavirus L1 and L2 Are Dispensable for Viral Infection and Persistence at Both Cutaneous and Mucosal Tissues. Viruses, 2021, 13, 1824.	3.3	4
84	Cervical cell lift: A novel triage method for the spatial mapping and grading of precancerous cervical lesions. EBioMedicine, 2022, 82, 104157.	6.1	4
85	Risk stratification of cervical disease using detection of human papillomavirus (HPV) E4 protein and cellular MCM protein in clinical liquid based cytology samples. Journal of Clinical Virology, 2018, 108, 19-25.	3.1	3
86	Molecular Basis for Advances in Cervical Screening. Molecular Diagnosis and Therapy, 2005, 9, 129-142.	1.1	3
87	Biology of the Human Papillomavirus Life Cycle: The Basis for Understanding the Pathology of PreCancer and Cancer. , 2020, , 67-83.		1
88	Microwaves can reverse the tumour phenotype of human papillomavirus type 16 (HPV16)-positive keratinocytes in 3D cell culture models: a novel therapy for HPV-associated disease?. Access Microbiology, 2020, 2, .	0.5	1
89	Natural History and Biology of Human Papillomaviruses. , 2016, , 17-29.		0