Barbara B Kahn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4323806/publications.pdf

Version: 2024-02-01

50244 74108 19,843 77 46 75 citations h-index g-index papers 80 80 80 19739 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bioactive lipids and metabolic syndromeâ€"a symposium report. Annals of the New York Academy of Sciences, 2022, 1511, 87-106.	1.8	5
2	ATGL is a biosynthetic enzyme for fatty acid esters of hydroxy fatty acids. Nature, 2022, 606, 968-975.	13.7	57
3	Distinct biological activities of isomers from several families of branched fatty acid esters of hydroxy fatty acids (FAHFAs). Journal of Lipid Research, 2021, 62, 100108.	2.0	31
4	BCAA Supplementation in Mice with Diet-induced Obesity Alters the Metabolome Without Impairing Glucose Homeostasis. Endocrinology, $2021,162,.$	1.4	28
5	Insulin action in adipocytes, adipose remodeling, and systemic effects. Cell Metabolism, 2021, 33, 748-757.	7.2	51
6	High-throughput mediation analysis of human proteome and metabolome identifies mediators of post-bariatric surgical diabetes control. Nature Communications, 2021, 12, 6951.	5.8	13
7	Obesity-Linked PPARÎ ³ S273 Phosphorylation Promotes Insulin Resistance through Growth Differentiation Factor 3. Cell Metabolism, 2020, 32, 665-675.e6.	7.2	53
8	Retinol binding protein 4 primes the NLRP3 inflammasome by signaling through Toll-like receptors 2 and 4. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31309-31318.	3.3	49
9	RBP4 increases lipolysis in human adipocytes and is associated with increased lipolysis and hepatic insulin resistance in obese women. FASEB Journal, 2020, 34, 6099-6110.	0.2	39
10	Discovery of FAHFA-Containing Triacylglycerols and Their Metabolic Regulation. Journal of the American Chemical Society, 2019, 141, 8798-8806.	6.6	57
11	Adipose Tissue, Inter-Organ Communication, and the Path to Type 2 Diabetes: The 2016 Banting Medal for Scientific Achievement Lecture. Diabetes, 2019, 68, 3-14.	0.3	30
12	PAHSAs attenuate immune responses and promote \hat{l}^2 cell survival in autoimmune diabetic mice. Journal of Clinical Investigation, 2019, 129, 3717-3731.	3.9	55
13	PAHSAs enhance hepatic and systemic insulin sensitivity through direct and indirect mechanisms. Journal of Clinical Investigation, 2019, 129, 4138-4150.	3.9	62
14	De novo Lipogenesis in Adipocytes Results in the Production of Structurally Novel Signaling Lipids with Beneficial Metabolic and Antiâ€inflammatory Effects. FASEB Journal, 2019, 33, 214.1.	0.2	0
15	Activation of AMPK-Regulated CRH Neurons in the PVH is Sufficient and Necessary to Induce Dietary Preference for Carbohydrate over Fat. Cell Reports, 2018, 22, 706-721.	2.9	50
16	Palmitic Acid Hydroxystearic Acids Activate GPR40, Which Is Involved in Their Beneficial Effects on Glucose Homeostasis. Cell Metabolism, 2018, 27, 419-427.e4.	7.2	127
17	Faster Protocol for Endogenous Fatty Acid Esters of Hydroxy Fatty Acid (FAHFA) Measurements. Analytical Chemistry, 2018, 90, 5358-5365.	3.2	39
18	Adipose tissue dysfunction is associated with low levels of the novel Palmitic Acid Hydroxystearic Acids. Scientific Reports, 2018, 8, 15757.	1.6	26

#	Article	IF	Citations
19	Methodological Issues in Studying PAHSA Biology: Masking PAHSA Effects. Cell Metabolism, 2018, 28, 543-546.	7.2	40
20	Brown Adipose Tissue Controls Skeletal Muscle Function via the Secretion of Myostatin. Cell Metabolism, 2018, 28, 631-643.e3.	7.2	147
21	Metabolites as regulators of insulin sensitivity and metabolism. Nature Reviews Molecular Cell Biology, 2018, 19, 654-672.	16.1	369
22	Palmitic Acid Esters of Hydroxy Stearic Acids Are Hepatic Insulin Sensitizers in Chow and High-Fat Diet (HFD)–Fed Mice. Diabetes, 2018, 67, 1838-P.	0.3	1
23	Overexpressing the novel autocrine/endocrine adipokine WISP2 induces hyperplasia of the heart, white and brown adipose tissues and prevents insulin resistance. Scientific Reports, 2017, 7, 43515.	1.6	25
24	Stereochemistry of Endogenous Palmitic Acid Ester of 9-Hydroxystearic Acid and Relevance of Absolute Configuration to Regulation. Journal of the American Chemical Society, 2017, 139, 4943-4947.	6.6	53
25	Absence of Carbohydrate Response Element Binding Protein in Adipocytes Causes Systemic Insulin Resistance and Impairs Glucose Transport. Cell Reports, 2017, 21, 1021-1035.	2.9	103
26	Brain GLUT4 Knockout Mice Have Impaired Glucose Tolerance, Decreased Insulin Sensitivity, and Impaired Hypoglycemic Counterregulation. Diabetes, 2017, 66, 587-597.	0.3	76
27	Adipocyteâ€specific overexpression of retinolâ€binding protein 4 causes hepatic steatosis in mice. Hepatology, 2016, 64, 1534-1546.	3.6	80
28	Branched Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) Protect against Colitis by Regulating Gut Innate and Adaptive Immune Responses. Journal of Biological Chemistry, 2016, 291, 22207-22217.	1.6	102
29	Branched Fatty Acid Esters of Hydroxy Fatty Acids Are Preferred Substrates of the MODY8 Protein Carboxyl Ester Lipase. Biochemistry, 2016, 55, 4636-4641.	1.2	54
30	A Postsynaptic AMPK→p21-Activated Kinase Pathway Drives Fasting-Induced Synaptic Plasticity in AgRP Neurons. Neuron, 2016, 91, 25-33.	3.8	60
31	GLUT4 Expression in Adipocytes Regulates De Novo Lipogenesis and Levels of a Novel Class of Lipids With Antidiabetic and Anti-inflammatory Effects. Diabetes, 2016, 65, 1808-1815.	0.3	107
32	PKD1 Inhibits AMPKα2 through Phosphorylation of Serine 491 and Impairs Insulin Signaling in Skeletal Muscle Cells. Journal of Biological Chemistry, 2016, 291, 5664-5675.	1.6	45
33	A LC-MS–based workflow for measurement of branched fatty acid esters of hydroxy fatty acids. Nature Protocols, 2016, 11, 747-763.	5.5	58
34	Disruption of Adipose Rab10-Dependent Insulin Signaling Causes Hepatic Insulin Resistance. Diabetes, 2016, 65, 1577-1589.	0.3	46
35	AIG1 and ADTRP are atypical integral membrane hydrolases that degrade bioactive FAHFAs. Nature Chemical Biology, 2016, 12, 367-372.	3.9	62
36	Antigen Presentation and T-Cell Activation Are Critical for RBP4-Induced Insulin Resistance. Diabetes, 2016, 65, 1317-1327.	0.3	49

3

#	Article	IF	Citations
37	Transthyretin Antisense Oligonucleotides Lower Circulating RBP4 Levels and Improve Insulin Sensitivity in Obese Mice. Diabetes, 2015, 64, 1603-1614.	0.3	47
38	Novel role for retinol-binding protein 4 in the regulation of blood pressure. FASEB Journal, 2015, 29, 3133-3140.	0.2	33
39	Downregulation of STRA6 in Adipocytes and Adipose Stromovascular Fraction in Obesity and Effects of Adipocyte-Specific STRA6 Knockdown In Vivo. Molecular and Cellular Biology, 2014, 34, 1170-1186.	1.1	28
40	RBP4 Activates Antigen-Presenting Cells, Leading to Adipose Tissue Inflammation and Systemic Insulin Resistance. Cell Metabolism, 2014, 19, 512-526.	7.2	215
41	Discovery of a Class of Endogenous Mammalian Lipids with Anti-Diabetic and Anti-inflammatory Effects. Cell, 2014, 159, 318-332.	13.5	639
42	Leptin, GABA, and Glucose Control. Cell Metabolism, 2013, 18, 304-306.	7.2	7
43	Plasma Retinol-Binding Protein 4 (RBP4) Levels and Risk of Coronary Heart Disease. Circulation, 2013, 127, 1938-1947.	1.6	97
44	Quantitative Measurement of Full-Length and C-Terminal Proteolyzed RBP4 in Serum of Normal and Insulin-Resistant Humans using a Novel Mass Spectrometry Immunoassay. Endocrinology, 2012, 153, 1519-1527.	1.4	26
45	Retinol-Binding Protein 4 Inhibits Insulin Signaling in Adipocytes by Inducing Proinflammatory Cytokines in Macrophages through a c-Jun N-Terminal Kinase- and Toll-Like Receptor 4-Dependent and Retinol-Independent Mechanism. Molecular and Cellular Biology, 2012, 32, 2010-2019.	1.1	207
46	p70S6 Kinase Phosphorylates AMPK on Serine 491 to Mediate Leptin's Effect on Food Intake. Cell Metabolism, 2012, 16, 104-112.	7.2	236
47	Ca2+/Calmodulin-Dependent Protein Kinase Kinase Is Not Involved in Hypothalamic AMP-Activated Protein Kinase Activation by Neuroglucopenia. PLoS ONE, 2012, 7, e36335.	1.1	7
48	A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature, 2012, 484, 333-338.	13.7	473
49	Rosiglitazone, PPARγ, and Type 2 Diabetes. New England Journal of Medicine, 2010, 363, 2667-2669.	13.9	54
50	Adipose Tissue Branched Chain Amino Acid (BCAA) Metabolism Modulates Circulating BCAA Levels. Journal of Biological Chemistry, 2010, 285, 11348-11356.	1.6	321
51	Long-term Fenretinide treatment prevents high-fat diet-induced obesity, insulin resistance, and hepatic steatosis. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E1420-E1429.	1.8	96
52	Neuronal Protein Tyrosine Phosphatase 1B Deficiency Results in Inhibition of Hypothalamic AMPK and Isoform-Specific Activation of AMPK in Peripheral Tissues. Molecular and Cellular Biology, 2009, 29, 4563-4573.	1.1	72
53	Retinol-Binding Protein 4 (RBP4): A Biomarker for Subclinical Atherosclerosis?. American Journal of Hypertension, 2009, 22, 948-949.	1.0	12
54	The Relationship of Retinol Binding Protein 4 to Changes in Insulin Resistance and Cardiometabolic Risk in Overweight Black Adolescents. Journal of Pediatrics, 2009, 154, 67-73.e1.	0.9	31

#	Article	IF	CITATIONS
55	Decreased clearance of serum retinol-binding protein and elevated levels of transthyretin in insulin-resistant <i>ob/ob</i> mice. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E785-E793.	1.8	79
56	Role of Hypothalamic Adenosine 5′-Monophosphate-Activated Protein Kinase in the Impaired Counterregulatory Response Induced by Repetitive Neuroglucopenia. Endocrinology, 2007, 148, 1367-1375.	1.4	80
57	A high-fat, ketogenic diet induces a unique metabolic state in mice. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1724-E1739.	1.8	343
58	Reduction of Elevated Serum Retinol Binding Protein in Obese Children by Lifestyle Intervention: Association with Subclinical Inflammation. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 1971-1974.	1.8	209
59	Serum Retinol-Binding Protein Is More Highly Expressed in Visceral than in Subcutaneous Adipose Tissue and Is a Marker of Intra-abdominal Fat Mass. Cell Metabolism, 2007, 6, 79-87.	7.2	360
60	Acute exercise increases serum retinol binding protein 4 concentrations. FASEB Journal, 2007, 21, A928.	0.2	0
61	Retinol-Binding Protein 4 and Insulin Resistance in Lean, Obese, and Diabetic Subjects. New England Journal of Medicine, 2006, 354, 2552-2563.	13.9	1,182
62	mTOR tells the brain that the body is hungry. Nature Medicine, 2006, 12, 615-617.	15.2	30
63	AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues. Journal of Physiology, 2006, 574, 73-83.	1.3	284
64	Diet-induced Obesity Alters AMP Kinase Activity in Hypothalamus and Skeletal Muscle. Journal of Biological Chemistry, 2006, 281, 18933-18941.	1.6	246
65	Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony. Journal of Clinical Investigation, 2006, 116, 1767-1775.	3.9	274
66	Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature, 2005, 436, 356-362.	13.7	1,809
67	Adipose-specific overexpression of GLUT4 reverses insulin resistance and diabetes in mice lacking GLUT4 selectively in muscle. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E551-E561.	1.8	196
68	AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metabolism, 2005, $1,15$ -25.	7.2	2,541
69	Nutrient sensor links obesity with diabetes risk. Nature Medicine, 2004, 10, 1049-1050.	15.2	63
70	AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature, 2004, 428, 569-574.	13.7	1,464
71	Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature, 2002, 415, 339-343.	13.7	1,823
72	Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature, 2001, 409, 729-733.	13.7	1,058

#	Article	IF	CITATIONS
73	Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nature Medicine, 2000, 6, 924-928.	15.2	624
74	In Vivo Administration of Leptin Activates Signal Transduction Directly in Insulin-Sensitive Tissues: Overlapping but Distinct Pathways from Insulin*. Endocrinology, 2000, 141, 2328-2339.	1.4	215
75	Glucose Transporters and Insulin Action — Implications for Insulin Resistance and Diabetes Mellitus. New England Journal of Medicine, 1999, 341, 248-257.	13.9	1,123
76	EXERCISE, GLUCOSE TRANSPORT, AND INSULIN SENSITIVITY. Annual Review of Medicine, 1998, 49, 235-261.	5.0	874
77	Alterations in glucose transporter expression and function in diabetes: Mechanisms for insulin resistance. Journal of Cellular Biochemistry, 1992, 48, 122-128.	1.2	35