
Cathy Lee Mendelsohn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4323520/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting S100A9–ALDH1A1–Retinoic Acid Signaling to Suppress Brain Relapse in <i>EGFR</i> -Mutant Lung Cancer. Cancer Discovery, 2022, 12, 1002-1021.	9.4	22
2	Development, regeneration and tumorigenesis of the urothelium. Development (Cambridge), 2022, 149, .	2.5	6
3	Copy Number Variant Analysis and Genome-wide Association Study Identify Loci with Large Effect for Vesicoureteral Reflux. Journal of the American Society of Nephrology: JASN, 2021, 32, 805-820.	6.1	17
4	Pparg signaling controls bladder cancer subtype and immune exclusion. Nature Communications, 2021, 12, 6160.	12.8	28
5	Hypermethylation of FOXA1 and allelic loss of PTEN drive squamous differentiation and promote heterogeneity in bladder cancer. Oncogene, 2020, 39, 1302-1317.	5.9	26
6	Retinoic acid signaling within pancreatic endocrine progenitors regulates mouse and human β cell specification. Development (Cambridge), 2020, 147, .	2.5	23
7	Pparg promotes differentiation and regulates mitochondrial gene expression in bladder epithelial cells. Nature Communications, 2019, 10, 4589.	12.8	50
8	Kidneys Prefer a High Fat4 Diet. Developmental Cell, 2019, 48, 743-744.	7.0	0
9	The copy number variation landscape of congenital anomalies of the kidney and urinary tract. Nature Genetics, 2019, 51, 117-127.	21.4	144
10	Polyploid Superficial Cells that Maintain the Urothelial Barrier Are Produced via Incomplete Cytokinesis and Endoreplication. Cell Reports, 2018, 25, 464-477.e4.	6.4	49
11	In vivo replacement of damaged bladder urothelium by Wolffian duct epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8394-8399.	7.1	14
12	Novel transgenic knockout model of basal-squamous bladder cancer Journal of Clinical Oncology, 2018, 36, 459-459.	1.6	0
13	On a FOX hunt: functions of FOX transcriptional regulators in bladder cancer. Nature Reviews Urology, 2017, 14, 98-106.	3.8	30
14	Exome-wide Association Study Identifies GREB1L Mutations in Congenital Kidney Malformations. American Journal of Human Genetics, 2017, 101, 789-802.	6.2	63
15	MP42-04 CHARACTERIZING DEVELOPMENT OF THE HUMAN LOWER URINARY TRACT: ANATOMIC FEATURES AND MOLECULAR EXPRESSION OF THE URETERIC BUD AND CLOACA. Journal of Urology, 2017, 197, .	0.4	0
16	MP65-16 INACTIVATION OF FOXA1 AND PTEN RESULTS IN DEVELOPMENT OF CARCINOMA IN SITU AND THE BASAL SUBTYPE OF MUSCLE INVASIVE BLADDER CANCER FOLLOWING CARCINOGEN EXPOSURE. Journal of Urology, 2017, 197, .	0.4	0
17	A mucosal imprint left by prior Escherichia coli bladder infection sensitizes to recurrent disease. Nature Microbiology, 2017, 2, 16196.	13.3	67
18	Characterization of a Murine Model of Bioequivalent Bladder Wound Healing and Repair Following Subtotal Cystectomy. BioResearch Open Access, 2017, 6, 35-45.	2.6	1

#	Article	IF	CITATIONS
19	FGFR3b Extracellular Loop Mutation Lacks Tumorigenicity In Vivo but Collaborates with p53/pRB Deficiency to Induce High-grade Papillary Urothelial Carcinoma. Scientific Reports, 2016, 6, 25596.	3.3	8
20	Vesicoureteral Obstruction and Vesicoureteral Reflux. , 2016, , 229-239.		1
21	An illustrated anatomical ontology of the developing mouse lower urogenital tract. Development (Cambridge), 2015, 142, 1893-1908.	2.5	108
22	Tumorigenicity of RTK/RAS in urothelium. Oncoscience, 2015, 2, 739-740.	2.2	5
23	Formation and regeneration of the urothelium. Current Opinion in Organ Transplantation, 2014, 19, 323-330.	1.6	40
24	Bladder cancers arise from distinct urothelial sub-populations. Nature Cell Biology, 2014, 16, 982-991.	10.3	163
25	MP21-02 TRACING THE ORIGINS OF BLADDER CANCER USING FATE MAPPING TECHNIQUES. Journal of Urology, 2014, 191, .	0.4	0
26	Retinoid Signaling in Progenitors Controls Specification and Regeneration of the Urothelium. Developmental Cell, 2013, 26, 469-482.	7.0	135
27	A Retrotransposon Insertion in the 5′ Regulatory Domain of Ptf1a Results in Ectopic Gene Expression and Multiple Congenital Defects in Danforth's Short Tail Mouse. PLoS Genetics, 2013, 9, e1003206.	3.5	20
28	Stromal Protein Ecm1 Regulates Ureteric Bud Patterning and Branching. PLoS ONE, 2013, 8, e84155.	2.5	33
29	Retinoic Acid Signaling Regulates Sonic Hedgehog and Bone Morphogenetic Protein Signalings During Genital Tubercle Development. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 2012, 95, 79-88.	1.4	14
30	The ulnar-mammary syndrome gene, <i>Tbx3</i> , is a direct target of the retinoic acid signaling pathway, which regulates its expression during mouse limb development. Molecular Biology of the Cell, 2012, 23, 2362-2372.	2.1	19
31	Novel mechanisms of early upper and lower urinary tract patterning regulated by RetY1015 docking tyrosine in mice. Development (Cambridge), 2012, 139, 2405-2415.	2.5	64
32	Organotypic Culture of the Urogenital Tract. Methods in Molecular Biology, 2012, 886, 45-53.	0.9	5
33	Ectopic Ureter, Ureterocele, and Ureteral Anomalies. , 2012, , 3236-3266.e3.		8
34	Noninvasive Assessment of Antenatal Hydronephrosis in Mice Reveals a Critical Role for Robo2 in Maintaining Anti-Reflux Mechanism. PLoS ONE, 2011, 6, e24763.	2.5	14
35	Nephric duct insertion is a crucial step in urinary tract maturation that is regulated by a <i>Gata3-Raldh2-Ret</i> molecular network in mice. Development (Cambridge), 2011, 138, 2089-2097.	2.5	76
36	The GUDMAP database – an online resource for genitourinary research. Development (Cambridge), 2011, 138, 2845-2853.	2.5	226

#	Article	IF	CITATIONS
37	Non-cell-autonomous retinoid signaling is crucial for renal development. Development (Cambridge), 2010, 137, 283-292.	2.5	149
38	GUDMAP - An Online GenitoUrinary Resource. Nature Precedings, 2009, , .	0.1	0
39	Using mouse models to understand normal and abnormal urogenital tract development. Organogenesis, 2009, 5, 32-40.	1.2	67
40	Ret-Dependent Cell Rearrangements in the Wolffian Duct Epithelium Initiate Ureteric Bud Morphogenesis. Developmental Cell, 2009, 17, 199-209.	7.0	193
41	07-P023 GUDMAP – An online genitourinary resource. Mechanisms of Development, 2009, 126, S143.	1.7	0
42	IMMUNOHISTOCHEMICAL EXAMINATION OF THE REGION BENEATH THE DISTAL URETER OF THE HUMAN FETUS AND MOUSE: INSIGHTS INTO THE SUCCESS OF ENDOSCOPIC TREATMENT OF VESICOURETERAL REFLUX. Journal of Urology, 2008, 179, 201-201.	0.4	0
43	The development of the bladder trigone, the center of the anti-reflux mechanism. Development (Cambridge), 2007, 134, 3763-3769.	2.5	73
44	Retinoid Inactivation: Survival Factor for Male Germ Cells. Endocrinology, 2007, 148, 4557-4559.	2.8	1
45	A high-resolution anatomical ontology of the developing murine genitourinary tract. Gene Expression Patterns, 2007, 7, 680-699.	0.8	125
46	c-kit delineates a distinct domain of progenitors in the developing kidney. Developmental Biology, 2006, 299, 238-249.	2.0	54
47	Going in circles: conserved mechanisms control radial patterning in the urinary and digestive tracts. Journal of Clinical Investigation, 2006, 116, 635-637.	8.2	16
48	578: Distal Ureteral Morphogenesis Depends on Apoptosis Induced by Signals from the Urogenital Sinus: A New Model of Ureteral Maturation. Journal of Urology, 2006, 175, 187-188.	0.4	0
49	Apoptosis induced by vitamin A signaling is crucial for connecting the ureters to the bladder. Nature Genetics, 2005, 37, 1082-1089.	21.4	147
50	Pathways of Vitamin A Delivery to the Embryo: Insights from a New Tunable Model of Embryonic Vitamin A Deficiency. Endocrinology, 2005, 146, 4479-4490.	2.8	120
51	Distinct and sequential tissue-specific activities of the LIM-class homeobox gene <i>Lim1</i> for tubular morphogenesis during kidney development. Development (Cambridge), 2005, 132, 2809-2823.	2.5	307
52	Foxd1-dependent signals control cellularity in the renal capsule, a structure required for normal renal development. Development (Cambridge), 2005, 132, 529-539.	2.5	202
53	Lack of major involvement of human uroplakin genes in vesicoureteral reflux: Implications for disease heterogeneity. Kidney International, 2004, 66, 10-19.	5.2	49
54	Functional obstruction: the renal pelvis rules. Journal of Clinical Investigation, 2004, 113, 957-959.	8.2	6

CATHY LEE MENDELSOHN

#	Article	IF	CITATIONS
55	Functional obstruction: the renal pelvis rules. Journal of Clinical Investigation, 2004, 113, 957-959.	8.2	43
56	1717: The Bladder Trigone is not a Wolffian Duct Remnant. Journal of Urology, 2004, 171, 454-454.	0.4	0
57	IRTA Family Proteins: Transmembrane Receptors Differentially Expressed in Normal B Cells and Involved in Lymphomagenesis. Annals of the New York Academy of Sciences, 2003, 987, 312-313.	3.8	0
58	Stromal progenitors are important for patterning epithelial and mesenchymal cell types in the embryonic kidney. Seminars in Cell and Developmental Biology, 2003, 14, 225-231.	5.0	41
59	Regulated Expression of ATF5 Is Required for the Progression of Neural Progenitor Cells to Neurons. Journal of Neuroscience, 2003, 23, 4590-4600.	3.6	123
60	IRTAs: a new family of immunoglobulinlike receptors differentially expressed in B cells. Blood, 2002, 99, 2662-2669.	1.4	111
61	The Tnfrh1 (Tnfrsf23) gene is weakly imprinted in several organs and expressed at the trophoblast-decidua interface. BMC Genetics, 2002, 3, 1.	2.7	2
62	Distal ureter morphogenesis depends on epithelial cell remodeling mediated by vitamin A and Ret. Nature Genetics, 2002, 32, 109-115.	21.4	145
63	The Tnfrh1 (Tnfrsf23) gene is weakly imprinted in several organs and expressed at the trophoblast-decidua interface. BMC Genetics, 2002, 3, 11.	2.7	29
64	IRTA1 and IRTA2, Novel Immunoglobulin Superfamily Receptors Expressed in B Cells and Involved in Chromosome 1q21 Abnormalities in B Cell Malignancy. Immunity, 2001, 14, 277-289.	14.3	176
65	Vitamin A controls epithelial/mesenchymal interactions through Ret expression. Nature Genetics, 2001, 27, 74-78.	21.4	240
66	Characterization of a New Member of the Fatty Acid-binding Protein Family That Binds All-trans-retinol. Journal of Biological Chemistry, 2001, 276, 1353-1360.	3.4	110
67	Expression and Characterization of a Murine Enzyme Able to Cleave β-Carotene. Journal of Biological Chemistry, 2001, 276, 32160-32168.	3.4	139
68	The Targeted Disruption of Both Alleles of RARβ2 in F9 Cells Results in the Loss of Retinoic Acid-associated Growth Arrest. Journal of Biological Chemistry, 1999, 274, 26783-26788.	3.4	98
69	A novel pleckstrin homology-related gene family defined by Ipl/Tssc3, TDAC51, and Tih1: tissue-specific expression, chromosomal location, and parental imprinting. Mammalian Genome, 1999, 10, 1150-1159.	2.2	103
70	Developmental roles of the retinoic acid receptors. Journal of Steroid Biochemistry and Molecular Biology, 1995, 53, 475-486.	2.5	137
71	RARβ isoforms: distinct transcriptional control by retinoic acid and specific spatial patterns of promoter activity during mouse embryonic development. Mechanisms of Development, 1994, 45, 227-241.	1.7	64
72	Retinoic Acid Receptor β2 (RARβ2) Null Mutant Mice Appear Normal. Developmental Biology, 1994, 166, 246-258.	2.0	147

CATHY LEE MENDELSOHN

#	Article	IF	CITATIONS
73	Retinoic Acid Signal Transduction Pathways. Annals of the New York Academy of Sciences, 1993, 684, 19-34.	3.8	45
74	Retinoid receptors in vertebrate limb development. Developmental Biology, 1992, 152, 50-61.	2.0	97
75	Murine isoforms of retinoic acid receptor gamma with specific patterns of expression Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 2700-2704.	7.1	302
76	Cellular receptor for poliovirus: Molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell, 1989, 56, 855-865.	28.9	1,128
77	Transformation of a human poliovirus receptor gene into mouse cells Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 7845-7849.	7.1	109
78	GUDMAP $\hat{a} \in \hat{A}$ An Online GenitoUrinary Resource. Nature Precedings, 0, , .	0.1	0
79	Gardnerella Exposures Alter Bladder Gene Expression and Augment Uropathogenic Escherichia coli Urinary Tract Infection in Mice. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	6