List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/432287/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mapping Normative Trajectories of Cognitive Function and Its Relation to Psychopathology Symptoms and Genetic Risk in Youth. Biological Psychiatry Global Open Science, 2023, 3, 255-263.	2.2	8
2	Age-related brain deviations and aggression. Psychological Medicine, 2023, 53, 4012-4021.	4.5	10
3	Interindividual Differences in Cortical Thickness and Their Genomic Underpinnings in Autism Spectrum Disorder. American Journal of Psychiatry, 2022, 179, 242-254.	7.2	28
4	Global urbanicity is associated with brain and behaviour in young people. Nature Human Behaviour, 2022, 6, 279-293.	12.0	24
5	Charting brain growth and aging at high spatial precision. ELife, 2022, 11, .	6.0	61
6	Mapping dopaminergic projections in the human brain with resting-state fMRI. ELife, 2022, 11, .	6.0	9
7	Rapid processing and quantitative evaluation of structural brain scans for adaptive multimodal imaging. Human Brain Mapping, 2022, 43, 1749-1765.	3.6	5
8	Deep neural networks learn general and clinically relevant representations of the ageing brain. NeuroImage, 2022, 256, 119210.	4.2	46
9	P324. Striatal Connectopic Maps Link to Functional Domains Across Psychiatric Disorders. Biological Psychiatry, 2022, 91, S218.	1.3	0
10	Resting state EEG power spectrum and functional connectivity in autism: a cross-sectional analysis. Molecular Autism, 2022, 13, 22.	4.9	20
11	Cerebellar Atypicalities in Autism?. Biological Psychiatry, 2022, 92, 674-682.	1.3	20
12	The normative modeling framework for computational psychiatry. Nature Protocols, 2022, 17, 1711-1734.	12.0	61
13	Atypical Brain Asymmetry in Autism—A Candidate for Clinically Meaningful Stratification. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 802-812.	1.5	36
14	Temporal Profiles of Social Attention Are Different Across Development in Autistic and Neurotypical People. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 813-824.	1.5	21
15	Brain aging in major depressive disorder: results from the ENIGMA major depressive disorder working group. Molecular Psychiatry, 2021, 26, 5124-5139.	7.9	136
16	Deep learning identifies partially overlapping subnetworks in the human social brain. Communications Biology, 2021, 4, 65.	4.4	11
17	Replicating extensive brain structural heterogeneity in individuals with schizophrenia and bipolar disorder. Human Brain Mapping, 2021, 42, 2546-2555.	3.6	42
18	Phenotyping the Preterm Brain: Characterizing Individual Deviations From Normative Volumetric Development in Two Large Infant Cohorts, Cerebral Cortex, 2021, 31, 3665-3677.	2.9	19

#	Article	IF	CITATIONS
19	Beyond the average patient: how neuroimaging models can address heterogeneity in dementia. Brain, 2021, 144, 2946-2953.	7.6	46
20	Warped Bayesian linear regression for normative modelling of big data. NeuroImage, 2021, 245, 118715.	4.2	38
21	Preference for biological motion is reduced in ASD: implications for clinical trials and the search for biomarkers. Molecular Autism, 2021, 12, 74.	4.9	10
22	The heterogeneous brain: Mapping individualised patterns of atrophy in Alzheimer's disease using spatial normative models. Alzheimer's and Dementia, 2021, 17, .	0.8	2
23	Individual differences <i>v.</i> the average patient: mapping the heterogeneity in ADHD using normative models. Psychological Medicine, 2020, 50, 314-323.	4.5	113
24	Brain Connectome Mapping of Complex Human Traits and Their Polygenic Architecture Using Machine Learning. Biological Psychiatry, 2020, 87, 717-726.	1.3	23
25	A Closer Look at Depression Biotypes: Correspondence Relating to Grosenick etÂal. (2019). Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2020, 5, 554-555.	1.5	9
26	Linear methods for classification. , 2020, , 83-100.		1
27	Genetic correlations and genome-wide associations of cortical structure in general population samples of 22,824 adults. Nature Communications, 2020, 11, 4796.	12.8	61
28	Fractionating autism based on neuroanatomical normative modeling. Translational Psychiatry, 2020, 10, 384.	4.8	40
29	The genetic architecture of the human cerebral cortex. Science, 2020, 367, .	12.6	450
30	Sensory Modality-Independent Activation of the Brain Network for Language. Journal of Neuroscience, 2020, 40, 2914-2924.	3.6	19
31	Predicting individual clinical trajectories of depression with generative embedding. NeuroImage: Clinical, 2020, 26, 102213.	2.7	33
32	Modelling brain development to detect white matter injury in term and preterm born neonates. Brain, 2020, 143, 467-479.	7.6	44
33	Analysing brain networks in population neuroscience: a case for the Bayesian philosophy. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190661.	4.0	27
34	10,000 social brains: Sex differentiation in human brain anatomy. Science Advances, 2020, 6, eaaz1170.	10.3	55
35	Heterogeneity in Brain Microstructural Development Following Preterm Birth. Cerebral Cortex, 2020, 30, 4800-4810.	2.9	54
36	Hierarchical Bayesian Regression for Multi-site Normative Modeling of Neuroimaging Data. Lecture Notes in Computer Science, 2020, , 699-709.	1.3	28

#	Article	IF	CITATIONS
37	From pattern classification to stratification: towards conceptualizing the heterogeneity of Autism Spectrum Disorder. Neuroscience and Biobehavioral Reviews, 2019, 104, 240-254.	6.1	88
38	Identification of neurobehavioural symptom groups based on shared brain mechanisms. Nature Human Behaviour, 2019, 3, 1306-1318.	12.0	37
39	Conceptualizing mental disorders as deviations from normative functioning. Molecular Psychiatry, 2019, 24, 1415-1424.	7.9	222
40	Modeling longitudinal imaging biomarkers with parametric Bayesian multiâ€ŧask learning. Human Brain Mapping, 2019, 40, 3982-4000.	3.6	15
41	86. Understanding the Heterogeneous Phenotype of Psychiatric Disorders Using Normative Models. Biological Psychiatry, 2019, 85, S36.	1.3	0
42	56. Aiding the Diagnosis of Dissociative Identity Disorder: A Pattern Recognition Study of Brain Structural Biomarkers. Biological Psychiatry, 2019, 85, S23-S24.	1.3	0
43	Evaluating the evidence for biotypes of depression: Methodological replication and extension of. NeuroImage: Clinical, 2019, 22, 101796.	2.7	232
44	Phenomapping: Methods and Measures for Deconstructing Diagnosis in Psychiatry. , 2019, , 119-134.		28
45	Genetic architecture of subcortical brain structures in 38,851 individuals. Nature Genetics, 2019, 51, 1624-1636.	21.4	192
46	Dissecting the Heterogeneous Cortical AnatomyÂof Autism Spectrum Disorder Using Normative Models. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 567-578.	1.5	97
47	Aiding the diagnosis of dissociative identity disorder: pattern recognition study of brain biomarkers. British Journal of Psychiatry, 2019, 215, 536-544.	2.8	35
48	Altered Connectivity Between Cerebellum, Visual, and Sensory-Motor Networks in Autism Spectrum Disorder: Results from the EU-AIMS Longitudinal European Autism Project. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 260-270.	1.5	82
49	Using Pattern Classification to Identify Brain Imaging Markers in Autism Spectrum Disorder. Current Topics in Behavioral Neurosciences, 2018, 40, 413-436.	1.7	5
50	Connectopic mapping with resting-state fMRI. NeuroImage, 2018, 170, 83-94.	4.2	203
51	Predicting the naturalistic course of depression from a wide range of clinical, psychological, and biological data: a machine learning approach. Translational Psychiatry, 2018, 8, 241.	4.8	87
52	Mapping the Heterogeneous Phenotype of Schizophrenia and Bipolar Disorder Using Normative Models. JAMA Psychiatry, 2018, 75, 1146.	11.0	290
53	Normative Modeling of Neuroimaging Data Using Scalable Multi-task Gaussian Processes. Lecture Notes in Computer Science, 2018, , 127-135.	1.3	7
54	Novel genetic loci associated with hippocampal volume. Nature Communications, 2017, 8, 13624.	12.8	250

#	Article	IF	CITATIONS
55	In Vivo Evidence of Reduced Integrity of the Gray–White Matter Boundary in Autism Spectrum Disorder. Cerebral Cortex, 2017, 27, 877-887.	2.9	41
56	Association Between the Probability of Autism Spectrum Disorder and Normative Sex-Related Phenotypic Diversity in Brain Structure. JAMA Psychiatry, 2017, 74, 329.	11.0	57
57	Functional corticostriatal connection topographies predict goal-directed behaviour in humans. Nature Human Behaviour, 2017, 1, 0146.	12.0	126
58	A Bayesian spatial model for neuroimaging data based on biologically informed basis functions. Neurolmage, 2017, 161, 134-148.	4.2	18
59	Frequency-specific directed interactions in the human brain network for language. Proceedings of the United States of America, 2017, 114, 8083-8088.	7.1	105
60	Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex. Brain Imaging and Behavior, 2017, 11, 1497-1514.	2.1	144
61	Structural asymmetries of the human cerebellum in relation to cerebral cortical asymmetries and handedness. Brain Structure and Function, 2017, 222, 1611-1623.	2.3	29
62	Refinement by integration: aggregated effects of multimodal imaging markers on adult ADHD. Journal of Psychiatry and Neuroscience, 2017, 42, 386-394.	2.4	39
63	Identifying Individuals at High Risk of Psychosis: Predictive Utility of Support Vector Machine using Structural and Functional MRI Data. Frontiers in Psychiatry, 2016, 7, 52.	2.6	29
64	Beyond Lumping and Splitting: A Review of Computational Approaches for Stratifying Psychiatric Disorders. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2016, 1, 433-447.	1.5	148
65	Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nature Neuroscience, 2016, 19, 1569-1582.	14.8	213
66	Making use of longitudinal information in pattern recognition. Human Brain Mapping, 2016, 37, 4385-4404.	3.6	5
67	Quantifying patterns of brain activity: Distinguishing unaffected siblings from participants with ADHD and healthy individuals. NeuroImage: Clinical, 2016, 12, 227-233.	2.7	16
68	Distinguishing medicationâ€free subjects with unipolar disorder from subjects with bipolar disorder: state matters. Bipolar Disorders, 2016, 18, 612-623.	1.9	54
69	Understanding Heterogeneity in Clinical Cohorts Using Normative Models: Beyond Case-Control Studies. Biological Psychiatry, 2016, 80, 552-561.	1.3	376
70	Chapter 6 Neuroimaging biomarkers for autism spectrum disorder. , 2016, , 95-120.		0
71	Multivariate decoding of cerebral blood flow measures in a clinical model of onâ€going postsurgical pain. Human Brain Mapping, 2015, 36, 633-642.	3.6	18
72	Estimating multivariate similarity between neuroimaging datasets with sparse canonical correlation analysis: an application to perfusion imaging. Frontiers in Neuroscience, 2015, 9, 366.	2.8	10

#	Article	IF	CITATIONS
73	Predicting long-term outcome of Internet-delivered cognitive behavior therapy for social anxiety disorder using fMRI and support vector machine learning. Translational Psychiatry, 2015, 5, e530-e530.	4.8	129
74	Predicting the Naturalistic Course of Major Depressive Disorder Using Clinical and Multimodal Neuroimaging Information: A Multivariate Pattern Recognition Study. Biological Psychiatry, 2015, 78, 278-286.	1.3	87
75	From estimating activation locality to predicting disorder: A review of pattern recognition for neuroimaging-based psychiatric diagnostics. Neuroscience and Biobehavioral Reviews, 2015, 57, 328-349.	6.1	241
76	Predicting Progression of Alzheimer's Disease Using Ordinal Regression. PLoS ONE, 2014, 9, e105542.	2.5	44
77	An empirical comparison of different approaches for combining multimodal neuroimaging data with support vector machine. Frontiers in Neuroscience, 2014, 8, 189.	2.8	26
78	SCoRS—A Method Based on Stability for Feature Selection and Mapping in Neuroimaging. IEEE Transactions on Medical Imaging, 2014, 33, 85-98.	8.9	57
79	Pseudo-Marginal Bayesian Multiple-Class Multiple-Kernel Learning for Neuroimaging Data. , 2014, , .		0
80	Pattern classification of response inhibition in ADHD: Toward the development of neurobiological markers for ADHD. Human Brain Mapping, 2014, 35, 3083-3094.	3.6	104
81	Examination of the predictive value of structural magnetic resonance scans in bipolar disorder: a pattern classification approach. Psychological Medicine, 2014, 44, 519-532.	4.5	49
82	Bayesian multi-task learning for decoding multi-subject neuroimaging data. Neurolmage, 2014, 92, 298-311.	4.2	49
83	Classifying social anxiety disorder using multivoxel pattern analyses of brain function and structure. Behavioural Brain Research, 2014, 259, 330-335.	2.2	65
84	Full Bayesian multi-task learning for multi-output brain decoding and accommodating missing data. , 2014, , .		5
85	Correction to "SCoRS—A Method Based on Stability for Feature Selection and Mapping in Neuroimaging―[Jan 14 85-98]. IEEE Transactions on Medical Imaging, 2014, 33, 794-794.	8.9	3
86	Predictive Neurofunctional Markers of Attention-Deficit/Hyperactivity Disorder Based on Pattern Classification of Temporal Processing. Journal of the American Academy of Child and Adolescent Psychiatry, 2014, 53, 569-578.e1.	0.5	31
87	Using structural neuroanatomy to identify trauma survivors with and without post-traumatic stress disorder at the individual level. Psychological Medicine, 2014, 44, 195-203.	4.5	67
88	A novel approach to probabilistic biomarkerâ€based classification using functional nearâ€infrared spectroscopy. Human Brain Mapping, 2013, 34, 1102-1114.	3.6	30
89	PRoNTo: Pattern Recognition for Neuroimaging Toolbox. Neuroinformatics, 2013, 11, 319-337.	2.8	367
90	Multivariate decoding of brain images using ordinal regression. NeuroImage, 2013, 81, 347-357.	4.2	24

#	Article	IF	CITATIONS
91	The functional anatomy of suggested limb paralysis. Cortex, 2013, 49, 411-422.	2.4	30
92	Test–retest reliability of the BOLD pharmacological MRI response to ketamine in healthy volunteers. NeuroImage, 2013, 64, 75-90.	4.2	103
93	Using genetic, cognitive and multi-modal neuroimaging data to identify ultra-high-risk and first-episode psychosis at the individual level. Psychological Medicine, 2013, 43, 2547-2562.	4.5	97
94	Pattern recognition analysis of anterior cingulate cortex blood flow to classify depression polarity. British Journal of Psychiatry, 2013, 203, 310-311.	2.8	43
95	Automated, High Accuracy Classification of Parkinsonian Disorders: A Pattern Recognition Approach. PLoS ONE, 2013, 8, e69237.	2.5	39
96	Disorder-Specific Predictive Classification of Adolescents with Attention Deficit Hyperactivity Disorder (ADHD) Relative to Autism Using Structural Magnetic Resonance Imaging. PLoS ONE, 2013, 8, e63660.	2.5	85
97	Probabilistic prediction of neurological disorders with a statistical assessment of neuroimaging data modalities. Annals of Applied Statistics, 2012, 6, 1883-1905.	1.1	32
98	Dissociable effects of methylphenidate, atomoxetine and placebo on regional cerebral blood flow in healthy volunteers at rest: A multi-class pattern recognition approach. Neurolmage, 2012, 60, 1015-1024.	4.2	67
99	Pattern Recognition and Functional Neuroimaging Help to Discriminate Healthy Adolescents at Risk for Mood Disorders from Low Risk Adolescents. PLoS ONE, 2012, 7, e29482.	2.5	60
100	Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review. Neuroscience and Biobehavioral Reviews, 2012, 36, 1140-1152.	6.1	854
101	Pattern recognition analyses of brain activation elicited by happy and neutral faces in unipolar and bipolar depression. Bipolar Disorders, 2012, 14, 451-460.	1.9	71
102	Data-Driven Modeling of BOLD Drug Response Curves Using Gaussian Process Learning. Lecture Notes in Computer Science, 2012, , 210-217.	1.3	1
103	Patient classification as an outlier detection problem: An application of the One-Class Support Vector Machine. NeuroImage, 2011, 58, 793-804.	4.2	112
104	Prognostic prediction of therapeutic response in depression using high-field MR imaging. NeuroImage, 2011, 55, 1497-1503.	4.2	182
105	Pattern Classification of Working Memory Networks Reveals Differential Effects of Methylphenidate, Atomoxetine, and Placebo in Healthy Volunteers. Neuropsychopharmacology, 2011, 36, 1237-1247.	5.4	81
106	Integrating Neurobiological Markers of Depression. Archives of General Psychiatry, 2010, 68, 361.	12.3	130
107	Subregional hippocampal deformations in major depressive disorder. Journal of Affective Disorders, 2010, 126, 272-277.	4.1	87
108	Describing the Brain in Autism in Five Dimensions—Magnetic Resonance Imaging-Assisted Diagnosis of Autism Spectrum Disorder Using a Multiparameter Classification Approach. Journal of Neuroscience, 2010, 30, 10612-10623.	3.6	369

#	Article	IF	CITATIONS
109	Classification of Neurodegenerative Diseases Using Gaussian Process Classification with Automatic Feature Determination. , 2010, , .		2
110	Investigating the predictive value of whole-brain structural MR scans in autism: A pattern classification approach. NeuroImage, 2010, 49, 44-56.	4.2	361
111	Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes. NeuroImage, 2010, 49, 2178-2189.	4.2	218
112	Quantifying the Information Content of Brain Voxels Using Target Information, Gaussian Processes and Recursive Feature Elimination. , 2010, , .		4
113	Pattern Classification of Sad Facial Processing: Toward the Development of Neurobiological Markers in Depression. Biological Psychiatry, 2008, 63, 656-662.	1.3	298
114	Neuroanatomy of verbal working memory as a diagnostic biomarker for depression. NeuroReport, 2008, 19, 1507-1511.	1.2	111